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An analytical framework for optimizing variant
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The standardization and performance testing of analysis tools is a prerequisite to widespread
adoption of genome-wide sequencing, particularly in the clinic. However, performance testing
is currently complicated by the paucity of standards and comparison metrics, as well as by
the heterogeneity in sequencing platforms, applications and protocols. Here we present the
genome comparison and analytic testing (GCAT) platform to facilitate development of
performance metrics and comparisons of analysis tools across these metrics. Performance is
reported through interactive visualizations of benchmark and performance testing data,
with support for data slicing and filtering. The platform is freely accessible at http://
www.bioplanet.com/gcat.
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he recent affordability and throughput! of next-generation

sequencing technologies has enabled routine genome-wide

sequencing at any scale’. As these new sequencing
technologies penetrate the clinic, the bottlenecks are no longer
around the amount of DNA sequence that can be screened;
instead, they occur in the need for analysis methods for
identifying and interpreting genetic variation®. The proper
identification of genetic variation is a prerequisite for sensitive
and accurate clinical tests and is heavily influenced by the
technology platform?, sequencing assay” and analysis method®”.
In the absence of perfectly described whole genomes, evaluating
the performance of variant calling methods is not straightforward.
Authors make valiant attempts to compare their tools to the state-
of-the-art when they publish an update or new method, but the
utilization of particular metrics and data sets can introduce bias
into the performance test. Often, the comparisons are quickly
obsolete, sometimes upon publication, because new tools and new
versions of tools are available at such a regular frequency.

One way to address this challenge is to develop standard
metrics and data sets for performance testing of genome analysis
tools. Some groups such as the Genome in a Bottle (GIAB)®
consortium have developed highly confidence call sets that can be
used as a proxy for truth sets. For the GIAB call set, the group
produced a set of genotypes for the deeply sequenced NA12878
genome from the HapMap® and 1,000 Genomes'? projects. These
genotypes are an integration of 14 data sets from five sequencing
platforms, seven read mappers and three variant callers. An
orthogonal approach!! was recently described by Heng Li
and uses the haploid CHMI1 genome to estimate error from
heterozygous calls. Defining performance and establishing
standard metrics and data sets is critical for accelerating
improvements to genome analysis tools!?.

Here, we report the development of an open and collaborative
platform for comparing analysis tools using various performance
metrics and data sets. The genome comparison and analytic
testing (GCAT) platform hosts raw sequence reads that users can
download and operate on, using their own analysis pipelines. The
user can then return the results of the pipeline to GCAT to
benchmark the analysis and to compare it with other analysis
pipelines applied to the same data sets. The benchmark results
can be customized and shared with others.

Results

The GCAT platform provides two kinds of benchmarks: an
alignment test for evaluating short-read mappers and a variant
calling test for evaluating germline single-nucleotide polymorph-
ism (SNP) and indel variant callers. The alignment test is based
on simulated reads with data sets for paired-end and single-end
reads, read lengths from 100 to 400bp and various mutation
models. The variant calling test is based on sequencing data for
the NA12878 genome that was generated using the Illumina, Ion
Torrent and Ion Proton sequencing platforms (Supplementary
Table 1). The GCAT wuser experience is summarized in
Supplementary Fig. 1. In a typical workflow, the user downloads
a simulated or actual data set as a FASTQ file and performs an
analysis locally. The output of the analysis, a binary alignment
map file for alignment testing or a variant calling format file for
variant caller testing, is then uploaded to the GCAT site and the
results are evaluated on the cloud. Without any coding or
scripting, users can dynamically interact with the results, partition
the data in various ways or customize the reporting/plotting of
results. GCAT functions as a ‘data playground’, in which users
can compare tools and then dive deep into the comparison to
narrow in on benefits and limitations of various tools. The
customized reports, plots and tables can be shared directly or
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through embedded links to the GCAT site posted to online
communities such as SEQanswers!3. In the remainder of this
report, we highlight observations from alignment and variant
calling benchmarks, and, as a demonstration of the utility of
GCAT, we feature figures and data tables in this manuscript
generated using the GCAT platform.

Mapping algorithms have continued to steadily improve, and
in just the past year there have been major updates to Burrows—
Wheeler alignment tool (BWA)!# and Novoalign (http://
www.novocraft.com), two leading short-read mappers for the
Mlumina platform. Using 12 million simulated paired-end 100-bp
Mlumina reads, we benchmarked the recently released BWA-
MEM (http://bio-bwa.sourceforge.net) and Novoalign3, against
Bowtie2 (ref. 15) and BWA. The total number of mapped reads
ranges from 95.19% (11,370,489) for Bowtie2 to 99.22%
(11,814,790) in BWA-MEM. The mappers also differed in the
number of incorrectly mapped reads, with Bowtie2 incorrectly
mapping 3.72% (444,673), but with BWA and BWA-MEM
incorrectly mapping 0.777% (92,854) and 0.779% (93,091),
respectively. Novoalign3 made the fewest mapping mistakes
with only 0.019% (2,194) reads mapped incorrectly
(Supplementary Table 2). In Fig. 1la, a receiver-operating
characteristic (ROC)-like curve illustrates, for each mapper, the
number of incorrectly mapped reads as a function of correctly
mapped reads, sorted by mapping quality. Novoalign3 leads in
this comparison with 0.00092% of reads incorrectly when 97% of
reads are mapped correctly. At the same percentage of correctly
mapped reads, BWA-MEM incorrectly maps 0.0015% of reads,
thus putting these two newer mappers at nearly the same
accuracy, when considering mapping quality. We also find that
using simulated paired-end 250-bp Illumina reads, the
performance of the evaluated mappers ranks in the same order
(Supplementary Fig. 2). The incorrect reads clustered generally
cluster at low-complexity regions of the genome (Supplementary
Fig. 3).

While assessing the number of correctly mapped reads is a key
consideration in benchmarking short-read mappers, it is also
important that a mapper properly assesses the confidence in
mapped reads. Mapping quality scores can help identify suspect
reads that might lead to less confidence in downstream variant
calling steps. In Fig. 1b, we report mapping quality score
percentiles for incorrectly mapped reads. For Novoalign3, 2,124
(96.8%) incorrect read alignments were assigned mapping quality
scores in the lower 30% of quality scores and 52 (0.24%) of
incorrect read alignments were in the top 20% of scores. While
BWA-MEM incorrectly mapped a much greater number of reads,
a similar proportion of reads were assigned low mapping quality
scores. For BWA-MEM, 92,533 (98.9%) incorrect read align-
ments were assigned mapping quality scores in the bottom 30% of
scores and 98 (0.001%) were assigned scores in the top 20%. For
BWA, 91,580 (98.6%) of incorrect read alignments were assigned
mapping quality scores in the bottom 30% and 52 (0.00056%)
incorrectly aligned reads were assigned scores in the top 20%.
Bowtie2 performed the worst, with 421,948 (94.9%) incorrectly
aligned reads assigned scores in the bottom 30%, but 4,924
(0.011%) incorrectly mapped reads were assigned scores in the
top 20%. Considering the above performance metrics,
Novoalign3, followed by BWA-MEM, clearly outperform the
older BWA and Bowtie2. The incredibly low number of reads
incorrectly mapped by Novoalign3 comes at a cost of mapping
fewer reads. Novoalign3 reports 137,819 (1.15%) reads as
unmapped compared with BWA-MEM, which maps all but six
(0.0001%) reads (Supplementary Table 2). Although Novoalign
excels in mapping accuracy, BWA-MEM is very close in accuracy,
and for applications where sensitivity is a primary concern
BWA-MEM could be the better overall choice.
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There are clear differences in how short-read mapping
algorithms perform, and to assess the impact of these differences
on variant calls, we constructed variant calling pipelines in which
we varied the mapping algorithm but used the same variant caller.
The mapping algorithm can impact variant calling in two ways:
(1) incorrect general placement of the reads in the reference
genome and (2) incorrect local alignment of the reads around
indels and complex variants. One metric that GCAT leverages for
variant caller benchmarking is the GIAB high-confidence call
set®. While not completely free from bias, this call set allows for
the enumeration of true-positive calls (TP), false-positive calls
(FP) and false-negative calls (FN). We mapped 150 x Illumina
data from exome capture of the NA12878 genome, using
Novoalign3, BWA-MEM, BWA and Bowtie2, and then used
GATK UnifiedGenotyper'® to identify variants. With this data
set, users can determine the combined effect of mappers and
variant callers on the accuracy of variant calls. Figure 2a
plots precision (TP/(TP + FP)), sensitivity (TP/(TP + FN)) and
specificity (TN/(TN+FP)) for the various pipelines. The
Novoalign3-based pipeline produced the highest precision
calls (97.89%), followed closely by BWA-MEM (97.26%),
BWA (97.16%) and then Bowtie2 (90.26%). The precision of
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Novoalign3 comes at a cost of sensitivity. Novoalign3 featured a
sensitivity of 96.39% compared with BWA-MEM (97.17%),
BWA (97.16%) and Bowtie2 (96.48%). The loss in sensitivity
comes from the reduced TP calls in the Novoalign3-based
pipeline (20,806 calls) versus BWA-MEM (23,128 calls), BWA
(23,126 calls) and Bowtie2 (22,945 calls). However, Novoalign3
does feature the lowest number of FP calls (Supplementary
Table 3).

To assess the performance of popular variant callers, we
constructed pipelines that utilized a common mapping algorithm,
but a different variant calling tool. Using Novoalign3 as the
mapper, we called variants using GATK HaplotypeCaller, GATK
UnifiedGenotyper and Samtools!”. We also compared these
pipelines against Isaac'®, which is a mapping and variant calling
tool developed by Illumina. The GATK HaplotypeCaller pipeline
offers the best precision (98.00%), followed closely by the GATK
UnifiedGenotyper pipeline (97.89%) and then Samtools (96.83%).
The Isaac pipeline, which features an integrated mapper and
variant caller, had the worst precision (92.60%) (Fig. 2b).
However, the Isaac pipeline featured the highest sensitivity
(97.27%) compared with Samtools (96.72%), UnifiedGenotyper
(96.39%) and HaplotypeCaller (95.42%).
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Figure 1 | Benchmarking the accuracy of read alignments and the calibration of mapping quality scores. Mapping benchmarks were performed
using simulated paired-end 100-bp Illumina reads. (a) The ROC-like curve illustrates, for each mapper, the number of incorrectly mapped reads as a
function of correctly mapped reads, sorted by map quality. As such, greater accuracy is graphically represented as a lower curve that is farther right.
Mapping quality thresholds begin at the highest quality and then progressively decrease. (b) To directly characterize mapping quality scores, a histogram
indicates the distribution of incorrect reads across normalized mapping quality scores for various tools. Read count is displayed on a log scale, and mapping

qualities are binned by 10%.
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Figure 2 | Performance testing variant callers. The Genome in a Bottle confident call set is used as the ‘ground truth’ for the NA12878 genome.
Variant calling pipelines are evaluated based on their concordance to the confident call set in the high-confidence regions. (a) Precision, sensitivity and
specificity metrics are shown for pipelines in which various mappers are used to generate the read alignments, but the same variant caller, GATK
UnifiedGenotyper, is used to identify variants. (b) Precision, sensitivity and specificity metrics are shown for Illumina’s Isaac pipeline compared with three
pipelines in which the same mapper, Novoalign3, was used to generate read alignments and different variant callers were used. (¢) True-positive rate
(TP/(TP +FN)) is plotted as a ROC-like curve and as a function of false-positive rate (FP/(FP + TN)), sorted by the variant quality score threshold.

For each threshold, sites with variant quality scores above the given threshold are counted as true or false positives, and sites with variant quality scores
below the given threshold are counted as true or false negatives. (d) Variant calling precision as a function of read depth for the different pipelines.
The abbreviations ‘UG" and 'HC' represent UnifiedGenotyper and HaplotypeCaller, respectively.

Just as it is important that mappers properly score their
alignments, the best variant callers must rank the confidence of
their calls. This is typically done through the assignment of a
variant quality score. In Fig. 2¢, a ROC-like curve plots the true-
positive rate as a function of false-positive rate, sorted by variant
quality. GATK UnifiedGenotyper and GATK HaplotypeCaller
score their calls such that there is great separation between TP
and FP calls at high variant quality. Samtools and Isaac have
weaker variant quality scores, demonstrated by the proportion of
FP calls assigned a high variant quality score. Finally, Fig. 2d plots
the relationship between precision and read depth. Here, the tools
all perform similarly with precision optimized once read depth
reaches about 30 X coverage.

Discussion

In our benchmarking survey, we found that short-read mapping
algorithms still continue to improve, and that these improve-
ments affect the accuracy of read alignments and the precision
and sensitivity of variant calls. We find that variant callers also
differ in performance, even when operating on the same read
alignments. Tools also differed in their ability to score poor
alignments or poor variant calls. It is worth noting that as variant
callers improve, it will be increasingly important to calibrate
variant quality scores so that sensitivity can be maximized with a
minimum detriment to precision. In particular, as variant callers
become more sensitive, it will be increasingly important to fine-
tune variant quality scores to maintain precision through the
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filtering of variant quality scores. Furthermore, benchmarking on
exome data likely overestimates the performance of analysis
methods for whole genomes. The future use of whole genomes
and multiple samples will help improve performance measure-
ments. The GCAT platform was created to help developers and
end-users benchmark and optimize analysis pipelines. GCAT is
powerful because it enables the dynamic comparison of emerging
tools, as well as variations and updates to existing pipelines. Users
can make comparisons with standardized metrics and data sets,
interactively digging into the comparisons to stratify the results
using parameters such as sequencing depth, quality score and
mutation class. GCAT enables direct sharing of results with
others or embedding of results online, and the tool can be used in
an unrestricted manner by anyone. Since launching in April 2013,
GCAT has amassed over 200,000 visitors from 194 countries and
now hosts more than 2,500 benchmark reports. We plan to
continue developing GCAT, including working with the new
Global Alliance for Genomic Health (http://genomicsandhealth.
org) Benchmarking working group to implement a graphical
interface to the standard performance metrics and benchmarking
tools being developed by the group. It is our hope that the
resource will help drive the discussion on reference materials and
performance testing, and help grow the adoption of genome-wide
sequencing in the clinic.

Methods
GCAT report generation. Reference data sets were downloaded from GCAT,
processed on local infrastructure and then the binary alignment map and variant
calling format files were returned to GCAT where benchmarking reports were
generated. The reports used to build Figs 1 and 2 in the main paper are shown
below:
http://www.bioplanet.com/gcat/reports/23/alignment/100bp-pe-small-indel/
bowtie2/compare-18-22-200 (for Fig. 1)
http://www.bioplanet.com/gcat/reports/2305/variant-calls/illumina-100bp-pe-
exome-150x/bowtie2-gatk-ug-3ptl/compare-2303-2304-2788/group-read-depth
and
http://www.bioplanet.com/gcat/reports/530/variant-calls/illumina-100bp-pe-
exome-150x/isaac-isaac/compare-2850-2788-2851/group-read-depth for Fig. 2.

Generating simulated read alignments. Chromosome 19 from build hgl9 of the
human reference sequence was used to generate simulated paired- and single-end
reads for Illumina FASTQ data under several different mutation and read length
parameters with the short-read simulator, DWGSIM v0.1.11 (https://github.com/
nh13/DWGSIM). These simulated data sets feature read lengths of 100, 150,

250 and 400 bp (parameters -1 <read length> and -2 <read length>), with a
500-bp insert (50 bp s.d.) for paired-end libraries. Small 1-10-bp indels and large
10-24-bp (-I 10) indels occurred in 10% (-R 0.1) of mutations with a 0.1%

(-r 0.001) chance of mutation occurrence. The number of reads generated is
dictated by the specification of 20 x coverage (-C 20) of chromosome 19.

A simulation of a single smaller chromosome is unlikely to capture the complete
spectrum of sequence structure and complexity found throughout the genome, but
serves as a reasonable surrogate for distinguishing the performance of short-read
mapping algorithms. We find that a whole-genome simulation with similar
parameters (changed —C 15 for 15 X coverage) reflects similar differences between
algorithms as does the simulated chromosome 19 data used by GCAT. We also
tried a second simulator, ART (http://www.niehs.nih.gov/research/resources/
software/biostatistics/art/), and found that the results were consistent with eva-
luations based on simulated data produced by DWGSIM (Supplementary Table 4).

Running variant calling pipelines. Where possible, all tools were run with default
settings. To compensate for the small number of secondary alignments that are
produced by split reads in BWA-MEM default mode, the -M parameter was used
to suppress this operation. This ensured a more fair comparison with other
mappers that produce only primary alignments. The use of the -M parameter does
not, however, significantly affect BWA-MEM results compared with the default or
the other mappers. For the variant calling analysis, where pipelines using BWA-
MEM were run on real exome data, we returned to using BWA-MEM default
settings. Samtools variant calling was executed with the recommended pipe to
‘beftools view -bveg- > < out > .bef; beftools view < out>.bef | vefutils.pl varFilter
-D100> <out> flt.vcf. The iSAAC alignment was run with ‘--keep-unaligned’,
‘--realign-gaps yes’ and iSAAC variant calling step used the build’s provided config
file found in ${INSTALL_ROOQOT}/etc/. The tool versions are as follows: Bowtie2
v2.0.0-beta5, GATK v3.1-1-g07a4bf8, Samtools v0.1.18, BWA v0.7.5a-r405,
Novoalign v3.00.04, and iSAAC v01.13.06.20.

Benchmarking variant calling. The second major component of GCAT allows
comparison of variant calls from different methods and performance assessment of
individual variant call sets against ‘ground truth’ sets. The ‘ground truth’ sets
currently used in GCAT are SNP sites genotyped by a microarray and a set of high-
confidence SNP, indel and homozygous reference genotypes developed for
NA12878 by NIST and the GIAB Consortium, version 2.18. While neither of these
data sets is perfectly accurate or comprehensive, both can provide estimates of
sensitivity, specificity and precision rate, as well as ROC-like curves. To elaborate
on specificity in particular, we count as true negatives every base in the high-
confidence regions that is not covered by a variant in the benchmark or in the test
set. In general, this is very close to the total number of bases in the high-confidence
regions, because most bases are homozygous reference. Therefore, specificity is
almost always very close to 100%, and precision rate may be a more useful statistic
in most cases. We have focused performance estimation on the exome in this work,
because the exome is well studied for clinical and functional applications. Addi-
tional data sets and entire genomes are planned additions for future iterations of
GCAT. We decided against benchmarking variant calls with simulated data sets
due to challenges in realistically modelling them.

The detection methodology for microarrays is different from sequencing, so it
can be useful as an orthogonal way to assess accuracy of sequencing. However,
microarrays contain only known variants for which probes are designed for, which
tend to be in regions of the genome that are easier to sequence. In addition,
microarrays can give incorrect results due to various technical challenges including
instances where nearby phased variants interfere with probe binding.

To assess a greater number of variants, including indels, GCAT also allows users
to benchmark their analysis using the GIAB high-confidence genotypes for
NA12878. These calls were generated by integrating 14 whole-genome and exome
data sets from five different sequencing technologies. When data sets yielded
discordant genotype calls, characteristics of bias (for example, strand bias and
clipping of reads) were used to arbitrate between data sets. The GIAB high-
confidence genotype calls contain 23,625 SNPs, 562 indels and 46,468,537
homozygous reference positions in the exome. For comparison of variant calls with
the GIAB calls, GCAT excludes any variants at positions where GIAB does not
make a high-confidence genotype call. The GIAB calls contain more difficult
regions than the microarrays, but they still exclude 22.6% of the genome. The
excluded regions include regions difficult to call accurately using short-read
next-generation sequencing, such as regions with possible structural variants,
regions with low mapping quality or coverage, simple repeats, known segmental
duplications and sites where discordant genotypes between data sets could not be
resolved. In addition, complex variants (nearby SNPs and indels) are difficult to
assess because different mappers and variant callers will represent them differently.
Therefore, any 10 base regions that contain an indel and another variant in the
GIAB call set are excluded from the comparison on GCAT. By comparing variant
calls from different mappers and variant callers with the GIAB call set on GCAT,
the user can learn the strengths and weaknesses of each method.

References

1. Hall, N. After the gold rush. Genome. Biol. 14, 115 (2013).

2. Rehm, H. L. Disease-targeted sequencing: a cornerstone in the clinic. Nat. Rev.
Genet. 14, 295-300 (2013).

3. Ward, R. M., Schmieder, R., Highnam, G. & Mittelman, D. Big data challenges
and opportunities in high-throughput sequencing. Syst. Biomed. 1, 29-34 (2013).

4. Loman, N. J. et al. Performance comparison of benchtop high-throughput
sequencing platforms. Nat. Biotechnol. 30, 434-439 (2012).

5. Meynert, A. M., Ansari, M., FitzPatrick, D. R. & Taylor, M. S. Variant detection
sensitivity and biases in whole genome and exome sequencing. BMC
Bioinformatics 15, 247 (2014).

6. Fonseca, N. A, Rung, J., Brazma, A. & Marioni, J. C. Tools for mapping
high-throughput sequencing data. Bioinformatics 28, 3169-3177 (2012).

7. O’Rawe, J. et al. Low concordance of multiple variant-calling pipelines: practical
implications for exome and genome sequencing. Genome Med. 5, 28 (2013).

8. Zook, J. M. et al. Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246-251 (2014).

9. International HapMap 3 Consortium et al. Integrating common and rare
genetic variation in diverse human populations. Nature 467, 52-58 (2010).

10. 1000 Genomes Project Consortium et al. An integrated map of genetic
variation from 1,092 human genomes. Nature 491, 56-65 (2012).

11. Li, H. Toward better understanding of artifacts in variant calling from
high-coverage samples. Bioinformatics 30, 2843-2851 (2014).

12. Talwalkar, A. et al. SMaSH: a benchmarking toolkit for human genome variant
calling. Bioinformatics 30, 2787-2795 (2014).

13. Li, J. W. et al. SEQanswers: an open access community for collaboratively
decoding genomes. Bioinformatics 28, 1272-1273 (2012).

14. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

15. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357-359 (2012).

16. DePristo, M. A. et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet. 43, 491-498 (2011).

| 6:6275| DOI: 10.1038/ncomms7275 | www.nature.com/naturecommunications 5

© 2015 Macmillan Publishers Limited. All rights reserved.


http://genomicsandhealth.org
http://genomicsandhealth.org
http://www.bioplanet.com/gcat/reports/23/alignment/100bp-pe-small-indel/bowtie2/compare-18-22-200
http://www.bioplanet.com/gcat/reports/23/alignment/100bp-pe-small-indel/bowtie2/compare-18-22-200
http://www.bioplanet.com/gcat/reports/2305/variant-calls/illumina-100bp-pe-exome-150x/bowtie2-gatk-ug-3pt1/compare-2303-2304-2788/group-read-depth
http://www.bioplanet.com/gcat/reports/2305/variant-calls/illumina-100bp-pe-exome-150x/bowtie2-gatk-ug-3pt1/compare-2303-2304-2788/group-read-depth
http://www.bioplanet.com/gcat/reports/530/variant-calls/illumina-100bp-pe-exome-150x/isaac-isaac/compare-2850-2788-2851/group-read-depth
http://www.bioplanet.com/gcat/reports/530/variant-calls/illumina-100bp-pe-exome-150x/isaac-isaac/compare-2850-2788-2851/group-read-depth
https://github.com/nh13/DWGSIM
https://github.com/nh13/DWGSIM
http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
http://www.niehs.nih.gov/research/resources/software/biostatistics/art/
http://www.nature.com/naturecommunications

ARTICLE

17. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics
25, 2078-2079 (2009).

18. Raczy, C. et al. Isaac: ultra-fast whole-genome secondary analysis on Illumina
sequencing platforms. Bioinformatics 29, 2041-2043 (2013).

Acknowledgements

We would like to thank Dr Gholson Lyon and Gabe Rudy for critical feedback and
suggestions throughout the development of the project. Further, we thank the commu-
nity of users that have contributed and shared reports on the GCAT platform. Finally, we
like to clarify that certain commercial equipment, instruments or materials are identified
in this document and that such identification does not imply recommendation or
endorsement by the National Institute of Standards and Technology, nor does it imply
that the products identified are necessarily the best available for the purpose.

Author contributions

JJ.W., D.K, N.L. and D.M. developed the GCAT platform. G.H,, ].J.W,, ].Z. and D.M.
designed the experiments. G.H., JJ.W., V.V,, ].Z. and D.M. performed the experiments.
G.H,, J.Z. and D.M. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Highnam, G. et al. An analytical framework for
optimizing variant discovery from personal genomes. Nat. Commun. 6:6275

doi: 10.1038/ncomms7275 (2015).

This work is licensed under a Creative Commons Attribution 4.0
5 International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise

in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

| 6:6275| DOI: 10.1038/ncomms7275 | www.nature.com/naturecommunications

© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Figure™1Benchmarking the accuracy of read alignments and the calibration of mapping quality scores.Mapping benchmarks were performed using simulated paired-end 100-bp Illumina reads. (a) The ROC-like curve illustrates, for each mapper, the number of incor
	Discussion
	Figure™2Performance testing variant callers.The Genome in a Bottle confident call set is used as the ’ground truthCloseCurlyQuote for the NA12878 genome. Variant calling pipelines are evaluated based on their concordance to the confident call set in the h
	Methods
	GCAT report generation
	Generating simulated read alignments
	Running variant calling pipelines
	Benchmarking variant calling

	HallN.After the gold rushGenome. Biol.141152013RehmH. L.Disease-targeted sequencing: a cornerstone in the clinicNat. Rev. Genet.142953002013WardR. M.SchmiederR.HighnamG.MittelmanD.Big data challenges and opportunities in high-throughput sequencingSyst. Bi
	We would like to thank Dr Gholson Lyon and Gabe Rudy for critical feedback and suggestions throughout the development of the project. Further, we thank the community of users that have contributed and shared reports on the GCAT platform. Finally, we like 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




