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Adipocyte Gs but not Gi signaling regulates
whole-body glucose homeostasis
Alexandre Caron 1,*, Ryan P. Reynolds 1, Carlos M. Castorena 1, Natalie J. Michael 1, Charlotte E. Lee 1,
Syann Lee 1, Rebecca Berdeaux 2, Philipp E. Scherer 3, Joel K. Elmquist 1,**
ABSTRACT

Objective: The sympathetic nervous system (SNS) is a key regulator of the metabolic and endocrine functions of adipose tissue. Increased SNS
outflow promotes fat mobilization, stimulates non-shivering thermogenesis, promotes browning, and inhibits leptin production. Most of these
effects are attributed to norepinephrine activation of the Gs-coupled beta adrenergic receptors located on the surface of the adipocytes. Evidence
suggests that other adrenergic receptor subtypes, including the Gi-coupled alpha 2 adrenergic receptors might also mediate the SNS effects on
adipose tissue. However, the impact of acute stimulation of adipocyte Gs and Gi has never been reported.
Methods: We harness the power of chemogenetics to develop unique mouse models allowing the specific and spatiotemporal stimulation of
adipose tissue Gi and Gs signaling. We evaluated the impact of chemogenetic stimulation of these pathways on glucose homeostasis, lipolysis,
leptin production, and gene expression.
Results: Stimulation of Gs signaling in adipocytes induced rapid and sustained hypoglycemia. These hypoglycemic effects were secondary to
increased insulin release, likely consequent to increased lipolysis. Notably, we also observed differences in gene regulation and ex vivo lipolysis in
different adipose depots. In contrast, acute stimulation of Gi signaling in adipose tissue did not affect glucose metabolism or lipolysis, but
regulated leptin production.
Conclusion: Our data highlight the significance of adipose Gs signaling in regulating systemic glucose homeostasis. We also found previously
unappreciated heterogeneity across adipose depots following acute stimulation. Together, these results highlight the complex interactions of
GPCR signaling in adipose tissue and demonstrate the usefulness of chemogenetic technology to better understand adipocyte function.

� 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

G protein-coupled receptors (GPCRs) are among the most intensively
studied pharmacological targets [1e3]. As their names imply, GPCRs
interact with G proteins located in the plasma membrane. When a
ligand binds to the GPCR, it causes a conformational change that
triggers the interaction between the GPCR and a nearby G protein.
There are four main families of G proteins: Gi/Go, Gq, Gs, and G12
[2,3]. The cAMP and the phosphatidylinositol pathways are the two
principal signal transduction pathways that rely on GPCR activation
[2,3].
Because of their pleiotropic effects on energy and glucose homeo-
stasis, GPCRs expressed in white adipose tissue (WAT) and brown
adipose tissue (BAT) are considered potential targets for the treatment
of metabolic diseases [4e6]. WAT and BAT are organs specialized for
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lipid storage and non-shivering thermogenesis, respectively [7,8].
Under specific physiological conditions, clusters of brown-like (‘brite’)
adipocytes can develop within WAT depots, a process referred to as
the browning of WAT. The development of beige adipose tissue (BeAT)
was suggested to play an important role in energy and glucose ho-
meostasis [8,9]. The sympathetic nervous system (SNS) is a key
regulator of the metabolic and endocrine functions of adipose tissue
[10]. In particular, increased SNS outflow promotes fat mobilization
[11], stimulates non-shivering thermogenesis [12], promotes browning
[9], and inhibits leptin production [10]. Moreover, SNS action is
differentially regulated in each adipose depot. For example, cold
exposure increases both WAT lipolysis and BAT thermogenesis
[13,14], whereas fasting increases WAT lipid mobilization but reduces
BAT activity [15]. However, we still do not fully understand the regional
differences in SNS stimulation of adipose tissue metabolism.
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In rodents, most of the effects of the SNS on adipose tissue are
attributed to norepinephrine (NE) activation of Gs-coupled beta 3
adrenergic receptors (ADRB3) located at the surface of the adipocytes
[16,17]. Evidence also indicates that Gs-coupled beta 1 adrenergic
receptors (ADRB1) are important for SNS stimulation of thermogenesis
[18]. A prevalent model predicts that activation of adipose b-adren-
ergic receptors promotes a molecular cascade that triggers the
accumulation of cAMP, which results in protein kinase A (PKA) acti-
vation [16,17]. In turn, PKA activates the canonical lipolytic pathway,
which leads to activation of thermogenesis in BAT through allosteric
activation of uncoupling protein 1 (UCP1) by fatty acids [17,19]. In
rodents, pharmacological stimulation of ADRB3 mimics these effects
and results in the reduction of blood glucose [14,20,21]. Supporting
the importance of Gs signaling in mediating these effects, deletion of
the stimulatory alpha subunit Gnas in adipocytes affects glucose
metabolism and thermogenesis [22,23]. In addition to ADRB3, adi-
pocytes express a number of other Gs-coupled receptors whose
activation promotes similar pathways and effects [19,24]. Evidence
also suggests that the Gi/o-coupled alpha 2 adrenergic receptors
(ADRA2) may play a role in regulating metabolism. For example, they
oppose the stimulation of lipolysis by ADRB3 by reducing cAMP levels
[25,26]. Moreover, the ADRB3/ADRA2 balance has been proposed to
be key for regulating leptin production [27,28] and human adipocytes
express higher amount of ADRA2A compared to ADRB3 [25]. However,
much of our knowledge on the roles of adipose GPCRs is based on
systemic treatment with pharmacological agents or whole-body
knock-out mouse models. As such, novel genetic tools allowing spe-
cific manipulation of GPCR signaling in adipose tissue are needed.
Designer Receptors Exclusively Activated by Designer Drugs
(DREADDs) are chemogenetically-engineered proteins that allow
spatial and temporal control of G protein signaling in vivo [29]. Origi-
nally developed to control neuronal activity [29], DREADDs are
emerging as key tools to control peripheral organs, including liver
[30,31], heart [32], and pancreas [33]. However, these tools have
never been used to manipulate GPCR signaling in adipose tissue. Here,
we used chemogenetic tools allowing acute stimulation of Gs or Gi
signaling specifically in adipocytes. We report that Gs, but not Gi,
signaling is a potent regulator of systemic glucose homeostasis.

2. MATERIAL AND METHODS

2.1. Animals
Animal work described in this manuscript has been approved and
conducted under the oversight of the UT Southwestern Institutional
Animal Care and Use Committee (IACUC). Mice were housed at an
ambient temperature of 23� 1 �C and maintained on a 12 h light/dark
cycle (lights on 0600e1800) and fed with normal mouse chow diet
(Envigo, 2016 Teklad Global 16% protein and 4% fat rodent diet). All
experiments were conducted using 8-14-week-old males.

2.2. Generation of Adipoq-GsD mice
To generate mice in which Gs signaling in adipose tissue is acutely
stimulated following CNO administration (Adipoq-GsD), a C57BL/6J
congenic version of the adiponectin (Adipoq)-Cre mouse (The Jackson
Laboratory, Stock No: 028020) [34] was crossed with Cre-dependent
Gs-coupled DREADD (GsD) C57BL/6J mice (MGI accession number
5696731) [30]. The following genotyping primers were used: 50-CTC
GAA GTA CTC GGC GTA GG-30 and 50-CTT GGC AAT CCG GTA CTG TT-
30 for the GsD allele (206-bp product), and 50-AAG GGA GCT GCA GTG
GAG TA and 50-CCG AAA ATC TGT GGG AAG TC for the wild-type (WT)
allele (297-bp product).
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2.3. Generation of Adipoq-GiD mice
To generate mice in which Gi signaling in adipose tissue is acutely
stimulated following CNO administration (Adipoq-GiD), a C57BL/6J
congenic version of the adiponectin (Adipoq)-Cre mouse (The Jackson
Laboratory, Stock No: 028020) [34] was crossed with Cre-dependent
Gi-coupled DREADD (hM4Di) C57BL/6NJ mice (The Jackson Labora-
tory, Stock No: 026219) [35]. The following genotyping primers were
used: 50-TCA TAG CGA TTG TGG GAT GA-30 and 50-CGA AGT TAT TAG
GTC CCT CGA C-30 for the hM4Di allele (200-bp product), and 50-AAG
GGA GCT GCA GTG GAG TA and 50-CCG AAA ATC TGT GGG AAG TC for
the wild-type (WT) allele (297-bp product).

2.4. Effects of chemogenetic stimulation of adipose tissue on
glucose homeostasis
Adipoq-GsD, Adipoq-GiD mice and their respective littermate controls
were fasted for 4 h (0600e1000) before receiving an intraperitoneal
injection (IP) of clozapine N-oxide (CNO, 1 mg/kg, Sigma C0832).
Tail vein blood glucose levels were then monitored for up to 3 h
using a glucometer (Bayer’s Contour Blood Glucose Monitoring
System; Leverkusen, Germany). To determine the impact of che-
mogenetic Gs stimulation on glucose clearance, Adipoq-GsD mice
and their littermate controls were fasted for 4 h (0600e1000) before
we co-administrated (IP) CNO (1 mg/kg) and glucose (1.5 mg/kg,
Sigma 49163-100 ML). To compare the hypoglycemic effects of
chemogenetic Gs stimulation to insulin, Adipoq-GsD mice and their
littermate controls were fasted for 4 h (0600e1000) before we co-
administrated (IP) CNO (1 mg/kg) and human recombinant insulin
(0.75 mU/kg, Eli Lilly).

2.5. Effects of chemogenetic stimulation of adipose tissue on
plasma insulin, leptin, NEFA and glycerol
Mice and their littermate controls were fasted for 4 h (0600e1000)
before receiving CNO (1 mg/kg). For insulin levels, blood from tail vein
was collected before, and 30 min after, the injection into EDTA tubes.
For leptin levels, blood from the tail vein was collected before, and up
to 2 h after, the injection in EDTA tubes. Plasma was isolated by
centrifugation (4000 g� 10 min at 4 �C) and was stored at�80 �C for
further biochemical analyses. Plasma insulin (Mouse Ultrasensitive
Insulin ELISA, ALPCO, 80-INSMSU-E01) and leptin (Mouse/Rat Leptin
ELISA, ALPCO, 22-LEPMS-E01) levels were measured following
manufacturer recommendations. For NEFA and glycerol levels, blood
from tail vein was collected before, and up to 2 h after, the injection.
Plasma was isolated by centrifugation and NEFA and glycerol quanti-
fied immediately using colorimetry assays (FUJIFILM Wako
Diagnostics-NEFA Reagent, 999-34691, 995-34791, 991-34891,
993-35191; Sigma Free Glycerol Reagent, F6428).

2.6. Western blotting
Adipoq-GsD mice and littermate controls were fasted for 4 h and then
injected with CNO (1 mg/kg). Epididymal white adipose tissue (eWAT)
from Adipoq-GsD mice and littermate controls were collected and
frozen 30 min later. Using 1.4 mm ceramic spheres (Lysing Matrix D;
MP biomedical), tissues were homogenized (30 s � 6000 rpm) in ice-
cold lysis buffer composed of T-PER buffer (Thermo Scientific, 78510),
1% (v/v) of protease inhibitor cocktail (P8340-5 ML, Sigma), and
phosphatase inhibitor tablets PhosSTOP (Sigma 4906837001). Tissues
were placed on a rotor at 4 �C for 1 h and then the soluble fractions of
the tissue lysates were isolated by centrifugation (10,000 �g, 4 �C for
10 min). The supernatant was carefully pipetted into a new tube and
the protein concentration was measured via BCA protein assay (Life
Technologies). Equal amounts of total protein (40 mg) per sample were
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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diluted with appropriate volume of Laemmle sample buffer (2X
concentrated; 4% SDS, 10% 2-mercaptoethanol, 20% glycerol,
0.004% bromophenol blue and 0.125 M pH6.8 TriseHCl) heated for
5 min at 95 �C, separated via SDS-PAGE 4e15% TriseHCl gels (Bio-
Rad, Hercules, CA), transferred to nitrocellulose membranes (Trans-
blot turbo, Bio-Rad, Hercules, CA), and incubated with the appropriate
primary antibody overnight at 4 �C. The following primary antibodies
were used: Akt (Cell Signaling Technology, 4691, dilution 1:1000),
phospho-AKT S473 (Cell Signaling Technology, 9271, dilution 1:1000).
Membranes were then incubated with florescent secondary antibodies
(IRDye 800CW Goat anti-Rabbit IgG; Li-Cor Bioscience) and protein
band fluorescence was quantified using the Li-Cor Odyssey Image
studio Version 4.0 (Li-Core Bioscience).

2.7. Quantitative real-time PCR
Adipoq-GsD mice and littermate controls were injected with CNO
(1 mg/kg) after a 4 h fast, and tissues were collected 6 h later. Total
mRNA was isolated from eWAT, inguinal white adipose tissue (iWAT),
and interscapular brown adipose tissue (BAT) using the Aurum� Total
RNA Fatty and Fibrous Tissue Kit (Bio-Rad, 732e6830). RNA con-
centration was estimated from absorbance at 260 nm cDNA synthesis
was performed using the iScript Advanced cDNA Synthesis Kit (Bio-
Rad, 172e5038). mRNA extraction and cDNA synthesis were per-
formed following the manufacturer’s instructions. cDNA was diluted in
DNase-free water before quantification by real-time PCR. Relative
quantification of gene expression was performed on diluted cDNA in
duplicate samples using a CFX384 touchTM real-time PCR (Bio-Rad).
Fold differences in targeted mRNA expression were calculated using
the 2-delta cycle threshold method and data were normalized to beta-
microglobulin (B2m) expression. TaqMan� gene expression assays for
B2m (Mm00437762_m1), Sik1 (Mm00440317_m1), Lipe (Mm00
495359_m1), Dgat1 (Mm00515643_m1), Ppargc1a (Mm01208
835_m1), Ucp1 (Mm01244861_m1), Tbk1 (Mm00451150_m1), Lep
(Mm00434759_m1), Adipoq (Mm00456425_m1), Adrb3 (Mm02601
819_g1), Gnas (Mm01242435_m1), Gnal (Mm01258217_m1), Gnai1
(Mm01165301_m1), Gnai2 (Mm00492379_g1), Gnai3 (Mm00802
670_m1), and Gnaz (Mm01150269_m1) were purchased from Ther-
moFisher Scientific. Integrated DNA Technologies (IDT)’s PrimerQuest
Software was used to design primers and probes containing a ZEN�
quencher, a 30 Iowa Black� FQ quencher and a 50 6-fluorescein (FAM)
to evaluate GsD and GiD expression. For GsD: primer 1 (5 nM) 50-ATG
CCA GGA AGC CAG TAA AG-30, primer 2 (5 nM): 50-GTT GGG CAG CTA
CAA CATT TC-30, probe (2.5 nM) 50/56-FAM/TTC TCC TCA/ZEN/AAC
GAC ACC TCC AGC/3IABkFQ/-30. For GiD: primer 1 (5 nM) 50-CGC TAT
GAG ACG GTG GAA AT-30, primer 2 (5 nM) 50-CGC TAT GAG ACG GTG
GAA AT-30, probe (2.5 nM) 50/56-FAM/ATC ACC AGG/ZEN/ATG TTG
CCC ACGA/3IABkFQ/-30.

2.8. Evaluation of lipolysis and leptin release in adipose organ
explants
We used a modified version of a well-established lipolysis assay [36] to
evaluate NEFA, glycerol, and leptin release from adipose organ ex-
plants. Briefly, eWAT, iWAT, and BAT from Adipoq-GsD, Adipoq-GiD
and respective littermate controls were surgically removed and cut in
w20 mg pieces. The pieces were put in a 96-well plate containing
200 ml of prewarmed (37 �C) DMEM no phenol red (Gibco A1443001).
The pieces were then incubated at 37 �C (5% CO2, and 95% hu-
midified atmosphere) for one hour (baseline) in DMEM containing 2%
MOLECULAR METABOLISM 27 (2019) 11e21 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
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fatty acid (FA)-free bovine serum albumin (BSA, Sigma, A8806) and
0.1% glucose (Sigma 49163). To avoid re-esterification of FA and
glycerol, each well also contained 5 mM of the acyl-CoA synthetases
inhibitor triacsin C (Tocris 2472). At the end of the hour, the pieces
were transferred to a new 96-well plate containing fresh medium with
1 mM CNO (C0832, Sigma) and incubated for another hour (stimu-
lated). The incubation media from baseline and stimulated conditions
were then used to evaluate NEFA release by colorimetry (FUJIFILM
Wako Diagnostics-NEFA Reagent, 999-34691, 995-34791, 991-
34891, 993-35191), glycerol release by colorimetry (F6428, Sigma),
and leptin release by ELISA (Mouse/Rat Leptin ELISA, ALPCO, 22-
LEPMS-E01). NEFA, glycerol, and leptin release were then calculated
based as a percentage compared to baseline.

2.9. Assessment of body composition
Fat mass and lean mass were assessed by nuclear magnetic reso-
nance (NMR) spectroscopy using a Bruker Minispec mq10 NMR 0.23T/
10 MHz.

2.10. Metabolic cages
A combined indirect calorimetry system (LabMaster System, TSE
Systems Inc.) was used to evaluate the impacts of stimulating GsD and
GiD selectively in adipose tissues on different metabolic parameters.
Experimental animals were acclimated for 5 days in a metabolic
chamber with food and water. Food intake, oxygen consumption (VO2),
respiratory exchange ratio (RER), and locomotor activity were
measured for 24 h after animals were injected with CNO (1 mg/kg) in
the morning at 1000. Locomotion was measured using a multi-
dimensional infrared light beam system.

2.11. Histology
Samples from eWAT, iWAT, and BAT were taken 24 h following CNO
(1 mg/kg) and were immediately fixed overnight in 10% formalin.
Samples were then dehydrated, embedded in paraffin, and cut into
5 mm-thick sections. Sections were stained with hematoxylin and
eosin (H&E) to perform general histology. All pictures were taken at a
magnification of 20� on a Zeiss Axioskop 2 microscope connected to a
digital camera (AxioCam; Zeiss, Thornwood, NY). Only the sharpness,
contrast, and brightness were adjusted.

2.12. Treatment with CL 316,243
C57BL6/J mice (obtained from the UTSW breeding core) fasted for 4 h
(0600e1000) and then given an injection of the ADRB3 agonist CL
316,243 (Sigma, C5976, high dose - 1 mg/kg or low dose - 0.1 mg/kg,
IP). Blood glucose was measured for the next 2 h. To test whether GiD
stimulation blocks the effects of CL 316,243 on glucose levels, Adipoq-
GiD mice and littermate controls were fasted for 4 h (0600e1000)
before receiving an injection of CNO (1 mg/kg, IP). Thirty minutes later,
a low dose of CL 316,243 (0.1 mg/kg, IP) was given and blood glucose
was measured for the next 2 h.

2.13. Statistical analysis
Data are expressed as the mean � SEM. Comparisons between two
experimental conditions were analyzed by Student’s unpaired t test.
Two-way ANOVA followed by Tukey post-hoc test was used to
compare more than two experimental conditions. All statistical tests
were performed using GraphPad Prism (version 7.0), and p < 0.05
was considered statistically significant.
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3. RESULTS

3.1. Chemogenetic stimulation of Gs signaling in adipocytes
induces hypoglycemia
It was recently reported that chemogenetic stimulation of Gs signaling
in hepatocytes increases blood glucose by activating cAMP [30]. This
approach demonstrated that Gs-DREADD (GsD) can be readily used to
mimic GsPCR activation, such as the glucagon receptor, in the liver
[30,37]. Because of the importance of the Gs-coupled beta adrenergic
receptors and downstream cAMP signaling in adipocytes [4,10,38], we
aimed to determine whether this approach could be used to study the
impact of Gs signaling activation in adipose tissue. A C57BL/6J con-
genic version of the adiponectin (Adipoq)-Cre mouse [34] was crossed
with Cre-dependent Gs-coupled DREADD (GsD) mice [30] to generate
mice in which Gs signaling is acutely stimulated following CNO
administration (Adipoq-GsD). Validation of the expression of the GsD in
eWAT, iWAT and BAT is shown in Fig. S1A. Expression of Adrb3 was
not significantly altered in these different adipose depots (Fig. S1B).
Likewise, expression of endogenous Gs proteins (GNAS Complex Lo-
cus, Gnas and G Protein Subunit Alpha L, Gnal) were not significantly
altered (Fig. S1CeD). Based on evidence that Gnas deficiency in ad-
ipose tissue improves glucose metabolism [22], we evaluated the
impact of chemogenetic stimulation of Gs signaling in adipocytes on
glucose homeostasis. As shown in Figure 1AeD, CNO induced a rapid
and persistent reduction in blood glucose in Adipoq-GsD mice
compared to their littermate controls. Strikingly, blood glucose was
41% lower than baseline, with an average of 59.25 � 5.03 versus
165.70 � 30.41 mg/dL, for 3 h following CNO administration
(Figure 1C). When CNO was co-administrated with glucose, we found
that the glucose clearance was also drastically improved (Figure 1Ee
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Figure 1: Chemogenetic stimulation of Gs signaling in adipocytes induces hypoglycemia. (A
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AUC for C. (E) Blood glucose following co-administration of CNO (1 mg/kg) and D-glucose (1
and recombinant human insulin (0.75 mU/kg). (H) AUC for G. The data are expressed as th
littermate controls. The annotated p value was calculated by two-way ANOVA.

14 MOLECULAR METABOLISM 27 (2019) 11e21 � 2019 The Authors. Published by Elsevier GmbH. T
F). When CNO was co-administrated with recombinant insulin, we did
not find any additional hypoglycemic effects of CNO over insulin
(Figure 1GeH). Importantly, these effects were independent of
changes in body composition, food intake or energy expenditure
(Fig. S2AeE). Together, these results indicate that stimulation of Gs
signaling in adipocytes potently increases glucose clearance and in-
duces hypoglycemia, independent of alterations in energy balance.

3.2. Chemogenetic stimulation of Gs signaling in adipocytes
increases insulin levels through an adipose tissue-pancreas
crosstalk
Because the magnitude by which CNO reduced blood glucose in
Adipoq-GsD mice was similar to the hypoglycemic effects of insulin in
littermate controls (Figure 2A), we next assessed insulin levels
following the chemogenetic stimulation. As shown in Figure 2B,
plasma insulin went up more than 4-fold 30 min following CNO
treatment in Adipoq-GsD mice but not littermate controls. This was
concomitant with an increase in insulin signaling, as assessed by p-Akt
in eWAT (Figure 2C). These observations are in line with previous
studies reporting increased insulin levels after acute treatment with
CL316,243 [5,39], an agonist of Gs-coupled ADRB3. Based on evi-
dence that CL316,243 increases lipolysis and that its incretin effects
are dependent on non-esterified fatty acids (NEFA) release [5,39], we
next evaluated the impact of stimulating adipocyte Gs signaling on
NEFA levels. We found that CNO dramatically increased plasma NEFA
levels within 15 min (Figure 2D). Importantly, blood glucose levels
negatively mirrored the NEFA levels in Adipoq-GsD animals, as sup-
ported by a significant negative correlation between glucose and NEFA
levels 30 min after CNO administration (Figure 2EeG). These data
suggest that the hypoglycemic effects of acute stimulation of Gs
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signaling in adipose tissue are due, at least in part, to an increase in
insulin release consequent to increased lipolysis. This highlights the
importance of Gs signaling in an adipose tissue-pancreas crosstalk.

3.3. Chemogenetic stimulation of Gs signaling induces the
expression of distinctive genes in different adipose depots
We next sought to determine the impact of chemogenetic stimulation
of Gs signaling in adipocytes on the expression of key metabolic genes
in adipose tissue. Because salt inducible kinase (Sik1) was previously
reported to be rapidly induced following GsD activation [30], we first
validated that Sik1 expression was increased in eWAT, iWAT, and BAT.
Validating the efficiency of our approach, Sik1 mRNA was induced 3-
to 8-fold in these adipose depots 6 h following CNO administration
(Figure 3A). We next looked at genes involved in lipid metabolism and
found important distinctions between the different adipose depots.
While the hormone-sensitive lipase (HSL) gene Lipe was induced in
every depot (Figure 3B), diacylglycerol o-acyltransferase 1 (Dgat1)
expression was induced in eWAT but reduced in iWAT (Figure 3C). We
also observed an increase in peroxisome proliferator-activated re-
ceptor gamma coactivator a-alpha (Ppargc1a) in every adipose tissue
(Figure 3D) and a significant increase in Ucp1 in iWAT and BAT
(Figure 3E). These results suggest that Gs signaling in eWAT induces
lipid turnover by stimulating both the lipolytic and lipogenic pathways,
whereas Gs stimulation promotes oxidative metabolism in iWAT and
BAT. We also found that TANK binding kinase 1 (Tbk1), a gene known
to be readily induced by dynamic challenges in adipose tissue [40,41]
was increased following Gs stimulation (Figure 3F). Finally, we looked
at the impact of adipose Gs signaling on adipokine transcription.
MOLECULAR METABOLISM 27 (2019) 11e21 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
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Interestingly, leptin (Lep) expression showed distinctive patterns in
eWAT, iWAT, and BAT (Figure 3G). In contrast, adiponectin (Adipoq)
expression did not change following CNO administration (Figure 3H).
We did not observe any significant differences in adipose tissue
morphology or adipocyte size between genotypes 24 h after CNO
administration (Fig. S3). Together, these data demonstrate the previ-
ously unappreciated variation across adipose tissues following Gs
signaling stimulation and highlight the usefulness of chemogenetic
technology to better understand adipocyte functions.

3.4. Chemogenetic stimulation of Gs signaling stimulates lipolysis
ex vivo
The Adipoq-Cre mouse model has been shown by many groups
[34,42,43] to be highly specific to adipose tissue. Although not as
ubiquitously expressed as fatty acid binding protein 4 (Fabp4/aP2)
[44,45], publicly available bioinformatic data suggests that Adipoq is
also expressed in the adrenal glands [46,47], which are known to
produce hormones influencing metabolism. Moreover, CNO can be
back-transformed into clozapine in the liver, which can have systemic
effects [48]. We thus decided to modify a widely-used protocol for
measuring lipolysis ex vivo in adipose tissue explants [36] in order to
evaluate the direct impact of CNO on NEFA and glycerol release, as
surrogates of lipolysis. As shown in Figure 4AeB, CNO was only
effective at increasing NEFA and glycerol release in explants from
Adipoq-GsD mice. Importantly, no differences were observed at
baseline between Adipoq-GsD and littermate explants (Supplementary
Table 1), indicating that the endogenous expression of the GsD does
not affect basal lipolytic rate. As expected, eWAT explants were the
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 15
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most responsive to CNO in terms of fold increase of NEFA and glycerol
release, whereas BAT explants were the least responsive. Because
ADRB3 and downstream cAMP are well-known to affect leptin levels
[10], we also evaluated leptin release in the explants [28]. We found
that acute stimulation of Gs signaling in adipose explants does not
potently affect leptin release (Figure 4C). Supporting this observation,
we did not find any changes in leptin levels following CNO adminis-
tration (data not shown). Together, these data highlight the efficacy of
the Adipoq-GsD model to specifically increase lipolysis in an adipose-
autonomous manner.
16 MOLECULAR METABOLISM 27 (2019) 11e21 � 2019 The Authors. Published by Elsevier GmbH. T
3.5. Chemogenetic stimulation of Gi signaling does not affect
glucose homeostasis but stimulates leptin production
Evidence suggests that Gs and Gi signaling have opposing actions in
adipose tissue [26,49]. For instance, pharmacological activation of Gs-
coupled ADRB3 stimulates lipolysis, whereas pharmacological stimu-
lation of Gi-coupled ADRA2 or stimulation of the lactate receptor GPR81
inhibits lipolysis [49,50]. In order to test whether acute stimulation of Gi
signaling in adipocytes has the opposite effect on glucose metabolism
as Gs stimulation, we crossed Adipoq-Cre mice [34] with Cre-
dependent hM4Di-coupled DREADD mice [35] and generated
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the mean � SEM for n ¼ 5e14 replicates from n ¼ 3 animals per group. *** indicates
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Adipoq-GiD mice. We first validated the expression of GiD in the
different adipose depots (Fig. S4A). As shown in Fig. S4BeE, no dif-
ference in the expression of endogenous Gi proteins was observed (G
Protein Subunit Alpha I1, Gnai1, G Protein Subunit Alpha I2, Gnai2, G
Protein Subunit Alpha I3, Gnai3, and G Protein Subunit Alpha Z, Gnaz).
Likewise, we did not observe any difference in body composition, food
intake and energy expenditure (Fig. S2FeJ). In contrast to what we
observed with Gs stimulation, we did not observe any effect of CNO on
glucose levels in Adipoq-GiD (Figure 5AeB). Moreover, pre-stimulation
of Gi signaling with CNO did not prevent the hypoglycemic effects of a
low dose of CL316,243 (Fig. S5). Based on evidence suggesting that
pharmacological stimulation of the Gi-coupled ADRA2 increases leptin
levels [28], we next tested whether chemogenetic stimulation of adi-
pose Gi signaling affects leptin production. As shown in Figure 5CeD,
we observed a modest but significant increase in plasma leptin levels
2 h following CNO administration in Adipoq-GiD mice compared to
littermate controls. We did not find any difference in the expression of
Lipe or Ppargc1a in eWAT, iWAT, and BAT (Figure 6AeB), suggesting
that the GiD stimulation did not affect lipolysis or oxidation. Further-
more, CNO did not affect NEFA release (Figure 6C) in adipose explants,
suggesting that acute stimulation of adipocyte Gi signaling does not
impair lipolysis. Together, these results suggest that acute stimulation
of Gi signaling in adipose tissue does not affect glucose metabolism or
lipolysis, but contributes to the regulation of leptin production.
Collectively, our data highlight the complexity of GPCR signaling in
adipose tissue.
MOLECULAR METABOLISM 27 (2019) 11e21 � 2019 The Authors. Published by Elsevier GmbH. This is an open ac
www.molecularmetabolism.com
4. DISCUSSION

Because of their pleiotropic effects on energy and glucose homeo-
stasis, targeting adipose GPCRs represents a potential approach to
treat obesity and diabetes [4e6]. In particular, the Gs-coupled ADRB3
has emerged as a conceivable target due to its effects on lipolysis,
thermogenesis, and browning [4]. Recent work also suggests an
important network of non-adrenergic GPCR in the regulation of adipose
tissue biology [6,19,24]. Gi-coupled ADRA2 are considered to oppose
the stimulation of lipolysis by ADRB3 by reducing cAMP levels [25,26]
and recent work highlights the importance of the ADRB3/ADRA2 bal-
ance in controlling leptin production [27,28]. Here, we report the
generation of novel chemogenetic tools allowing acute stimulation of
Gs and Gi signaling in adipocytes and highlight different outcomes that
stimulating these pathways have in distinct adipose depots.
Our data indicate a potentially important role for adipose Gs signaling
in regulating glucose homeostasis. Chemogenetic stimulation of
adipose Gs was sufficient at lowering blood glucose in less than
20 min, an effect that was sustained for hours. The decrease in
glucose levels may be secondary to uptake in the adipose depots.
However, we found that chemogenetic stimulation of adipose Gs
signaling drastically improved glucose clearance and increased in-
sulin secretion, suggesting that insulin-mediated glucose uptake in
other tissues including muscles might also play an important role in
the hypoglycemic phenotype. Importantly, the hypoglycemic effects
of CNO in Adipoq-GsD animals were similar to an insulin bolus in
littermate controls. These results are in line with previous observa-
tions that acute pharmacological stimulation of ADRB3 results in
increased insulin levels and decreased glycemia [5,51]. Consistent
with the use of an ADRB3 agonist [5,39], our data suggest that the
incretin effects of Gs signaling are consequent to increased lipolysis.
This idea is reinforced by a strong negative correlation between blood
glucose and plasma NEFA in Adipoq-GsD but not littermate controls.
Exactly how adipose tissue Gs signaling regulates insulin secretion is
still unclear. Supporting our findings, previous work has suggested
that the effects of CL316,243 on insulin secretion are secondary to
increased plasma NEFA [5,39]. Importantly, inhibiting lipolysis with
nicotinic acid was shown to blunt the CL316,243-mediated increase
in insulin levels [5]. Moreover, mice lacking ATGL, a rate-limiting
enzyme of lipolysis, fail to exhibit hyperinsulinemia following phar-
macological stimulation of ADRB3 [5,39]. Interestingly, mice lacking
the free fatty acid receptor GPR40, which is expressed by pancreatic
beta cells, have a blunted hyperinsulinemic response to CL 316,243
[52]. However, deletion of GPR40 only reduces the effects of CL
316,243 by 50%, suggesting that additional mechanisms mediate
the effect of ADRB3 stimulation on insulin levels [52]. Therefore, we
believe that additional factors (e.g. secretion of adipokines) might
explain the effects of adipose Gs stimulation on insulin release.
Another possibility is that the stimulation of adipocyte Gs signaling
may stimulate a neuronal afferent communication to the brain and
subsequent efferent output to pancreas. This idea is supported by the
existence of an important afferent network between adipose tissue
and the central nervous system [11,53,54], as well as an efferent
pathway regulating insulin secretion [55]. Together, our results
suggest that pharmacological targeting of Gs signaling in adipose
tissue represents a potential avenue for the management of hyper-
glycemia in type 2 diabetes patients. Additional studies are needed to
better understand how exactly the acute stimulation of Gs signaling
results in an adipose tissue-pancreas crosstalk and to define whether
the benefits of stimulating adipocyte Gs signaling can be harnessed
in disease models.
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 17
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Original Article
In addition to the potent effects on glucose homeostasis, we found
important distinctions between the different adipose depots in terms of
gene expression profile. Our data suggest that despite somewhat
similar activation of HSL and CREB pathways, as evidenced by increase
in the expression of Lipe, Ppargc1a, and Sik1 in eWAT, iWAT, and BAT,
Gs stimulation did not affect other genes the same way. For instance,
Dgat1, which encodes the protein catalyzing the conversion of diac-
ylglycerol and fatty acyl (FA) CoA to triacylglycerol (TG), was upregu-
lated in eWAT but downregulated in iWAT. Interestingly, the effects of
fasting and re-feeding on Dgat1 expression in different adipose depots
was previously shown to follow a similar pattern, with Dgat1 being
downregulated upon fasting [56]. Moreover, DGAT1 is suggested to be
key for re-esterifying FA back to TG during lipolysis to protect the
endoplasmic reticulum from lipotoxic stress [56]. It is tempting to
speculate that the rapid lipid turnover caused by Gs stimulation in
eWAT results in increased DGAT1 activity for these same reasons. The
use of Cre lines that allow the targeting of eWAT but not iWAT, such as
the Wilms Tumor one locus (Wt1-Cre) [57,58], will be key to better
understand the role of Gs signaling in regulating this particular adipose
depot. Another important distinction was the expression of Ucp1,
which was upregulated in iWAT and BAT but not in eWAT. Because
eWAT is considered resistant to browning following acute adrenergic
stimulation [58], these results suggest that Gs signaling promotes the
18 MOLECULAR METABOLISM 27 (2019) 11e21 � 2019 The Authors. Published by Elsevier GmbH. T
browning of iWAT and stimulates the thermogenic machinery of both
brown and brite adipocytes, similar to an ADRB3 stimulation [14,59].
On the other hand, in visceral adipose tissues such as eWAT, Gs
signaling potently stimulates lipid mobilization and re-esterification by
forcing profound lipid turnover. The fact that we did not observe
important histological difference in iWAT and BAT between Adipoq-
GsD and littermates is quite surprising, but it supports the absence of
effects on energy expenditure. One possible explanation is that
although a single injection of CNO promotes the oxidative/thermogenic
capacity (gene expression) of these organs, additional inputs are
needed to stimulate iWAT and BAT oxidative/thermogenic activity. This
is supported by previous literature showing important distinctions
between oxidative/thermogenic capacity and activity [14,60,61]. It is
also plausible that chronic CNO administration potentiates the
browning of iWAT and energy expenditure, which is beyond the scope
of our acute GPCR stimulation studies. However, chronic treatment
with high doses of CNO are associated with many adverse effects [62],
mostly due to its back-transformation into clozapine [48], that could
limit the attractiveness to such an approach. Nonetheless, these
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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chemogenetic approaches will be invaluable tools for chronically or
acutely controlling these pathways in a spatiotemporal manner.
One surprising observation was the absence of effects on lipolysis in
the GiD model. Previous work indicates that Gi-coupled ADRA2 op-
poses the stimulation of lipolysis by ADRB3 by reducing cAMP levels
[25,26]. Moreover, deletion of Gi-coupled GPR43 and GPR81 was
shown to have significant effects on lipolysis [50,63]. Our results
suggest that acute stimulation of Gi signaling does not impair baseline
lipolysis. One possible explanation for this discrepancy is that at the
time of Gi stimulation, there was no Gs signaling and therefore no
cAMP available for degradation nor adenylyl cyclase that needed to be
blocked. Another notable distinction is that our chemogenetic approach
leads to an acute stimulation of a particular pathway, whereas global
knock-out models involve the permanent deletion of a gene that, if
deleted early in life, can lead to developmental compensation.
Together, these results highlight how combining chemogenetic tools
with pharmacology and transgenic mouse models will lead to a better
understanding of the complex biology of GPCR signaling.
Previous studies have shown that pharmacological stimulation of
ADRB3 [64e70] suppresses leptin levels and Lep expression. Here, we
found that following Gs stimulation, Lep mRNA expression was
increased in eWAT and decreased in BAT, with no impact on leptin
release ex vivo. These results suggest that the effects of ADRB3 on
reducing leptin transcription may be Gs independent. This is supported
by evidence that ADRB3 show a dynamic capacity to stimulate
divergent G proteins. For example, ADRB3 stimulates the mitogen-
activated protein kinase (AMPK)/extracellular signal-regulated ki-
nases (ERK) pathway in adipocytes through a Gi-dependent mecha-
nism [71,72]. Moreover, adrenergic stimulation (presumably through
ADRB3) was shown to not only trigger the cAMP-PKA pathway, but also
to influence phosphoinositide 3-kinase (PI3K) and protein kinase C
(PKC) in brown adipocytes [73]. It is noteworthy that overexpression of
ADRA2 in Adrb3 knock-out mouse adipose tissue increases leptin
levels [27]. In addition, pharmacological stimulation of ADRA2 in-
creases leptin levels [28]. Here, we show that Adipoq-GiD mice but not
littermate controls exhibit modest but significant increase in plasma
leptin two hours following CNO administration. Thus, the Gi/Gs balance
in adipocytes appears to be key for the regulation of leptin and we
believe that these chemogenetic tools will allow a better understanding
of the roles of G proteins in adipose tissue in vivo.

5. CONCLUSION

In conclusion, our data demonstrate the importance of adipose Gs
signaling in regulating systemic glucose homeostasis. We found
notable differences in the gene expression profile of distinct adipose
depots in response to Gs stimulation. In contrast, we found that Gi
signaling had no effect on glucose metabolism, but increased circu-
lating leptin levels. Together, our data highlight the complexity of GPCR
signaling in adipose tissue and demonstrate the usefulness of che-
mogenetic technology to better understand adipocyte functions.
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