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-is work suggests a method to identify personality traits regarding the targeted film clips in real-time. Such film clips elicit
feelings in people while capturing their brain impulses using the electroencephalogram (EEG) devices and examining personality
traits. -e Myers–Briggs Type Indicator (MBTI) paradigm for determining personality is employed in this study. -e fast Fourier
transform (FFT) approach is used for feature extraction, and we have used hybrid genetic programming (HGP) for EEG data
classification. We used a single-channel NeuroSky MindWave 2 dry electrode unit to obtain the EEG data. In order to collect the
data, thirty Hindi and English video clips were placed in a conventional database. Fifty people volunteered to participate in this
study and willingly provided brain signals. Using this dataset, we have generated four two-class HGP classifiers (HGP1, HGP2,
HGP3, and HGP4), one for each group of MBTI traits overall classification accuracy of the HGP classifier as 82.25% for 10-fold
cross-validation partition.

1. Introduction

-e word personality is originated from the word persona,
relating to themask used in the theater by the performers [1].
Early theories suggested that in the physical appearance of
men, personality was conveyed. -e theory of evaluating
personality by measuring the patterns of bumping people’s
skull was an early method founded by Franz Joseph Gall, a
German scientist named phrenology [2]. However, since the
rigorous experimental study did not confirm the theory’s
assumptions, phrenology is generally debunked in con-
temporary psychology. -e psychologist, William Herbert
Sheldon, advocated another method, known as somatology
[3], which was focused on the idea that we might distinguish
an individual from body types of individuals.

As with phrenology, the theory’s findings have not been
confirmed by the experimental study, and somatological
psychology has now been disapproved. Another method is
regarded as physiognomy of personality identification [4],
using which face traits can be measured. Contrary to phre-
nology and somatology, for which no evidence of science is
available, contemporary science has shown that certain facets
of an individual character can be identified in abundance by
looking at their face alone. It is not easy to distinguish
personality from the face without these results [5]. In the end,
the physiognomy predictions seem to find no empirical
support. After the failure of all the above approaches, another
approach known as personality traits [6] was discovered. In
this approach, the personality is characterized by relatively
resilient traits and affects our actions in many situations.
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Trait psychology is based on the concept that people
differ in their status based on a set of essential qualities that
persist over time and circumstances. -ere were several
models proposed for determining a person’s personality
traits. -e Big Five-Factor (BFF) model [7, 8] and Myers–
Briggs Type Indicator (MBTI) model [9] are the popular
models of predicting personality. -e BFF theory includes
five traits, i.e., OCEAN [10]. Openness: a person’s willing-
ness to consider different items; conscientiousness implies
individuals who are coordinated, committed, and who are
planning; extroversion shows anxious people, engaged,
talking, and enthusiastic; agreeableness shows the friendli-
ness amongst people; neuroticism relates to control over the
emotions. -e MBTI model consists of four dimensions of
personality, and each dimension consists of two traits in
versus. -erefore, the MBTI model contains eight traits in
total, i.e., extraversion (E) vs. introversion (I) indicates
where and how you get your energy, sensing (S) vs. intuition
(I) indicates how you take in information, thinking(T) vs.
feeling(F) indicates how you make decisions, and judging(J)
vs. perceiving(P) indicates how do you prefer to live your life
every day. Researchers can use the physiological signal to
obtain a greater understanding of the individual’s actions
during the research. Physiological signals are far more ef-
ficient than digital footprints for recognizing personality
since they provide a better degree of classification accuracy
[11].

Signals from the pulse rate [12] and heart rate cal-
culated by electrocardiogram (ECG) [13], blood pressure
[14], and brain signals recorded by using electroen-
cephalograph (EEG) [15, 16] in this group are recorded.
-e human brain generates physiological signals, which
have grown in prominence in recent years since it is
impossible to mimic brain activity using EEG signals [17].
Researchers can determine personality traits with a high
degree of accuracy using EEG data [18, 19]. EEG signals
record electrical activity produced by the neurons in the
brains, and they have been used widely to analyze the
functional changes in the brain (Imah, Rahmawati et al.,
2019) [20]. Due to its different characteristics when en-
gaging with an emotion, EEG is thought to be the most
appropriate approach to record data in multiple mo-
dalities [21, 22]. EEG is a nonintrusive, quick, and cost-
effective approach that makes it a favorite way of testing
the brain’s reactions to feelings targeting personality trait
stimuli [23]. EEG signals frequency varies from 0.5 Hz to
100 Hz and are grouped into five bands: delta, theta,
alpha, beta, and gamma, as shown in Figure 1, and all the
bands have different frequencies. -e band 0.5 Hz–50 Hz
is used for the study of human brain actions in this re-
search work. A two-stage method of extracting and
classifying features is a study of EEG signals. -e specific
standard techniques used to extract key features from the
raw EEG signals are the fast Fourier transform [24], ei-
genvectors [25], the wavelet transform (WT) [26], time-
frequency distributions [27], empirical mode decompo-
sition (EMD) [28], and local discriminant bases [29]. -is
work includes fast Fourier transform (FFT) for feature
extraction, out of all the above techniques.

-is paper uses FFT for feature extraction. Compared to
other signal processing techniques, FFT reduces the com-
putation time [30]. In response to movie clips that target
MBTI’s model traits, this study introduces a new personality
model that uses hybrid genetic programming.-erefore, this
study proposes a novel model for predicting personality
traits dependent on hybrid genetic programming. Com-
parisons are made with state-of-the-art approaches [31].
Evaluation of our model is often carried out using the
confusion matrix. -e findings demonstrate that our ap-
proach beats all the state-of-the-art classification accuracy
approaches and is a good way of trait identification through
brain signals. As far as we are conscious, no one has pre-
dicted a person’s personality using EEG signals by showing
video clips targeting personality traits.In the remaining
paper, Section 2 presents the background of FFT and some
GP basic concepts. Section 3 discusses the method overview
used in this model.-e discussion on the results generated is
discussed in Section 4. Section 5 concludes our research and
its relevance and points out the future work and scope of our
paper.

2. Background

-is section describes the key context for this method,
namely FFT, for the extraction of features and GP life
cycle.-e prediction of personality traits can be performed
by classifying the received EEG signals in the frequency
bands containing EEG signals based on features and
patterns. -e points mentioned below are the steps to be
followed for implementing a real-time system for pre-
dicting personality.

(i) EEG signals are extracted using the NeuroSky
MindWave Mobile 2 when the participants are
watching film clips.

(ii) Preprocessing of EEG signals derived via FFT.
(iii) Use of HGP for classification.

2.1. Fast Fourier Transform. -e extraction of significant
EEG signal characteristics is the initial step in successfully
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Figure 1: Brain wave frequency bands.
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classifying personality traits. EEG is an unbelievably
complex and nonlinear signal. -e MindWave is able to
use the onboard chip-inkGear ASICModule (TGAM1),
with algorithms which reduce the noise and objects on
the background. -e TGAM1 chip features an algorithm
for decomposing signals using the fast Fourier transform
(FFT).

For classification of our four grouped MBTI personality
traits, the features extracted using FFT are used by the HGP
model. Section 3 provides the details.

2.2. GP Life Cycle. GP [32–34] is indeed an evolutionary
technique that is used to create a population of programmes
that can be utilised to solve a problem by optimising them.
-e Darwinian theory, which gives the best chance of
survival, is responsible for this creation [35, 36]. Koza [37]
has been formalized and built into a functional method to
pick the right approach from a huge variety of evolutionary
techniques. GP is a heuristical and modular method that
makes the representation by trees and graphs of complex
systems that promote the handling of specific operations
[38, 39]. Every individual is depicted to be a tree within the
population. Tree representation includes function set and a
terminal set that are unique for a particular problem.
Lifecycle of GP consists of the following four steps as shown
in Algorithm 1.

One of the key operators of GP for generating the
solution is the crossover operator. -e tendency of dis-
ruptive nature is the disadvantage of standard crossover
operator. -ey may produce offspring having less fitness
than their parents rather than good offsprings [21, 40, 41].
As a result, GP takes longer to reach the desired solution.
Hybrid crossover [42–44] operator is also used in this
paper instead of a regular crossover, which allows us to
find the solution more efficiently and quickly. -e details
of hybrid crossover and the personality prediction model
are given next.

3. Method Overview

-is particular section discusses the methods used to apply
our prediction model for personalities. It is split into two
essential fields, where the experimental setup is clarified first
and then the hybrid genetic programming for personality
prediction is often described.

3.1. Experimental Setup. -is section contains information
about the participant pool, the device used for the experi-
ment, the dataset utilised for the experiment, and finally the
protocol for conducting the experiment.

3.1.1. Pool of Participants. -is study consists of 55 par-
ticipants. However, from the final assessment 5 samples have
been removed owing to hardware error or inappropriate
EEG signals artifacts. -erefore, there are 50 representative
samples of 18 to 46 years of age (38 males and 12 females).

Tobacco and caffeine consumption was prohibited for
24 hours before to the study.

3.1.2. Device Description. -eNeuroSky MindWave Mobile
2 [45] is a portable, easy-to-use EEG device whose func-
tionality is to capture brain signals as seen in Figure 2. -e
brain wave-reading EEG headgear is easy to use and in-
expensive. Physical components include flexible rubber
sensor arms, a rounded forehead sensor tip, a T-shaped
headband, and ear-clip contacts. -e headset’s binding
electrodes are on the ear clip, and the EEG is on the sensor
back, which is in front of the eye (FP1 position). -e
TGAM1module is included in the package. It generates 12-
bit (3–100Hz) raw brainwaves at a rate of 512Hz and
generates EEG power spectrums in various frequency and
morphological bands. -is value is used for pairings with a
Static Headset ID.

3.1.3. Experimental Procedure. Every participant was made
relaxed when they wear the EEG device. -e method to
construct the brain signal EEG dataset is described in Fig-
ure 3. -is method is iterated 8 times during the training
period with one participant. A starting hint of 10 seconds is
given to the participant before the beginning of the test
following that the participant viewed the video clips of a
targeted personality trait. After watching each video clip,
participants were required to fill the Likert scale of “agree,”
“neutral,” or “disagree” self-evaluation form to determine
the impact of each person’s self-reported personality trait. It
is composed of 4 grouped MBTI personality trait states
mentioned earlier, and each group personality trait is in
versus of each other. Participants were instructed to fill out
the questionnaire based on their real thoughts while
watching a film clip, rather than general emotions or atti-
tudes. In each clip, a 2-minute buffer is provided with a
neutral clip to monitor the effects of staring at the clip in the
participant’s head.

After all the questions of 4 grouped personality traits
(for example, extraversion and introversion) are an-
swered, we will evaluate the answers of each trait of the
participant.

At the end of evaluation process of each trait, the trait
having the highest counter value is labeled in the dataset.
-is marking scheme is taken as the ground truth for la-
beling EEG signals. Using this method, we will train our
model. Four video clips will be used to collect the studies
assessment data, each focusing on one personality trait
from each group. Raw EEG signals are produced in each
clip seen. Ten features related to FFT are part of the raw
signals obtained by NeuroSky MindWave 2. With the help
of all these features, each classifier will generate one output
of the personality trait with whom the EEG signals will be
matched from the trained dataset. In this way, from four
classifiers, we will get four output personality traits. -e
combination of all the outputs is the final personality of the
participant, and in this way, we will predict the participant
personality.
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3.2. Hybrid Genetic Programming for Personality Prediction.
After generating the initial population of trees and calcu-
lating its fitness, genetic operators are applied on the in-
dividuals. Further portion is the complete explanation of
hybrid crossover. -e parameter values of the genetic op-
erators are taken from Bhardwaj et al. [46].

3.2.1. Hybrid Crossover. Once the fittest Nr individuals are
transferred to the upcoming generation, i.e., reproduction
operator of the HGP is applied on the individuals, later on,
Nc remaining individual, the hybrid crossover get appli-
cable.-e hybrid crossover operator is a combination of the
standard crossover and the constructive crossover opera-
tor. In this operator, the population of crossover is split into

equal half (Nc/2). -e standard crossover operator is used
for the first half of the divided population and on the other
half of split population. A hill-climbing technique for
crossover is applied to the other half of the split population.
-e two newly generated offsprings are passed immediately
to the upcoming generation in the standard crossover. -e
measures for the standard crossover as illustrated as
follows:

(i) Two individuals out of the remaining population are
randomly chosen as parents.

(ii) Any random node is chosen from parent 1, and the
entire subtree of that node is selected. Similarly, any
random node is chosen from parent 2, and the
entire subtree of that node is also selected.

Figure 2: Single-channel Neurosky Mindwave Mobile 2.
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(iii) -e selected subtree of parent 1 will get replaced by
the selected subtree of parent 2 and vice-versa. In
this way, two new offsprings are generated.

In hill climbing, the similar steps are taken for the
generation of new offsprings as performed in standard
crossover. For entering the upcoming generation, the
conditions for individuals are different and they are as
follows:

(i) All offspring are transmitted to the next generation if
the fitness value of the two newly formed offsprings
is greater than that of their parents. If even one
offspring has a better fitness level than the parent,
send it along with the parent to the next generation
of fitter individuals.

(ii) If both offsprings are less fit than their parents,
crossover function is implemented recursively be-
fore one of the above two criteria is met. -is re-
cursion can be repeated up to ten times. If the fitness
of the children is still insufficient to overcome the
fitness of the parents, the parents are passed directly
into the next generation.

At the end, the standard mutation operator [47] is ap-
plied on the lower Nm individuals.

4. Results and Discussions

-is section discusses the findings for EEG signal study of
the hybrid genetic programming operators.-e Python (3.6)
environment for implementation and the Intel I7 10th gen
laptop of 4.5GHz with 16GB of RAM is used for compu-
tation of hybrid genetic programming (HGP) classifiers. -e
FFT feature extraction method is used to extract important
features from all the classifiers.

-is study also included an assessment of the accuracy
and confusion matrix of the existing and abovementioned
current models. Table 1 shows how the training and testing
sets for EEG signal classification are divided using the 10-
fold validation technique.

4.1. Experimental Results. Table 2 gives details about the
testing set partition for classification of EEG signals into
each personality trait.

Tables 3–6 give details about the confusion matrix of
HGP1, HGP2, HGP3, and HGP4 classifiers, respectively. Our
findings indicate that our model can accurately distinguish all
classes, demonstrating the performance of our model.

Table 7 does a comparison of minimum accuracy (%),
average accuracy (%), and maximum accuracy (%) of our
work over the 10-fold cross-validation technique.-ere are 4
hybrid genetic programming classifiers, and they are termed
as HGP1, HGP2, HGP3, and HGP4. For 10-fold partition,
our classifier HGP1, HGP2, HGP3, and HGP4 achieved the
average classification accuracy 79.166%, 80.95%, 80.242%,
79.295%, respectively. -e minimum classification accuracy
of HGP1, HGP2, HGP3, and HGP4 classifier is 77.21%,
78.45%, 78.32%, and 77.67%, respectively. Lastly, for 10-fold
cross-validation our implemented classifier HGP1, HGP2,
HGP3, and HGP4 achieved the maximum classification
accuracy 81.86%, 82.74%, 82.68%, and 81.74%, respectively.
Table 8 shows the sensitivity, precision, and specificity values
of HGP1, HGP2, HGP3, and HGP4 classifiers.

4.2. Comparison with Other Methods. Comparison of our
implemented classifiers and other literature work is per-
formed. Table 9 shows that our implemented classifiers
perform much better than other approaches in terms of
classification accuracy. -e authors of these studies have not

Begin.
(1) Random generation of the individuals by using the full and the grow approach
(2) Measure each individual fitness
(3) Apply GP operators, i.e., reproduction, crossover, and mutation for evolving the upcoming generation
(4) Generate all trees before the conditions of the termination criteria are met

End.

ALGORITHM 1: Genetic programming Algorithm.

Table 1: Partition of training and testing set for EEG signal classification on 10-fold validation schemes.

Training Testing
Total Samples

Number of training samples Number of testing samples
10-fold split 16650 1850

Table 2: Partition scheme for testing set for EEG signals classification for each personality trait.

Training testing Number of samples in the set
Extraversion Introversion -inking Feeling Sensitive Intuitive Judging Perceiving

10-fold split 280 200 251 245 210 210 200 254
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stated whether the findings represent the maximum accuracy
achieved by their classification approach or how the data are
divided into training and testing partitions. Our implemented
classifiers HGP1, HGP2, HGP3, and HGP4 are having the
maximum classification accuracy as 81.86%, 82.74%, 82.68%,
and 81.74% and the overall classification accuracy of the HGP
classifier is 82.25% for 10-fold partition, which is calculated by
taking out the mean of all the HGP classifiers accuracy. -ese
results indicate the reliability of all the implemented HGP
classifiers, and they are able to classify personality traits using
the brain signals. -erefore, our experimental results reveal
that the combination of FFTand theHGP is efficientmeans of
identifying personality traits.

5. Conclusion, Limitations, and Future Work

A database of 30 Hindi and English language film clips is
produced as part of this study. Also, an EEG-based per-
sonality prediction model was developed to aid in the
identification of personality features in any individual. -e
relevant features are extracted using the fast Fourier
transform approach, and then hybrid genetic programming
is employed to classify personality traits. -e HGP2 classifier
got the best classification accuracy of 82.74% among four
HGP classifiers, and the overall HGP classifier accuracy is
82.25%.

Fifty people took part and watched the film clips that
targeted eight distinct personality traits. Such results
revealed a gain in accuracy and possibility to identify per-
sonality traits over the existing state-of-the-art personality
predictor systems. NeuroSky MindWave Mobile 2 device is
used in this study to capture brain signals.

In addition, further audiences will be included in data
collection and the impact of videos on various age ranges will
also be evaluated. Currently, we plan to expand a single-
channel device to multichannel device in the future [56, 57].

Data Availability

-e data are available on request from the corresponding
author.
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