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Abstract
Hybridmodels of genetic regulatory networks allow for a simpler analysis with respect
to fully detailed quantitative models, still maintaining the main dynamical features of
interest. In this paper we consider a piecewise affine model of a genetic regulatory
network, in which the parameters describing the production function are affected by
polytopic uncertainties. In the first part of the paper, after recalling how the problem
of finding a Lyapunov function is solved in the nominal case, we present the consid-
ered polytopic uncertain system and then, after describing how to deal with sliding
mode solutions, we prove a result of existence of a parameter dependent Lyapunov
function subject to the solution of a feasibility linear matrix inequalities problem. In
the second part of the paper, based on the previously described Lyapunov function,
we are able to determine a set of domains where the system is guaranteed to converge,
with the exception of a zero measure set of times, independently from the uncertainty
realization. Finally a three nodes network example shows the validity of the results.
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1 Introduction

In the last few years control theory tools have been extensively used in biology, to both
understand natural biological systems or design new ones to perform specific tasks
(Blanchini et al. 2018; Qian et al. 2018). Within a cell, in fact, multiple regulatory
mechanisms coexist (Alon 2007; Freeman 2014) and among these, transcriptional
regulation involving genes and transcription factors plays a crucial role. Transcription
factors are proteins which can either activate or inhibit the transcription of different
genes, which in turn can produce other transcription factors, determining a set of
relations described by a gene regulatory network (GRN) (Alon 2007). Different mod-
elling approaches are used to mathematically describe a GRN, depending on whether
the analysis to perform is either quantitative or qualitative (Karlebach and Shamir
2008). Continuous models, derived from the study of chemical reaction networks and
quasi-steady state approximation of faster dynamics, usually involve Hill functions
to describe regulatory interactions and are particularly well suited for a quantitative
analysis (Alon 2007; Le Novère and Nicolas 2015; Murray and Del Vecchio 2014).
However, a quantitative approachmay not always be possible as biological systems are
inherently uncertain and the measurement of key quantities may be affected by noise
or impossible to take; for these reasons, qualitative approaches have been developed
in literature. Asynchronous boolean networks have been studied to analyse complex
biological systems (see for example Tournier andChaves 2009 and references therein),
as many interactions and system quantities can be described by logic variables (e.g.
HIGH or LOW concentration, protein production is ACTIVE or INACTIVE, etc.).
Despite being a valid and simple method, completely discrete analysis can lose track
of some dynamical behavior (Saadatpour and Albert 2016) and it may be necessary
to consider hybrid models. The hybrid modelling approach was introduced in Glass
and Kauffman (1973) and has been studied and adapted by many authors (see for
example Casey et al. 2006; De Jong et al. 2003, 2004; Ropers et al. 2006; Cummins
et al. 2016; Gedeon 2020). Based on the step approximation of steep Hill functions
(Alon 2007), this approach gives rise to a piecewise affine (PWA) model. In Casey
et al. (2006) the authors studied this model and gave stability conditions of equilib-
ria based on a State Transition Graph (STG), a graph that qualitatively describes the
system trajectories. The STG is unchanged for a large range of parameters, making
this kind of analysis attractive when the system’s knowledge is partial. Despite being
a valid tool, there are a few limitations in the use of STGs. These graphs in fact,
besides introducing spurious qualitative trajectories (i.e. paths in the graph that do not
correspond to trajectories of the original system) (Casey et al. 2006), do not give clear
answers when cycles are present (Grognard et al. 2007), making it difficult to distin-
guish between damped oscillations and limit cycles. This motivates the development
of tools that can fill these gaps, by complementing these qualitative tools, exploit-
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ing additional quantitative information from the system. One of the most common
approach in this sense is to consider Lyapunov functions, which can help to discrimi-
nate between different kind of dynamical behaviors, otherwise indistinguishable from
the graph, and the use of which is even suggested in the Conclusion of Casey et al.
(2006), and which are the object of this work. The use of Lyapunov functions in the
study of biochemical networks is well known in literature. In Ali Al-Radhawi and
Angeli (2016) the authors studied chemical reaction networks stability and control,
using piecewise linear in rates Lyapunov functions, in Blanchini and Giordano (2014)
the authors employed piecewise linear Lyapunov functions to assess structural prop-
erties of biological networks, while in Chesi and Hung (2008) the authors, based on
a linear matrix inequalities (LMIs) framework, used polynomial Lyapunov functions
to study the stability of genetic regulatory networks with SUM regulatory functions.
In our previous work (Pasquini and Angel 2019) we considered the aforementioned
PWA model of a GRN and, using the model structure and the information from the
STG, we developed an LMI framework to find a Lyapunov function for the system,
in order to assess its convergence properties, even in the presence of cycles in the
STG. In that context we assumed complete knowledge of the system’s parameters, an
assumption that in general does not hold. However, Lyapunov methods are used also
in the uncertain setting and a particular case is that of polytopic uncertainties for linear
systems, in which the system’s matrix is the convex combination of a set of known
matrices, with the weights of this combination being unknown. Two approaches are
generally employed in literature. The first one consists in searching for a Lyapunov
function which is common between all the systems obtained by considering the real-
izations associated with the vertices of the uncertainty polytope (Liberzon 2003; Lin
and Antsaklis 2005). This approach, although allowing to conclude certain stability
and stabilizability properties of the system, is challenging and can lead to a conserva-
tive solution, as it does not consider how the extremal behaviors are combined in any
given uncertainty realization. The other approach, which we will consider in this work
to deal with polytopic uncertainties, is to search for a parameter dependent Lyapunov
function (PD-LF). In Gahinet et al. (1996) the authors first showed how to convexify
the problem of finding an affinely parameter dependent Lyapunov function, through
the solution of a set of LMIs. Following this many authors proposed different LMIs
framework to deal with linear parameter varying systems stability (Chesi et al. 2004;
Neto 1999; Oliveira and Peres 2006) and stabilizability (Lin and Antsaklis 2007; Zhai
et al. 2003) through the use of PD-LFs, which are in general polynomially dependent
on the uncertain parameters. Although the literature on parameter dependent lyapunov
functions for polytopic uncertain systems is vast and still developing, many aspects
are not usually considered. In most of the cases where both polytopic uncertainties and
switching systems are considered, the problem of stabilizability is addressed (i.e. the
choice of a switching signals to stabilise the system). However, in a PWA model of a
GRN, the switching is state dependent and cannot be chosen. Moreover multistability,
which is a common property of biological systems, is usually not considered; instead
global asymptotic stability of a single equilibrium is a common theme inmany of these
works. For example in Arcak and Sontag (2008) the authors propose techniques based
on dissipativity of individual gene subsystems in order to build separable Lyapunov
functions that can be used to assess global asymptotic stability of the network. LMI
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conditions are used to infer the parameter ranges where such conditions can be ful-
filled. In contrast, our paper does not focus on global asymptotic stability properties
and exploits the structure of PWA models in order to build robust Lyapunov function
for global convergence analysis.

In the present paper we consider polytopic uncertainties in piecewise affine mod-
els of GRNs, to address the issue that the system’s parameters may not be perfectly
known (as in qualitative methods), but bounded within preassigned ranges. We pro-
vide an LMI framework whose solution describes a parameter dependent piecewise
quadratic Lyapunov function (PD-PWQ-LF) for the system, i.e. a Lyapunov function
that depends explicitly on the unknown parameters describing the particular uncer-
tainty realization, which will allow us to describe a convergence set for the system,
robust with respect to the uncertainty. Our analysis can deal with multistable sys-
tems, as information on equilibria location is not explicitly taken into consideration
when defining the LMI framework. Moreover it is remarked that even if in litera-
ture there are results on parameter dependent Lyapunov functions with more complex
and general structures (see for example Chesi et al. 2005), in this work we consider
parameter dependent Lyapunov functions which are only affinely dependent on the
system’s uncertain parameters, as these allow to deal in a straightforward manner with
sliding mode monotonicity and continuity on the boundary of regulatory domains, as
it will be clear in the following. The paper is structured as follows: in Sect. 2 some
mathematical notation and preliminaries are defined, while in Sect. 3 the piecewise
affine model and its differential inclusion extension are described, together with a
brief recap of our work (Pasquini and Angel 2019) on piecewise quadratic Lyapunov
functions for the nominal PWAmodel. In Sect. 4 the main contribution of the paper is
presented: first we describe the considered polytopic uncertain model and the desired
form of the Lyapunov function, then, after a discussion on the constraints that need
to be enforced by this function, we give the conditions for its existence in the form
of an LMI framework (Theorem 1). Finally we prove that, for any realization of the
system uncertainty, the set where the system converges is contained in a computable
set depending only on the vertices value of the uncertainty polytope. In Sect. 5 we
give a numerical example showing the applicability and the validity of the results for a
three nodes GRN, while Sect. 6 concludes the paper and give some possible directions
for future developments.

2 Mathematical background

Let v = [
v1 . . . vn

]T be a vector in R
n . With v ≥ 0 we mean that all the com-

ponents of v are non-negative. The set of all v ∈ R
n such that v ≥ 0 is denoted

with R
n+. Let W = {w1, . . . , wm} be a set of vectors. We define the conic hull of W

as cone(W ) := {v ∈ R
n | ∃α ∈ R

m+ s.t . v = ∑m
i=1 αiwi }. Let Sm denote the standard

simplex of dimension m, i.e. the set Sm := {α ∈ R
n+|∑m

i=1 αi = 1} .
We define the convex hull of W as conv(W ) := {v ∈ R

n | ∃α ∈ Sm s.t . v =∑m
i=1 αiwi }.
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A set-valued map H : X → 2Y is a map that associates a point in X to a subset of
Y .

With
∑

v∈W we denote the sum over the elements of the countable set W , while
with

⋃
v′∈W ′ we denote the union over the elements of the set W ′.

Given amatrix M ∈ R
n×n , Mi j denotes the element in its i-th row and j-th column.

Let M ∈ R
n×n be a symmetric matrix. We denote with M � 0(M � 0) the fact that

M is positive definite (semidefinite), and with M ≺ 0(M 
 0) the fact that M is
negative definite (semidefinite).

A polyhedron P in Rn , is the set described by:

P = {x ∈ R
n s.t . Ax ≤ b, A ∈ R

m×n, b ∈ R
m} (1)

Equation (1) is called the H -representationof P . Everypolyhedron’s H -representation
can be converted to a V -representation (Avis et al. 2002; Herceg et al. 2013; Iervolino
et al. 2017b), namely:

P = conv{V } + cone{R} (2)

where V = [
v1 . . . vν

]
denotes the set of vertices of P , and R = [

r1 . . . rρ

]
the set of

its rays, with the notation in (2) meaning that any element in P can be expressed as
the sum of an element belonging to conv{V } and an element belonging to cone{R}.
Any polyhedron P in Rn can be embedded in an higher dimensional cone, called the
homogenization cone, i.e. the cone:

ĈP := cone{v̄1, . . . , v̄ν, r̄1, . . . r̄ρ}

where:

v̄i =
[
vi

1

]
r̄i =

[
ri

0

]

The homogenization cone of P has the property that P can be obtained as the inter-
section of the cone with an hyperplane H in R

n+1, thus allowing to give sufficient
conditionswhich guarantee a chosen quadratic function to be either positive or negative
definite (semidefinite), inside the original polyhedron P .

In particular we recall the following property from Iervolino et al. (2017a), which
we also used in Pasquini and Angel (2019), to express sign definiteness conditions of
quadratic functions inside a polyhedron P .

Consider the quadratic function:

xT Mx + 2xT v + ω = x̄ T Mx̄ (3)

where:

x̄ =
[

x
1

]
, M =

[
M v

vT ω

]
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Let P be a polyhedron and ĈP its homogenization cone, defined above. Then it holds:

Γ T MΓ + N 
 0 ⇒ M 
ĈP
0 (4)

where Γ is the matrix whose columns are the rays of the cone ĈP , N is any entrywise
non-negative matrix and M 
ĈP

0 means that the quadratic function (3) is non-

positive for any x ∈ ĈP , and consequently in the polyhedron P . For further details
the interested reader is referred to Iervolino et al. (2017a).

3 Hybridmodels of GRNs and Lyapunov functions

3.1 Hybridmodel

In this section the hybrid model considered to describe the GRN dynamics is presented.
This section is mainly recalled from (Casey et al. 2006; De Jong et al. 2004; Pasquini
and Angeli 2018), to which the reader is referred for a more comprehensive discussion

Let C ∈ R
n×n be a diagonal matrix with positive entries and let f : Rn+ → R

n+
be a piecewise constant function, defined on a box partition of the positive orthant
(partition that will be characterised below). We consider the following hybrid model:

ẋ = f (x) − Cx, x ∈ R
n+ (5)

where x = [
x1 . . . xn

]T ∈ R
n+ represents the protein concentration vector (with

xi being the concentration of the protein Pi ), C = diag(c1, . . . , cn), with ci > 0,
represents the degradation rates matrix and f (x) = [

f1(x) . . . fn(x)
]T represents the

production rate function, sometimes referred to as the regulation function.
Let any axis Xi of the positive orthant, be partitioned as:

Xi = {[0, θi,1), {θi,1}, (θi,1, θi,2), . . . (θi,mi ,+∞)} (6)

The θs in (6) are called thresholds. Such partition divides the state space in open boxes,
inside which we consider the regulation function f (x) to be constant. These boxes are
called regulatory domains, as opposed to the ones called switching domains, in which
at least one of the state variables takes on a threshold value. We define the order of a
switching domain Ds as the number of switching variables in Ds i.e. state variables
that are on one of their threshold values.

The set of regulatory domains is denoted byDR , while the set of switching domains
is denoted by DS . Inside each regulatory domain D the production function is con-
sidered constant and indicated as fD , hence the dynamics is affine, with the property
that any trajectory monotonically converges towards the focal point φ(D) = C−1 fD

and, if this is not in cl(D), then the trajectory will eventually leave the domain (Casey
et al. 2006).
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Remark 1 The above definition of the production function for system (5), is a conse-
quence of the ON–OFF approximation of the gene input functions (Alon 2007). In
fact in works like Casey et al. (2006) and De Jong et al. (2004), and our previous work
Pasquini and Angeli (2018), the production function is considered as a combination
of step functions, the thresholds of which give rise to the same box partition described
above defining, de facto, a piecewise constant function. In Plahte et al. (1998) the
authors gave a general framework which allows to describe any logical function with
the use of steps or sigmoids functions. �

The switching domains are the zeromeasure sets where the production rate function
is not uniquely defined and so a further construction due to Filippov (1988) is used.
In particular the system is extended to a differential inclusion:

ẋ ∈ F(x) (7)

for which:

F(x) =
{

{ fD − Cx} if x ∈ D ∈ DR

conv{ fD′ − Cx, D′ ∈ R(D)} if x ∈ D ∈ DS
(8)

in which R(D) denotes the set of regulatory domains adjacent to the switching domain
D. A solution (in the sense of Filippov) of system (5) is an absolutely continuous
function x(·), satisfying the differential inclusion (7), for almost every t , with the
set-valued map F defined as in (8). It is possible that a solution x(·) of the differential
inclusion (7), lays for a certain amount of time on a switching domain (i.e. on the
surface of discontinuity of f (x)), leading to a so called sliding mode solution.

As explained in Casey et al. (2006) and De Jong et al. (2003, 2004), it is possible to
define a state transition graph of the PWAsystem, a graph that qualitatively characterise
the system trajectories in relation to the domains (both regulatory and switching). This
construct will appear in a later assumption (Assumption 1), but for more details on
how the STG can be constructed and used, the interested reader is referred to the
aforementioned literature.

We now introduce a simple example that will help clarify the above notation.

3.2 Example: toggle switch

Consider the following piecewise affine model of a toggle switch (the GRN of which
is depicted in Fig. 1):

{
ẋ1 = b10 + b11s−(x2, θ2) − c1x1
ẋ2 = b20 + b21s−(x1, θ1) − c2x2

(9)

123



64 Page 8 of 38 M. Pasquini, D. Angeli

Fig. 1 Gene regulatory network
of a toggle switch system

Fig. 2 Positive orthant partition
for systems (9)

where s−(xi , θ j ) is the step function:

s−(xi , θ j ) =
{
1 if xi < θ j

0 if xi > θ j
(10)

and b10 = 0.02, b20 = 0.08, b11 = 3, b21 = 3.5, c1 = 0.7, c2 = 1.1, θ1 = θ2 = 2.
The toggle switch is one of the simplest gene regulatory networks to consider [and

one of the first networks that has been built synthetically (Collins et al. 2000)], in
which two proteins P1 and P2 act as each other inhibition transcription factor. For
certain sets of parameters, the system is known to show bistability, as the two stable
configurations are when one of the two proteins concentration is high, while the other
one is low.

As can be seen in Fig. 2, the thresholds θ1 and θ2 give rise to four regulatory domains
(i.e. D1, D2, D3, D4), and five switching domains: four of which of order 1 (e.g. the
domain D′ = ∂ D1 ∩ ∂ D2) and one of order 2 (i.e. D′′ = ∂ D1 ∩ ∂ D2 ∩ ∂ D3 ∩ ∂ D4).
The procedure described in De Jong et al. (2004) generates the state transition graph in
Fig. 3. In this graph: the blue nodes are associated to regulatory domains, while the red
ones are associated to switching domains (one circle: domains of order 1, two circles:
domains of order 2). It is clear from it that the system exhibits bistability, property that
is also confirmed by the trajectories in Fig. 4.

The intersection between the closure of the four regulatory domains (i.e. the point
(θ1, θ2)) is a singular equilibrium—in the sense that 0 ∈ F(θ1, θ2), with F(x) being
the set-valued map defined in (8)
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Fig. 3 State transition graph of
system (9) (color figure online)

Fig. 4 Trajectories of system
(9). Red dots represent end
points of the trajectories, while
the green ones represent their
initial conditions (color figure
online)

0 1 2 3 4 5
0

1

2

3

4

5

3.3 Piecewise quadratic Lyapunov function

Lyapunov functions are a tool that is extensively used in control theory and the study of
dynamical systems, allowing the study of stability and convergence properties (Khalil
2002). In Pasquini and Angeli (2018) we presented an LMI framework to find, if one
exists, a Piecewise Quadratic Lyapunov function (PWQ-LF) for system (5), which
can be formally proved to be eventually non-increasing along any system trajectory
(Pasquini and Angel 2019). In particular the Lyapunov function V is defined as:

V (x) = VD(x) if x ∈ D, D ∈ DR

VD(x) = xT PDx + 2dT
Dx + ωD

= [
xT 1

] [PD dD

dT
D ωD

] [
x
1

]
= x̄ T P Dx̄

(11)
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and it is asked to satisfy the following constraints:

∇VD(x) · ( fD − Cx) ≤ 0, ∀x ∈ D, ∀D ∈ DR (12)

∇V D(x) · f ≤ 0, ∀x ∈ D, ∀D ∈ DS, (13)

∀ f ∈ conv{ fD′ − Cx, D′ ∈ R(D)}
⋂

Tx D

lim
y→x,
y∈D

VD(y) = lim
y′→x,

y′∈D′
VD′(y′), ∀x ∈ Ds, (14)

∀D, D′ ∈ R(Ds),

∀Ds ∈ CD

where Tx D is the tangent cone to D in x , ∇V D represents the gradient of the function
VD̂ , with D̂ being any regulatory domain adjacent to D, and CD denotes the set of
switching domains on which we asked the function V to be continuous, namely the
ones for which the set of sliding mode directions is non-empty and the ones associated
to cycles in the State Transition Graph.

To summarise: constraints (12) and (13) are relative to the monotonicity of the
Lyapunov function in regulatory domains and switching domains with sliding modes
respectively, while (14) refers to the continuity of the Lyapunov function in particular
switching domains—the set of which is referred as CD .

These constraints are enforced through a set of LMIs, which is omitted here for
the sake of space and ease of explanation, however, for further details on the descrip-
tion and derivation of this set, the interested reader is referred to our previous works
(Pasquini and Angel 2019; Pasquini and Angeli 2018). In particular it can be proven
that, for a function V satisfying (12)–(14), the following property holds:

Proposition 1 Consider the system (5) and let V : Rn+ → R be a Lyapunov function
satisfying (12)–(14). Then:

lim
τ→∞ μ

({
t ≥ τ : dV (x(t))

dt
< −ε

})
= 0, ∀ε > 0 (15)

where μ(S) denotes the Lebesgue measure of the set S.

In the followingwe refer to property (15) as a result of convergence to zero of dV
dt (x(t))

in the sense of measure.
In words, condition (15) states that, given an arbitrarily small ε > 0 and a set

Ω where the solution x(·) is contained [e.g. Ω = R
n+ or Ω = B, with B being a

positively invariant set with respect to (5)], then as t → ∞ the solution will be almost
surely (in the sense of Lebesgue measure) in the set Ω\{x ∈ Ω | V̇ (x) < −ε}. This
means that, by taking values of ε converging to 0, we can infer information on the
convergence set for the system.

Remark 2 In Pasquini and Angel (2019) a few more technicalities are introduced to
avoid the convergence to a set where the Lyapunov function is not defined. This
has been done exploiting a construction—called natural extension of the Lyapunov

123



On convergence for hybrid models of gene regulatory… Page 11 of 38 64

function—which is equal to the original function V almost everywhere. More details
can be found in the aforementioned paper. �

The existence of a feasible solution to this set of LMIs, and consequently of a Lyapunov
function for the system, is strictly dependent on the system parameters, which are often
highly uncertain due to the nature of biological systems. In the next Section the case
of uncertainties on the production rate function is considered.

4 Main contribution

We now introduce polytopic uncertainties on the production rate function, to model
the fact that its exact value is unknown and possibly subject to variability.

Let C ∈ R
n×n be a diagonal matrix with positive diagonal entries and let

f 1(x), . . . , f L(x) be L piecewise constant production functions, as defined in Sect. 3.
Consider the system Σk , defined as:

Σk : ẋ = f k(x) − Cx, k ∈ {1, . . . , L}, x ∈ R
n+ (16)

Σk is called an extremal system. Let U ( f 1, . . . , f L) be the set of systems:

U ( f 1, . . . , f L) := {σλ : ẋ = f λ(x) − Cx, x ∈ R
n+} (17)

in which:

f λ(x) :=
L∑

k=1

λk f k(x), λ ∈ SL (18)

and SL is the standard simplex of dimension L .
In the following we will use the shortened notation:

U L
1 ≡ U ( f 1, . . . , f L)

as the dependence of the set from the considered functions f 1, . . . , f L is implicit.
From now on the following Assumption is considered to be satisfied:

Assumption 1 All extremal systemsΣ1, . . . , ΣL have the sameStateTransitionGraph
(STG) and the same thresholds. �

Remark 3 The first part of Assumption 1 is not too restrictive, in the sense that the
STG is generally unchanged under a large range of parameters (see Casey et al. 2006;
De Jong et al. 2004), and assuming that the STG is the same for all extremal systems
means that these are “qualitatively” similar, which is the starting point of this analysis.
If multiple graphs arise one could, in principle, attempt a partition of the uncertainty
set, so as to recover Assumption 1 on each of its element.
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On the other hand to consider that thresholds are unchanged among all extremal
systems can be artificial. However, considering uncertain thresholds, entails a struc-
tural change in the positive orthant partition, with remarkable difficulties in imposing
continuity constraints—which will potentially convert in non-linear constraints, given
how condition (14) is ultimately enforced (see (Pasquini and Angel 2019, Eq. (43)) or
Eq. (42)–(44) of this work). We recognize the need to address this matter in potential
future research. �

4.1 Example: toggle switch with polytopic uncertainties

To better clarify the new notation introduced above, consider again the toggle switch
example of Sect. 3.2, but this time allow b11 ∈ [b−

11, b+
11] and b21 ∈ [b−

21, b+
21], with

b−
11 = b−

21 = 2.5 and b+
11 = b+

21 = 5.
We can define the four extremal systems:

Σ1 :
{

ẋ1 = b10 + b−
11s−(x2, θ2) − c1x1

ẋ2 = b20 + b−
21s−(x1, θ1) − c2x2

Σ2 :
{

ẋ1 = b10 + b+
11s−(x2, θ2) − c1x1

ẋ2 = b20 + b−
21s−(x1, θ1) − c2x2

Σ3 :
{

ẋ1 = b10 + b−
11s−(x2, θ2) − c1x1

ẋ2 = b20 + b+
21s−(x1, θ1) − c2x2

Σ4 :
{

ẋ1 = b10 + b+
11s−(x2, θ2) − c1x1

ẋ2 = b20 + b+
21s−(x1, θ1) − c2x2

It is easy to verify (see Casey et al. 2006 for example) that all extremal systems share
the same STG. The setU 4

1 , of possible system realizations given the uncertainty, can
be rewritten in a parametrized form as:

σλ :
{

ẋ1 = b10 + [
(λ1 + λ3)b

−
11 + (λ2 + λ4)b

+
11

]
s−(x2, θ2) − c1x1

ẋ2 = b20 + [
(λ1 + λ2)b

−
21 + (λ3 + λ4)b

+
21

]
s−(x1, θ1) − c2x2

with λ ∈ S4, or equivalently:

{
ẋ1 = b10 + [

(1 − η1)b
−
11 + η1b+

11

]
s−(x2, θ2) − c1x1

ẋ2 = b20 + [
(1 − η2)b

−
21 + η2b+

21

]
s−(x1, θ1) − c2x2

with ηi ∈ [0, 1], for i = {1, 2}.
By varying λ ∈ S4 (or η ∈ S1 × S1) we obtain different realizations σλ ∈ U 4

1 , with
the two stable equilibria moving depending on such parameters, while saddle point
(θ1, θ2) remains unchanged (following the structure of the system and Assumption 1).
In Fig. 5, trajectories for different realizations σλ ∈ U 4

1 are shown, starting from the
same initial points.

�
In the following we will prove that we can define a set of linear matrix inequalities

(LMIs) that, if satisfied, guarantees the existence of a Parameter Dependent Piecewise
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Fig. 5 Trajectories of different
toggle switch realizations for the
example of Sect. 4.1, with
polytopic uncertainties on the
regulation functions, are
considered

Quadratic Lyapunov Function (PD-PWQ-LF) of the form:

V λ(x) =
L∑

k=1

λk V k(x) (19)

where V k(x) is a particular PWQ-LF for the k-th extremal system Σk , will be called
an extremal Lyapunov function and will assume the form (11). Formally speaking,
given a certain λ ∈ SL , V λ(x) is a PWQ-LF for the system σλ ∈ U 1

L , and this will
hold for all the λ ∈ SL .

The set of LMIs to satisfy will take into account: the conditions to make V k(x) an
extremal Lyapunov function for Σk and the conditions to guarantee that V λ(x) is a
PWQ-LF for σλ.

Remark 4 Asking for V k(x) to be an extremal Lyapunov function for the system Σk ,
corresponds to asking (12)–(14) for V k , with respect to Σk , with the only exception
of the constraints onmonotonicity along slidingmodes (13), that should be substituted
as explained in the next section. This is due to the fact that asking for V k to be non-
increasing along any sliding mode solution of Σk , is not enough to guarantee that V λ

in (19) will be non-increasing along any sliding mode solutions of σλ. �

4.2 Slidingmode directions description

Consider a switching domain Ds . For any system in U L
1 , any potential sliding mode

direction f on Ds , can be expressed as:

f =
∑

D′∈R(Ds )

L∑

k=1

γ k
D′ f k

D′ − Cx (20)
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where γ ∈ SL·q and q := |R(Ds)|. The γ s in (20) are the weights of a convex
combination that takes into account all extremal systems, in order to generate candidate
sliding mode directions at x ∈ Ds .

Let IDs be the set of switching variables in Ds (i.e. the variables that are on their
thresholds in Ds).

The following polyhedron PDs can be defined:

PDs :=
{
γ ∈ SL·q :

[
F1 F2 . . . F L

]
γ = [

c̄
]}

(21)

where c̄ is a vector, the i-th component of which is:

[c̄]i = ciθi,k, i ∈ IDs (22)

where ci is the degradation rate of the protein Pi and θi,k is the threshold value assumed
by xi in the switching domain Ds [see axis partition (6)], while Fk is the matrix:

Fk =
[(

f k
Di1

)IDs . . .
(

f k
Diq

)IDs
]

(23)

in which ( f k
D)IDs is the vector obtained by selecting only the components from ( f k

D),
indexed by IDs , and {Di1, . . . , Diq } is the set of regulatory domains adjacent to Ds .
PDs contains all the γ s that give rise to sliding mode directions and, by construction,
it is the same among all the extremal systems and all the systems in U L

1 . BeingPDs

a subset of the standard simplex SL·q , it is bounded and so can be written as:

PDs := conv{w1, w2, . . . , wvγ } (24)

Following an approach similar to the one we used in Pasquini and Angeli (2018), if
every extremal Lyapunov function V k is monotone along the directions obtained by
selecting the γ s in PDs , then the function V λ will be monotone along any sliding
modes solution.

The above property can be satisfied, by enforcing the following set of LMIs for any
extremal LF V k :

Γ T
Ds

Lk
Ds , jΓDs + Mk

Ds

 0, ∀ j ∈ {1, . . . , νγ } (25)

where ΓDs is the ray matrix of the homogenization cone ĈDs of Ds , Mk
Ds

is any
entrywise non-negative and symmetric matrix and:

Lk
Ds , j =

[
−2Pk

DC Pk
D Fw j − Cdk

D

wT
j FT Pk

D − dk T
DC 2dk T

D Fw j

]

(26)

where Pk
D and dk

D are the matrices PD and dD in (11), for the extremal LF V k , w j is
the j-th vertex of PDs and F is the matrix defined as:

F = [
F1 . . . F L

]
(27)
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with:

Fk =
[

f k
Di1

. . . f k
Diq

]
(28)

where {Di1, . . . , Diq } is the set of regulatory domains adjacent to Ds .

Remark 5 The above approach is conservative, in the sense that not every γ ∈ PDs

generate an actual sliding mode direction for the systems in U L
1 , but PDs surely

contains all of them. �

4.3 Existence of a PD-PWQ-LF

The following Theorem gives the conditions to construct a PD-PWQ-LF of the form
(19).

Theorem 1 Let Σ1, . . . , ΣL be L extremal systems as defined in (16). Let V 1, . . . , V L

be their extremal LFs, each one satisfying the LMIs guaranteeing (12) and (14) and
the set of LMIs (25). Let, for any regulatory domain D ∈ DR:

Γ T
D δ P̃k j

D ΓD + Mkj 
 0, k ∈ {1, . . . , L − 1}
j ∈ {i + 1, . . . , L} (29)

in which Mkj is any non-negative entrywise symmetric matrix, ΓD is the ray matrix
of the homogenization cone ĈD and:

δ P̃k j
D =

[
0 −δPkj

D δ f k j
D

−(δ f k j
D )T δPkj

D −2(δdkj
D )T δ f k j

D

]

(30)

where:

δPkj
D := P j

D − Pk
D (31a)

δdkj
D := d j

D − dk
D (31b)

δ f k j
D := f j

D − f k
D (31c)

Let σλ ∈ U L
1 . Then:

V λ(x) = λ1V 1(x) + · · · + λL V L(x) (32)

is a PWQ-LF for σλ.

Proof Fix a λ ∈ SL . The system σλ is a PWA system and for V λ to be a PWQ-LF for
σλ, it needs to satisfy the constraints (12), (13) and (14).

V λ is a convex combination of the extremalLyapunov functions and, givenAssump-
tion 1, (14) is naturally satisfied for V λ.

123



64 Page 16 of 38 M. Pasquini, D. Angeli

Moreover, given (25), every extremal Lyapunov function is monotone along every
sliding direction of σλ, for any switching domain Ds , because of the construction of
PDs , and this guarantee that V λ satisfies (13) as well. We now only need to prove
that (12) is satisfied for V λ with respect to σλ. Let D be a regulatory domain of (5).
Then:

V̇ λ
D = ∇V λ

D

(
f λ
D − Cx

)

=
L∑

k=1

λk∇V k
D

⎛

⎝
L∑

j=1

λ j f j
D − Cx

⎞

⎠

=
L∑

k=1

λ2k V̇ k
D +

L∑

k=1

L∑

j=1
j �=k

λkλ j dV k j
D

(33)

in which:

dV kj
D := ∇V k

D

(
f j
D − Cx

)
(34)

We can rewrite (33) as:

V̇ λ
D =

L∑

k=1

λ2k V̇ k
D +

L−1∑

k=1

L∑

j=k+1

λkλ j

(
dV kj

D + dV jk
D

)
(35)

Using (34) and the definition of δ f k j
D , (35) can be written as:

V̇ λ
D =

L∑

k=1

λ2k V̇ k
D+

+
L−1∑

k=1

L∑

j=k+1

λkλ j

(
V̇ k

D + V̇ j
D +

(
∇V j

D − ∇V k
D

)
δ f jk

D

)
(36)

It is easy to show that:

(
∇V j

D − ∇V k
D

)
δ f jk

D = x̄ T δ P̃k j
D x̄ (37)

with δ P̃k j
D defined by (30), and that:

L−1∑

k=1

L∑

j=k+1

λkλ j

(
V̇ k

D + V̇ j
D

)
=

L∑

k=1

λk V̇ k
D

L∑

j=1
j �=k

λl (38)
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Given that λ ∈ SL , it holds:

L∑

j=1
j �=k

λl = 1 − λk

and so using (37) and (38), Eq. (35) can be written as:

V̇ λ
D =

L∑

k=1

λk V̇ k
D +

L−1∑

k=1

L∑

j=k+1

λkλ j x̄ T δ P̃k j
D x̄ (39)

which, given the constraints (29), immediately gives the following:

V̇ λ
D(x) ≤ max

k∈{1,...L}{V̇ k
D(x)} (40)

At this point using the fact that any extremal Lyapunov function V k satisfies (12), it
follows that also V λ satisfies (12), proving that V λ is a PWQ-LF for σλ. The same
reasoning is valid for any λ ∈ SL , and this completes the proof. ��

Remark 6 We refer to the set of LMIs (29) as crossed conditions, as each one of these
connects different extremal Lyapunov functions and different extremal systems, inside
the same regulatory domain. The need for these conditions is made explicit in equation
(39), as the derivative in time of the Lyapunov function V λ

D is not only dependent on
the derivatives in time of the extremal Lyapunov functions, but also on a set of crossed
terms, which are guaranteed to be non-positive if the crossed conditions are satisfied.

These terms are a consequence of the fact that both the system σλ and the chosen
PD-LF V λ are convex combinations of their extremal counterparts. �

4.4 Extended feasibility problem definition

In the previous Sections we introduced additional LMIs to deal with monotonicity of
the PD-LF in switching and regulatory domains. Now it is possible to redefine the
Feasibility Problem in Pasquini and Angel (2019) [i.e. the set of LMIs that enforce
the constraints (12)–(14)] to include these modified conditions. Given the notation
and discussions from the previous sections, we aim to solve the following extended
feasibility problem.

Problem 1 (Extended feasibility problem) Let Σ1, . . . , ΣL be L extremal systems as
defined in (16), and consider the associated domain partition, as described in Sect. 3.
Find L Piecewise Quadratic (PWQ) functions V k(x):

V k(x) = V k
D(x) = xT Pk

Dx + 2dk
D

T
x + ωk

D, x ∈ D, D ∈ DR
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subject to the following constraints:

Γ T
D P̃k

DΓD + Mk
D 
 0, ∀D ∈ DR, ∀k ∈ {1, . . . , L}

(41)

Γ T
Ds

(
P

k
D − P

k
D′
)
ΓDs = 0, ∀D, D′ ∈ R(Ds), ∀k ∈ {1, . . . , L}

∀DS s.tPDs �= ∅
(42)

Γ T
Ds

Lk
Ds ,i

ΓDs + Mk
Ds


 0, ∀i ∈ {1, . . . , ν}, ∀k ∈ {1, . . . , L}
∀DS s.tPDs �= ∅

PDs = conv(W ), W := {w1, . . . , wνγ }
(43)

Γ T
D∅(P

k
D1

− P
k
D2

)ΓD∅ = 0, ∀D1, D2 ∈ R̄(Di ) ∪ R̄(D j ), ∀k ∈ {1, . . . , L}
∀{NDi → ND∅ → ND j } ∈ C
∀C ∈ C

(44)

Γ T
D δ P̃k j

D ΓD + Mkj
D 
 0, ∀D ∈ DR,∀k ∈ {1, . . . , L − 1}

∀ j ∈ {k + 1, . . . , L}
(45)

�

Solving Problem 1 (if feasible) will give L PWQ Lyapunov functions, that when
combined as in (32), return a functionV λ thatwill be referred as aParameterDependent
PWQ Lyapunov function for the systems in U L

1 .

Remark 7 Constraints (42) and (44) are connected to the continuity of extremal LFs
in switching domains with sliding modes and along STG cycles. �

Remark 8 The decision variables in Problem 1 are the components of the extremal
Lyapunov functions: Pk

D , dk
D and ωk

D , for each regulatory domain D, together with the
entrywise non-negative matrices Ms [in constraints (41), (45) and (43)]. Numerical
optimization LMI solvers are used to determine a valid solution of this problem e.g.
the YALMIP interface (Löfberg 2004) in MATLAB, with the SDPT3 solver. �

Remark 9 The main impact in terms of computational complexity, is connected to
switching domains, despite the fact that a switching domain Ds enters in Problem 1
only if the associated polyhedronPDs , described in (21), is non-empty. In particular
the number of switching domains increase exponentially with the size of the network
and the number of thresholds, and while the operation of checking whether a polyhe-
dron is empty or not can be performed efficiently, transform a non-empty polyhedron
from its H -representation to its V -representation, as it is needed in Problem 1, is a non-
polynomial operation. We recognise this to be a potential drawback of the approach,
to be addressed in further research. �
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Remark 10 It is reasonable to wonder if results on Lyapunov functions that are valid
for hybrid systems transfer, in some way, to the case where the regulation function is
smoothly close to its discontinuous counterpart (i.e. when its Hill coefficient is large
enough).

Lyapunov functions with strictly negative derivative are robust to sufficiently small
perturbations of the dynamics (e.g. by considering it C0 close to PWA). Despite in
our case we do not ask for strict negativity of the derivative, converse Lyapunov
results, for differential inclusions (see Forni and Angeli 2017) guarantee existence
of Lyapunov functions with strictly negative derivative and therefore affording some
kind of robustness with respect to these perturbations. The implications of this are not
explored in this context, but are certainly of interest for future research. �

4.5 The set-valued derivative map

We recall and adapt the following definition from Pasquini and Angel (2019).

Definition 1 Let V k be a PWQ-LF for the extremal system Σk as defined in (16),

obtained as a solution of Problem 1. Let x ∈ D. The set-valued map
◦ k
V (x) is defined

as:

◦ k
V (x) := ∇V k

D(x) · ( f k
D − Cx

)
(46)

if D ∈ DR , or:

◦ k
V (x) :=

{
∅ ifPD = ∅
{∇V k

D̂(x) · (Fwi − Cx), wi ∈ W } ifPD �= ∅ (47)

if D ∈ DS , with D̂ being any regulatory domain in R(D),∇V k
D̂(x) defined as∇V k

D̂

on the closure of D̂,PD being the polyhedron (21) for D, F being defined as in (27)
and W being the vertices set of PD’s V-representation [as expressed in (24)]. �

The set-valued map
◦
V

k
is connected to the derivative of V k along the system trajec-

tories, through the following Lemma, proved in Pasquini and Angel (2019).

Lemma 1 Consider a PWQ-LF V k(x) for system (16). Let x̃(·) be a solution of (16)
on the interval I . Then d

dt V k(x̃(t)) is a convex combination of the elements in the set
◦
V

k
(x̃(t)) for a.e. t ∈ I .

When we consider a system σλ ∈ C1
L with polytopic uncertainties, Definition 1 could

be naturally extended to the following:

Definition 2 Let σλ ∈ U L
1 , with U L

1 defined as in (17), let V 1, . . . , V L be extremal
LFs for the extremal systems Σ1, . . . , ΣL (obtained as solutions of Problem 1) and
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let V λ be the PD-PWQ-LF for σλ defined in (32). Let x ∈ D. The set-valued map
◦ λ

V (x) is defined as:

◦ λ

V (x) := ∇V λ
D(x) · ( f λ

D − Cx) (48)

if D ∈ DR , where

∇V λ
D(x) =

L∑

k=1
λk∇V k

D(x)

f λ
D =

L∑

k=1
λk f k

D

(49)

or:

◦ λ

V (x) :=
{

∅ if PD = ∅
{∇V λ

D̂(x) · (Fwi − Cx), wi ∈ W } if PD �= ∅ (50)

if D ∈ DS , with D̂ being any regulatory domain in R(D), ∇V λ
D̂(x) be defined as

∇V λ
D̂ on the closure of D̂,PD being the polyhedron (21) for D, F being defined as

in (27) and W being the vertices set ofPD’s V-representation [as expressed in (24)].
�

Remark 11 The definition of
◦ λ

V on switching domains, takes into account the possible
sliding mode directions of all the extremal systems, beingPD defined as in (21). This
choice is conservative, but it is legitimate as it surely contains all directions of interest,
and seems necessary due to the fact that the set of sliding mode directions it is not
easily described in terms of λ. Moreover we remark that for regulatory domains the

set-valued map
◦
V and the function V̇ are equivalent. �

To complete this section we give a result about some bounds on the elements of the

map
◦
V , which will be useful in proving subsequent results.

Corollary 1 Let Σ1, . . ., ΣL be L extremal systems as defined in (16) and let V 1, . . .,
V L be their extremal LFs. Let the conditions of Theorem 1 be satisfied and let V λ be
the PD-PWQ-LF defined in (19). Let D ∈ DR. Then:

◦ λ

V (x) ≤ max
k∈{1,...L}

{ ◦ k
V (x)

}
, x ∈ D (51)

Proof (51) follows from (40) and the fact that V̇ and
◦
V are equivalent in regulatory

domains. ��
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4.6 Robust convergence properties

It is easy to extend Proposition 1 to prove that a condition like (15) holds for any
system σλ ∈ U L

1 , i.e.:

lim
τ→∞ μ

({
t ≥ τ : dV λ(x(t))

dt
< −ε

})
= 0, ∀ε > 0, ∀λ ∈ SL (52)

However we would like to give results which take into account all the possible real-
izations of the uncertain system, to state convergence properties which are robust to
the polytopic uncertainty.

With respect to the set-valued maps
◦
V we introduce the following set:

Ω+(
◦
V , ε) = {x ∈ R

n+ | max{ ◦
V (x)} ≥ −ε} (53)

It is remarked that the set Ω+ can be evaluated for both
◦ λ

V and
◦ k
V . Consider a

λ ∈ SL and let
◦ λ

V and Ω+ be defined as in Definition 2 and Eq. (53) respectively.
The following intuitive Proposition holds:

Proposition 2 Let x(·) be a trajectory of system σλ, let V λ be a PWQ Lyapunov

function for the system, intended as a solution to Problem 1 and let
◦ λ

V be the set-

valued map defined in Definition 2. Let Ω+(
◦ λ

V , ε) be defined as in (53). Consider
an interval (t0, t1), with t0 < t1 (t1 could be ∞). Then:

dV (x(t))

dt
≥ −ε, for a.e. t ∈ (t0, t1) ⇒ x(t) ∈ Ω+(

◦
V , ε), for a.e. t ∈ (t0, t1)

Proof By Lemma 1, we know that dV λ(x(t))
dt ∈ conv{ ◦ λ

V (x(t))} for a.e. t ∈ (t0, t1)
(and more in general, for a.e. t in the whole interval of definition of the solution x(·)).
Let dV λ(x(t))

dt ≥ −ε and assume, by contradiction, that max{ ◦ λ

V (x(t))} < −ε (i.e.

x(t) /∈ Ω+(
◦ λ

V , ε)). Then any element in conv{ ◦ λ

V (x(t))}would be smaller than−ε,

contradicting the fact that dV λ(x(t))
dt ≥ −ε. ��

For ε → 0, the set Ω+(
◦ λ

V , ε) gives information on where the system will converge
asymptotically, being in particular an outer approximation of the convergence set, and
for this reason its study is of paramount importance. The same set can be defined also

for the extremal Lyapunov function V k , and will be denoted with Ω+(
◦ k
V , ε). Our

goal is to characterize the set Ω+(
◦ λ

V , ε), as λ varies in SL , in order to guarantee
robust convergence result. We are interested in a qualitative analysis, therefore the
following definitions are justified.
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Definition 3 Consider the extremal system Σk and its extremal Lyapunov function

V k . We call D
k
ε the set:

D
k
ε := {

D ∈ D | ∃x ∈ D s.t. max
{ ◦ k

V (x)
} ≥ −ε

}

with D = DR ∪ DS . �

Namely D
k
ε is the set of domains containing Ω+(

◦ k
V , ε).

Definition 4 Wecall Dε the union of the sets D
k
ε for all the extremal systems, formally:

Dε :=
L⋃

k=1

D
k
ε

�

Definition 5 Consider a system σλ ∈ U L
1 admitting a PD-PWQ-LF V λ. With analogy

to Definition 3, we call D
λ

ε the set:

D
λ

ε := {
D ∈ D | ∃x ∈ D s.t. max

{ ◦ λ

V (x)
} ≥ −ε

}

�

As aformentioned, D
λ

ε is the set of domains containing at least a point of Ω+(
◦ λ

V , ε).

Given that the dependence of Ω+(
◦ λ

V , ε) on λ ∈ SL is extremely hard to describe,

we aim to define a relation in terms of domains (i.e. the relationship between D
k
ε , Dε

and D
λ

ε ). The following Theorem gives such relationship.

Theorem 2 Let Σ1, . . ., ΣL be L extremal systems as defined in (16) and let V 1, . . ., V L

be their extremal LFs, obtained as solution of Problem 1. Let V λ be the PD-PWQ-LF

defined in (32). Let D
λ

ε and Dε be defined as in Definition 4 and 5. Then:

D
λ

ε ⊆ Dε, ∀λ ∈ SL

Proof Let D be a switching domain, belonging to the set D
λ

ε . This implies that both

PD and
◦ λ

V (x), for x ∈ D, are non-empty. Let PD = {w1, . . . , wνγ }, ◦ λ

V (x) is
expressed as:

◦ λ

V (x) = {∇V
λ

D̂(x) · (Fw1 − Cx), . . . , ∇V
λ

D̂(x) · (Fwνγ − Cx)
} (54)
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in which D̂ is any regulatory domain adjacent to D. Being:

∇V
λ

D̂(x) =
L∑

k=1

λk∇V
k
D̂(x) (55)

let:

ξ k, j (x) := ∇V
k
D̂(x) · (Fw j − Cx) (56)

Notice that ξ k, j (x) is an element of
◦ k
V (x), for any x ∈ D and any j ∈ {1, . . . , νγ }.

Since D ∈ D
λ

ε :

∃x ∈ D s.t. max
j∈{1,...νγ }

{
L∑

k=1

λkξ
k, j (x)

}

≥ −ε (57)

Assume, for the sake of contradiction, that ξ k, j (x) < −ε for every k, j and x ∈ D
(i.e. there is no k such that D ∈ Dk

ε ⊆ Dε). Because λ ∈ SL , this yields to:

max
j∈{1,...νγ }

{
L∑

k=1

λkξ
k, j (x)

}

< −ε, ∀x ∈ D

which contradicts (57), proving that D ∈ Dε. We now turn to prove the same inclusion
for regulatory domains.

Let D be a regulatory domain, belonging to the set D
λ

ε . Similarly to the previous
case, it holds:

∃x ∈ D | ◦ λ

V (x) ≥ −ε

From Corollary 1, it follows:

−ε ≤ ◦ λ

V (x) ≤ max
k∈{1,...L}

{ ◦ k
V (x)

}

implying that ∃k ∈ {1, . . . , L}, for which:
◦ k
V (x) ≥ −ε

proving that D ∈ D
k
ε ⊆ Dε. This concludes the proof. ��

Corollary 2 Given the premises of Theorem 2, it holds:

Dε =
⋃

λ∈SL

D
λ

ε
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Proof The fact that:

Dε ⊆
⋃

λ∈SL

D
λ

ε

follows from the fact that any set D
k
ε can be obtained by selecting a vertex of the

symplex SL . The fact that:

⋃

λ∈SL

D
λ

ε ⊆ Dε

directly follows from Theorem 2. ��
As hinted above, the set Dε contains information on the convergence set, for all

the systems in U L
1 , a fact that will be formalised by Proposition 3 below, but before

proceeding to state the proposition and its proof we need to introduce the concept of
sink regulatory domains. In particular some regulatory domains have the property that
whenever a trajectory enter them, it doesn’t leave. Formally we call sink domain any
regulatory domain D, for which Φ(D) ∈ D, where Φ(D) is the focal point of D.

The analysis inside sink domains is trivial (Casey et al. 2006) and to include them
in the feasibility problem to be solved does not add any information to the study
of convergence. At the same time they restrict the set of feasible extremal Lyapunov
functions that satisfy the constraints in Theorem 1, asΦ(D) "moves"with the presence
of uncertainties, as the ones described above, in a way that is nearly impossible to
capture with a PD-PWQ-LF linear in the extremal LFs. On the other hand a bound on
the position of Φ(D) could be easily computed and we know that in D the trajectories
will monotonically converge to Φ(D).

For these reasons, we remove from the analysis any sink domain, including them
in the convergence set, as a trajectory could always enter (or start in) a sink domain
and converge to their focal point.

Proposition 3 Let Σ1, . . ., ΣL be L extremal systems as defined in (16) and let V 1, . . .,
V L be their extremal LFs, obtained as solution of Problem 1. Let λ ∈ SL and let V λ

be the PD-PWQ-LF, as defined in (32), for σλ ∈ U L
1 . Let Dε be the set in Definition

4 and let SD be the set of sink domains. Let x(·) be a solution of σλ and let D(x(t))
be the function that associates the point x(t) to the domain it belongs. Then:

lim
τ→∞ μ({t ≥ τ | D(x(t)) ∈ D\{Dε ∪ SD}) = 0, ∀ε > 0 (58)

Proof From (52) we know that:

lim
τ→∞ μ

({
t ≥ τ : dV λ

dt
< −ε

})
= 0, ∀ε > 0

LetΩ+(
◦ λ

V , ε) be the set (53) for V λ. It follows easily from Lemma 1 that dV λ(x(t))
dt ∈

conv{ ◦ λ

V } for a.e. t and from Proposition 2, it follows that:
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dV λ(x(t))

dt
≥ −ε ∀t ∈ [0,∞)\T ⇒ x(t) ∈ Ω+( ◦ λ

V , ε
) ∀t ∈ [0,∞)\T

where T is a set of times whose measure is finite.
By definition of Dε and Theorem 2, it holds:

x(t) ∈ Ω+( ◦ λ

V , ε
) ⇒ D(x(t)) ∈ Dε

The fact that V λ(t) is absolutely continuous (being the convex combination of abso-
lutely continuous functions—see Pasquini andAngel (2019) implies that the derivative
dV λ

dt exists almost everywhere. This fact and the property that any sink domain is pos-
itively invariant, prove the thesis. ��
Remark 12 In the proof of Proposition 3 we used the fact that if A ⊆ [0,∞) then:

μ(A) < ∞ ⇐⇒ lim
τ→∞ μ(A ∩ [τ,∞)) = 0

where μ is the Lebesgue measure of the set A. �

Remark 13 Proposition 3 states that the trajectories will spend, asymptotically, most
of the time in the domains in Dε ∪ SD , in the sense that, given a trajectory x(·), the
measure of the set of times spent away from this set, shrinks to 0 as t → ∞. �

Remark 14 In this work we considered polytopic uncertainties on the production rates
only.However the overall analysis andLMIs framework canbe easily adapted to handle
uncertainties on the degradation rates only, changing the structure of the matrix δ P̃k j

D
in (30), or on both the production and degradation rates, by considering all the possible
combinations of their extremal values, as vertices of the uncertainty polytope. �

5 Numerical example

Consider the GRN of a two connected feedback loops as in Fig. 6, and consider the
following dynamics for the network:

⎧
⎪⎨

⎪⎩

ẋ1 = b1s−(x2, θ2) − c1x1
ẋ2 = b2[s+(x3, θ3) + s+(x1, θ1)] − c2x2
ẋ3 = b3s+(x2, θ2) − c3x3

(59)

where b1 = 3, b2 ∈ [1.3, 1.8], b3 ∈ [2, 6], c1 = c3 = 1, c2 = 2 and θ1 = θ2 = θ3 = 1.
System (59) has polytopic uncertainties on the parameters b2 and b3, so there

are four extremal systems, corresponding to the possible combinations of b2 and b3
extrema.

Problem 1 is set up and hence the following constraints will be asked:
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Fig. 6 Genetic regulatory network of a double feedback system. The system consists of two feedback
loops—a positive and a negative one—connected together

Fig. 7 Box partition of the
positive orthant for system (59)

1. Monotonicity of every extremal Lyapunov function inside regulatory domains,
together with the crossed conditions connecting couples of extremal Lyapunov
functions and extremal systems i.e. constraints (41) and (45);

2. Monotonicity—and continuity—of every extremal Lyapunov function, in switch-
ing domains with non-empty PD i.e. constraints (42) and (43). In this example,
these domains are:

Ds1 = [0, θ1) × {θ2} × {θ3}
Ds2 = {θ1} × {θ2} × (θ3,∞)

3. Continuity of the extremal Lyapunov functions along the cycles in the STG of
the network, which converts into asking continuity on the walls connecting the
domains D5, D6, D7 and D8, relatively to the partition in Fig. 7, as per constraints
(44).

We can notice that the regulatory domain:

D2 = [0, θ1) × (θ2,∞) × (θ3,∞)

is a sink domain, and for this reason it is removed from the formulation of Problem 1.
By solving Problem 1, it is possible to find four extremal Lyapunov functions, from

whichwe can construct a PD-LF V λ. In Fig. 8 some trajectories are shown for different
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Fig. 8 Trajectories of (59), for different realizations of the uncertainties on b2 and b3. Initial conditions are
[3 3 3]T and [3 1.1 0.5]T

realizations of the uncertainty and in Fig. 9 it is shown how the parameter dependent
Lyapunov function V λ, is eventually non-increasing along these trajectories. More
numerical details on the LMI formulation and potential solution are given in the
“Appendix”

Choosing ε = 10−7, it is possible to find the sets D
k
ε , for all the extremal Lyapunov

functions V k , and consequently we can determine the set Dε, corresponding to:

Dε = {Ds2 , D5, D6, D7, D8}
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Fig. 9 Evolution of the PD-LF V λ, of (59), for different realizations of the uncertainties on b2 and b3. The
initial condition is [3 3 3]T (color figure online)

Fig. 10 Level sets of the
derivative map for system (59)
(purple: ε = 10, yellow:
ε = 10−2) (color figure online)
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where:

Ds2 = {θ1} × {θ2} × (θ3,∞)

D5 = [0, θ1) × [0, θ2) × (θ3,∞)

D6 = (θ1,∞) × [0, θ2) × (θ3,∞)

D7 = [0, θ1) × (θ2,∞) × (θ3,∞)

D8 = (θ1,∞) × (θ2,∞) × (θ3,∞)
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Fig. 11 Phase space trajectories of (59), for different realizations of the uncertainties on b2 and b3—3d
view and projection on (x1, x2). The highlighted (cyan) domain is Ds2 , to which most of the trajectories
converge, as predicted by our analysis (color figure online)

Given the cyclic nature of the system trajectories around Ds2 , and because
◦ k
V (x), for

each extremal LF, approach 0 as x tends to Ds2 , the set Dε contains also the regulatory
domains adjacent to Ds2 (i.e. {D5, D6, D7, D8}).

However from the proof of Theorem 2, it follows:

◦ λ

V (x) ≤ max
k∈{1,...L}

{ ◦ k
V (x)

}

so that, by studying the set where:

max
k∈{1,...L}

{ ◦ k
V (x)

}
< −ε
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we can infer that the solutions always converge, in the sense of measure, to the domain

Ds2 . This is also a consequence of the fact that
◦ k
V is described, in the regulatory

domains around Ds2 , by non-singular quadratic forms, and it is empty in the boundaries
connecting these regulatory domains. To give a visual idea of the result, in Fig. 10,

different level sets of the function max
k∈{1,...L}{

◦ k
V (x)} in the region x3 > θ3 are shown,

with decreasing values of ε. The projection on (x1, x2) is considered, as V λ does not
depend on x3 in those particular regulatory domains.

This analysis is supported by the trajectories represented in Fig. 11, where the
highlighted cyan domain is Ds2 , to which we can see that most of the trajectories

converge. It should be noticed that, for the same initial condition x0 = [
3 1.1 0.5

]T ,
the system may converge to the switching domain Ds2 or to the sink domain D2,
depending on the uncertainty realization.

Remark 15 InCasey et al. (2006), a conjecture—proved true inWang andWang (2013)
– is given with sufficient conditions for the weak asymptotic stability of a switching
domain Ds , under the assumption that no cycles are present in the STG reduced to the
neighbours of such switching domain. In the case of the above example however, the
domain Ds2 has two cycles involving neighbour domains, hence the result of Casey
et al. (2006) and Wang and Wang (2013) cannot be applied. �

6 Conclusion

Due to context-dependence and measurement limitations, models of biological sys-
tems are affected by parameter uncertainties and different kind of disturbances. In this
chapter we considered a PWAmodel of genetic regulatory networks, and assumed the
presence of polytopic uncertainties affecting the production rates. The LMI framework
of Pasquini and Angel (2019) has been extended, allowing to determine a Parameter
Dependent Piecewise Quadratic Lyapunov function, for the whole polytope of uncer-
tain parameters. With this function we can conclude on the convergence properties of
the trajectories to a particular set of domains, independently from the values assumed
by the perturbed parameters. This can rule out a big chunk of the positive orthant from
the convergence set, with further analysis that can be done in the resulting conver-
gence set, to better characterise the system dynamics. In fact, as has been done in the
double feedback example, the study of the level sets for the derivative map can allow
to conclude more precise results on the system convergence.

These results can guide both in the synthesis of de-novo genetic circuits and in
predicting the behavior of natural ones.

However there are a couple of issues in the analysis, that deserve to be addressed
in future research. Firstly, as already addressed in Remark 3, Assumption 1 considers
that the thresholds are unchanged among the extremal systems, which we recognize
to be unrealistic. An extension of the framework, to allow polytopic uncertainties
in the thresholds—e.g. by giving a lower and an upper-bound on each θ—would
certainly be of interest. However this would require a significant structural change of
the framework, as continuity constraints would need to be applied on an undefined
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threshold, with their convexification leading to non-linear conditions, moving away
from an LMI setup. If one chooses to drop any continuity constraint instead, the entire
theoretical scaffolding should be changed, as infinite jumps of the Lyapunov functions
would now be allowed, while at the same time, entry and exit points of sliding modes
on the surface of discontinuity should be taken into account. These matters should be
investigated in future research.

Secondly the constraints relative to the monotonicity of the Lyapunov function
along sliding mode can be very conservative, and extremely expensive even to define.
This is due to the fact that it is difficult to characterise the set of sliding directions
in terms of the uncertain parameters, hence we need to impose this condition on all
possible sliding directions, for all extremal systems. A better characterisation of this
set—and the consequent relaxation of the LMI conditions—would increase the set of
feasible solutions, while decreasing the computational cost of the approach.

In connection with this latter point, and Remark 9, general efficiency of the frame-
work implementation should be pursued as many Genetic Regulatory Networks in
nature are composed of tens of nodes. The framework described here can easily handle
networks of up to six or seven nodes, but the computational cost becomes prohibitive
after that. This work should be in fact considered as a proof of concept, and we believe
that there are many possibilities to increase its efficiency.

Ultimately, future works should also consider control applications of the analyt-
ical results given above. Of particular interest is the problem of in-vivo control of
Genetic Regulatory Networks, namely the addition, to the original GRN, of a second
network whose goal is to obtain a desired overall behavior (e.g. control of an unstable
steady state). With the current framework one could attempt a trial and error approach,
meaning that a structure for the control-network can be chosen, the overall conver-
gence properties studied through the described Lyapunov approach, and the control
network modified accordingly, until the desired behavior is reached. We recognize
that this approach is extremely inefficient and the possibility of embedding the control
problem into a complementary set of LMIs should be addressed in future research.
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Appendix: Numerical details for the example of section 5

The positive orthant partition of system (59) gives rise to the following regulatory
domains:

D1 := [0, θ1) × [0, θ2) × [0, θ3) (60)

D2 := (θ1,∞) × [0, θ2) × [0, θ3) (61)

D3 := [0, θ1) × (θ2,∞) × [0, θ3) (62)

D4 := (θ1,∞) × (θ2,∞) × [0, θ3) (63)

D5 := [0, θ1) × [0, θ2) × (θ3,∞) (64)

D6 := (θ1,∞) × [0, θ2) × (θ3,∞) (65)

D7 := [0, θ1) × (θ2,∞) × (θ3,∞) (66)

D8 := (θ1,∞) × (θ2,∞) × (θ3,∞) (67)

Given the uncertainty on b2 and b3, the following four extremal systems can be defined:

Σ1 :

⎧
⎪⎨

⎪⎩

ẋ1 = b1s−(x2, θ2) − c1x1
ẋ2 = b−

2 [s+(x3, θ3) + s+(x1, θ1)] − c2x2
ẋ3 = b−

3 s+(x2, θ2) − c3x3

Σ2 :

⎧
⎪⎨

⎪⎩

ẋ1 = b1s−(x2, θ2) − c1x1
ẋ2 = b+

2 [s+(x3, θ3) + s+(x1, θ1)] − c2x2
ẋ3 = b−

3 s+(x2, θ2) − c3x3

Σ3 :

⎧
⎪⎨

⎪⎩

ẋ1 = b1s−(x2, θ2) − c1x1
ẋ2 = b−

2 [s+(x3, θ3) + s+(x1, θ1)] − c2x2
ẋ3 = b+

3 s+(x2, θ2) − c3x3

Σ4 :

⎧
⎪⎨

⎪⎩

ẋ1 = b1s−(x2, θ2) − c1x1
ẋ2 = b+

2 [s+(x3, θ3) + s+(x1, θ1)] − c2x2
ẋ3 = b+

3 s+(x2, θ2) − c3x3

where b1 = 3, b−
2 = 1.3, b+

2 = 1.8, b−
3 = 2, b+

3 = 6, c1 = c3 = 1, c2 = 2 and
θ1 = θ2 = θ3 = 1.

Conditions (41) and (45), on the monotonicity inside regulatory domains and
crossed conditions respectively, should be asked for each regulatory domain (with
the only exception of the sink domain D2) and each extremal Lyapunov function.
Consider for example the domain D1 and the first extremal Lyapunov function V1.
Condition (41) converts to:

Γ T
D1

P̃1
D1

ΓD1 + M1
D1


 0 (68)
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whereΓD1 is the raymatrix of the homogenization coneCD1 , which can be constructed
as in Eq. (3), in this case:

ΓD1 =

⎡

⎢⎢
⎣

0 θ1 0 θ1 0 θ1 0 θ1
0 0 θ2 θ2 0 0 θ2 θ2
0 0 0 0 θ3 θ3 θ3 θ3
1 1 1 1 1 1 1 1

⎤

⎥⎥
⎦

while P̃1
D1

is:

P̃1
D1

=
[ −2P1

D1
C P1

D1
f 1D1

− Cd1D1(
P1
D1

f 1D1
− Cd1D1

)T 2d1D1
f 1D1

]

for which P1
D1

and d1D1
are decision variables, while:

C =
⎡

⎣
1 0 0
0 2 0
0 0 1

⎤

⎦ , f 1D1
=
⎡

⎣
b1
0
0

⎤

⎦

M1
D1

is another decision variable of the problem, with the only constraints that its
elements are all non-negative. An LMI interpreter (such as Yalmip Löfberg 2004 in
MATLAB) with a semidefinite programming solver (such as SDPT3 Toh et al. 1999)
can be used to impose this kind of constraints and search for a solution. In regards
to (45), consider for example the crossed conditions between the first and the second
extremal Lyapunov functions (i.e. V1 and V2), for the regulatory domain D4. This
converts to:

Γ T
D4

δ P̃12
D4

ΓD4 + M12
D4


 0, (69)

where:

ΓD4 =

⎡

⎢⎢
⎣

θ1 θ1 1 0
θ2 θ2 0 1
0 θ3 0 0
1 1 0 0

⎤

⎥⎥
⎦

while:

δ P̃12
D4

=
[

0 −(P2
D4

− P1
D4

)(
f 2D4

− f 1D4

)

−( f 2D4
− f 1D4

)T (P2
D4

− P1
D4

) −2
(
d2D4

− d1D4

)T (
f 2D4

− f 1D4

)

]
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where, as previously, P2
D4
, P1

D4
, d1D4

, d2D4
and M12

D4
are decision variables, while:

f 1D4
=
⎡

⎣
0

b−
2

b−
3

⎤

⎦ f 2D4
=
⎡

⎣
0

b+
2

b−
3

⎤

⎦

We remark that conditions (68) and (69) are asked for all regulatory domains (except
D2) and all extremal Lyapunov functions (with the crossed conditions, asked for any
possible couple of extremal Lyapunov functions).

For switching domains the first step is to check if, for any given DS , the polyhedron
PDS described in Eq. (21) is non-empty. This operation can be done efficiently using
available software libraries for polyhedra (e.g. MPT3 Herceg et al. 2013). In this case
the only two switching domains with such properties are:

DS1 = [0, θ1) × {θ2} × {θ3}
DS2 = {θ1} × {θ2} × (θ3,∞)

The H -representation (21) of the polyhedron PDS , is then converted to its V - represen-
tation, and again this operation can be performed using dedicated software toolboxes
(e.g. MPT3). Condition (43) is then asked, for all vertices in such V -representation
and all extremal systems. It is remarked that the polyhedron PDS is independent of
the particular extremal Lyapunov function, by construction.

Moreover for the two switching domains, continuity of the extremal Lyapunov
functions is asked. Consider for example the switching domain DS2 and the first
extremal LF. Condition (42) converts to:

Γ T
DS2

(
P1

D − P1
D′
)
ΓDS2

= 0 (70)

where:

ΓDS2
=

⎡

⎢⎢
⎣

θ1 0
θ2 0
θ3 1
1 0

⎤

⎥⎥
⎦

while P1
D is the matrix:

P1
D =

[
P1
D d1D

d1,TD ωD

]

Condition (70) should be asked for all D and D′ belonging to R(DS2), i.e. the set of
regulatory domains that have DS2 in their boundaries, in this case:

R(DS2) = {D5, D6, D7, D8}
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Condition (70) is then asked for all extremal Lyapunov functions and for all the other
switching domains with non-empty PDS , in this case only DS1 .

Ultimately the conditions on continuity along cycles of the STG should be asked.
Given the STG (which can be obtained through the algorithm explained in De Jong
et al. 2004), we can search for all the cycles in it using efficient algorithms (see for
example Tiernan 1970), and for each cycle ask for the extremal Lyapunov functions to
be continuous on the switching domains which will eventually be crossed. In this case
this converts to asking for the extremal Lyapunov function to be continuous on the
walls connecting the regulatory domains D5, D6, D7 and D8. Consider for example
the wall between D5 and D6, for the extremal Lyapunov function V1. The continuity
condition becomes:

Γ T
D56

(
P1

D5
− P1

D6

)
ΓD56 = 0

where D56 is the wall between D5 and D6, while:

ΓD56 =

⎡

⎢⎢
⎣

θ1 θ1 0
0 θ2 0
θ3 θ3 1
1 1 0

⎤

⎥⎥
⎦

This type of condition is repeated for the remaining walls and for all other extremal
Lyapunov functions.

Once all the LMIs andmatrix equalities are collected, the feasibility problem can be
solved (with the aforementioned software) and a description of the parameter depen-
dent Lyapunov function (in terms of the variables Pk

D, d
k
D and !kD for all regulatory

domains D, for all extremal Lyapunov functions V k). As an example, below the
description of the first extremal Lyapunov function:

P
1
D1

=

⎡

⎢⎢
⎣

0.2126 0 − 0.3084 − 0.7466
0 0.3685 0 0.0913

− 0.3084 0 0.419 − 0.6901
− 0.7466 0.0913 − 0.6901 − 5.1909

⎤

⎥⎥
⎦

P
1
D2

=

⎡

⎢⎢
⎣

0.1731 0 1.8992 − 0.5194
0 1.0586 0 − 0.6881

1.8992 0 − 0.2317 3.8167
− 0.5194 − 0.6881 3.8167 0

⎤

⎥⎥
⎦

P
1
D3

=

⎡

⎢
⎢
⎣

0.2126 0 − 0.1039 − 0.9511
0 0.9163 0 0.1315

− 0.1039 0 − 0.1288 − 0.2569
− 0.9511 0.1315 − 0.2569 − 6.1378

⎤

⎥
⎥
⎦

P
1
D4

=

⎡

⎢⎢
⎣

1.3207 0 1.4462 − 0.8
0 0.9395 0 − 0.0918

− 1.4462 0 − 1.2602 0.2270
− 0.8 −0.0918 0.2270 0

⎤

⎥⎥
⎦
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P
1
D5

=

⎡

⎢⎢
⎣

0.2126 0 0 − 1.055
0 0.7874 0 − 3.1943
0 0 0 0

− 1.055 − 3.1943 0 0

⎤

⎥⎥
⎦

P
1
D6

=

⎡

⎢⎢
⎣

0.2126 0 0 0.5095
0 0.7874 0 − 3.1943
0 0 0 0

0.5095 − 3.1943 0 − 3.1289

⎤

⎥⎥
⎦

P
1
D7

=

⎡

⎢⎢
⎣

0.2126 0 0 − 1.055
0 0.7874 0 0.4160
0 0 0 0

−1.055 0.4160 0 − 7.2205

⎤

⎥⎥
⎦

P
1
D8

=

⎡

⎢⎢
⎣

0.2126 0 0 0.5095
0 0.7874 0 0.4160
0 0 0 0

0.5095 0.4160 0 − 10.3493

⎤

⎥⎥
⎦
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