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Lung cancer is one of the cancers with the highest morbidity and mortality in the world. Recurrence often occurs even
after complete resection of early-stage lung cancer, and prediction of recurrence after resection is clinically important.
However, the pathological characteristics of the recurrence of pathological stage IB lung adenocarcinoma (LAIB) have
not yet been elucidated. Therefore, the problem is what type of histological image of lung adenocarcinoma recurs, and
it is important to examine the histological image of recurrence. We attempted to predict recurrence of early lung ad-
enocarcinoma after resection on the basis of digital pathological images of hematoxylin and eosin-stained specimens
and machine learning applying a convolutional neural network. We constructed a model that extracts the features
of two-color spaces and a switching model that automatically switches between our extraction model and one that ex-
tracts the features of one-color space for each image. We then developed a tumor-identification method for predicting
the presence or absence of LAIB recurrence using these models. We conducted an experiment involving 55 patients
with LAIB who underwent surgical resection to evaluate the proposed method. The proposed method determined
LAIB recurrence with an accuracy of 84.8%. The use of digital pathology and machine learning can be used for highly
accurate prediction of LAIB recurrence after surgical resection. The proposed method has the potential for objective
postoperative follow-up observation.
Introduction

Lung cancer is one of the cancers with the highestmorbidity andmortal-
ity in the world. Recurrence often occurs even after complete resection of
early-stage lung cancer, which has become amajor clinical problem. There-
fore, the problem is what type of histological image of lung adenocarci-
noma recurs, and it is important to examine the histological image of
recurrence. In previous reports, pleural and vascular invasion have been re-
ported to be prognostic factors. However, they require elastic fiber staining,
and it is difficult to predict prognosis with hematoxylin and eosin (H&E) stain-
ing alone.1 It is necessary to confirm the presence or absence of recurrence by
follow-up. Among the lung adenocarcinomas, the postoperative recurrence
rate of pathological stage IB lung adenocarcinoma (LAIB) is 37.8%.2 In the
tumor-node-metastasis (TNM) classification,3 LAIB indicates lung adenocarci-
noma with a maximum diameter of more than 3 cm and less than 4 cm in the
area showing invasive growthwithout metastasis to the regional lymph nodes
or distant metastasis. If this can be predicted, it will lead to an appropriate
cinoma.
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treatment policy for the patient depending on the presence or absence of
recurrence, improving the quality of life of the patient.

Several methods for identifying lung-cancer tumors have been investi-
gated. To predict the recurrence of disease in early-stage non-small cell
lung cancer (NSCLC), a method is being investigated to create classifiers
using nuclear orientation, texture, shape, and tumor structure.4 Because
thismethod is intended for tissuemicroarrays (TMAs) that collect onlymor-
phological images of only a portion of the tumor, the challenge with this
method is to capture the heterogeneity of tumor presence or absence in
NSCLS images for entire slides, such as a whole slide image (WSI), and to
assess whether recurrence is predictable. Image features related to cells
and cell nuclei are also extracted, and higher-level features are selected
using a support vector machine and random-forest classifiers. By using
these features, a method for distinguishing long- and short-term survivors
of pathological stage I adenocarcinoma is being investigated.1 This method
uses TMAs consisting of only the most representative cases and does not
allow for the evaluation of acinar- or papillary-subtype adenocarcinoma.
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Fig. 1. Extracting partial image from WSI.
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Histological predominant subtypes are known to be lepidic, acinar, papil-
lary, and solid. Among them, the acinar subtype forms mainly glandular
structures with a central luminal space surrounded by tumor cells. Tumor
cells of the papillary subtype characteristically grow in a papillary fashion.
Amethod of identifying the tumor region of lung cancer using a pre-trained
Inception v35 model and discovering tumor shape and boundary features
that predict survival outcomes is also being investigated.6 Because this
method finds the features that predict the survival outcome only from the
RGB features of the H&E-stained image, it cannot find the features for
predicting the survival outcome of lung-cancer that cannot be determined
from only the RGB features of the H&E-stained image.

We propose a tumor-identification method having the following features.

• The proposed method is capable of extracting features related to the pres-
ence or absence of LAIB recurrence.

• By switching between the two models for each image, the proposed
method can accurately identify the presence or absence of LAIB recur-
rence in several predominant subtypes.

• The proposed method determined LAIB recurrence with an accuracy of
84.8% for 55 patients with LAIB who underwent surgical resection.

Materials and methods

Sample information

We used WSIs of specimens from 55 patients (33 with non-recurrent
LAIB and 22 with recurrent LAIB). We used 22 of these specimens for train-
ing and validation and 33 for evaluation. We also used specimens with a re-
currence period of LAIB of about 5 months to about 5 years and 2 months.
Of the 55 cases of the histological predominant subtypes, lepidic, acinar,
papillary, and solid subtypes were 7, 15, 19, and 14 cases, respectively.
From the WSIs of the 55 specimens, we obtained 19 986 partial images
for training, 4000 for verification, and 7106 for evaluation. The WSIs
were taken using the virtual slide scannerNanoZoomer C9600-02manufac-
tured by Hamamatsu Photonics. We used images (0.23 μm/pixel) at 40x
magnification of the WSIs. Hematoxylin (hematoxylin 3G, Sakura Finetech
Japan) and eosin (Eosin, Sakura Finetech Japan) were used for staining of
tissue sections. The data for training, verification, and evaluation were
the data of the tissue sections stained in one facility. We created training/
verification/evaluation data according to the procedure of “Experimental-
data creation”.

Luminance-image creation

Due to the characteristics of H&E staining, the R image tends to have the
highest value and the G image the lowest value among the R, G, and B im-
ages. Also, the luminance (L) of an HLS color space image (where, H is hue
and S is saturation) is defined as the middle between the largest and
smallest values of R, G, and B. The glandular structures or luminal struc-
tures are composed of white areas with high luminance on the H&E-
stained image. Since the white areas of the glandular structures or luminal
structures have large R and G values, and the lung cancer cells forming the
glandular structures or luminal structures have large R values and small G
values, the L image will emphasize the lung cancer cells forming glandular
structures or luminal structures, and the L image will help capture the fea-
tures of the areas within the glandular structures or luminal structures.
When an L*L*L* image is created by repeating three luminance values
(L*) of CIE Lab (L*a*b* color space, also referred to as Lab), Diaz7 reported
that L* L* L* images have better identification accuracy than RGB images
for a certain model constructed using convolutional neural networks
(CNNs).8 Therefore, capturing features in an image from an image created
by repeating a single channel has the potential to improve themodel's iden-
tification accuracy. Therefore, LLL images were created to capture features
in the glandular structures or luminal structures. In other words, an LLL
image consists of three channels of L.
2

Experimental-data creation

We extract features other than RGB from H&E-stained images to im-
prove the accuracy of identifying the presence or absence of recurrence.
The method of creating image data for this purpose is described as follows.
To extract a partial image containing a large number of cell nuclei, the
threshold for dividing the histogram of each partial image in a WSI into
three types of brightness (cell nucleus, cytoplasm, and background) is ob-
tained, and the partial image containing the cell nucleus is extracted. If
cell nuclei are compared with the cytoplasm or background, they tend to
be distributed in dark areas. Therefore, as shown in Fig. 1, WSIs of a path-
ological image of LAIB are obtained from the tissue section prepared as a
continuous section created in the process of normal pathological diagnosis
using a virtual slide scanner manufactured by Hamamatsu Photonics. The
histogram of a WSI is divided into dark part P1 and bright part P2 using
Otsu's binarization9 for the R component for each WSI. Otsu binarization
is applied for P1, and the threshold Rth that divides P1 into dark part P11
and bright part P12 is obtained. The number of pixels RthN exceeding Rth

is then obtained for each partial H&E-stained image (800 × 800 pixels).
Next, to create a partial image including the cell nucleus, if the pixel ratio
Rratio obtained by Eq. (1) satisfies the threshold RDth (e.g., 0.7 or less) in a
partial H&E-stained image (800 × 800 pixels), RGB partial images are au-
tomatically extracted from the WSI. The color space of the H&E-stained
image is then converted from RGB to HLS, and the L components of HLS
are copied to three channels to create an LLL image. Here,Rall in Eq. (1) rep-
resents the total number of pixels in the partial image.

Rratio ¼ RthN=Rall (1)

By setting RDth to 0.7 or less, it is possible to suppress the extraction of a
partial image, in which most of the image has a white background, and ex-
tract a partial image in which most of the image contains a part of the lung
adenocarcinoma cells containing the cell nucleus. These partial images are
used for training/verification/evaluation data.

The recurrence status of LAIB patients was investigated for about six
years, and each image was labeled as having no LAIB recurrence or LAIB
recurrence.

Tumor-recurrence-prediction models

It is difficult to capture the features of LAIB recurrence, such as in the
glandular structures or luminal structures, from the RGB features alone.
The glandular structures or luminal structures are composed of the tissue
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Fig. 3. Building block architecture.
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containing a white region with high brightness on the H&E-stained image.
Hence, to extract the features of thewhite regionwith high L,we focused on
the L information. We used the features of an L image to capture the fea-
tures related to LAIB recurrence in the glandular structures or luminal struc-
tures and combined the RGB and L features of LAIB. We then constructed
the discriminator AB (DAB) model consisting of feature extractors A and
B using CNNs. Feature extractor A automatically extracts the RGB features
of H&E-stained images using CNNs. Feature extractor B automatically ex-
tracts the features of the LLL image using the L component of the HLS of
H&E-stained images using CNNs.

Depending on the histological subtypes, i.e., acinar, lepidic, papillary,
and solid, lung adenocarcinoma may or may not contain glandular struc-
tures or luminal structures. The solid subtype has invasive solid tumor
nests without glandular space. Therefore, we constructed the switching dis-
criminator (SD) model that switches between the DAB and discriminator A
(DA) models for each image for accurately predicting the presence or ab-
sence of LAIB recurrence. The DA model consists of feature extractor A.
The proposed tumor-identification method identifies the presence or ab-
sence of LAIB recurrence in the pathological images obtained from a virtual
slide scanner using the DAB and SD models.

We first explain the DAB model then the DAmodel. Finally, we explain
the SDmodel and the convolution, pooling, and fully connected (FC) layers
of each model.
DAB model
Fig. 2 shows the architecture of the DABmodel. Asmentioned above, to

accurately predict the presence or absence of LAIB recurrence, by using not
only the features of the RGB image from theH&E-stained image but also the
features other than the features of the RGB image, it is necessary to identify
the presence or absence of LAIB recurrence. Therefore, the RGB of an H&E-
stained image is first color-space-converted to HLS, and an LLL image
consisting of the L components of HLS is created.

While inputting the RGB and LLL images, we construct the DAB model
including feature extractors A and B using CNNs, as shown in Fig. 2.
Fig. 3 shows the architecture of the building block shown in Fig. 2. We
adopt batch normalization,10 a rectified linear unit (ReLU),11 and global av-
erage pooling12 for both feature extractors A and B. The architecture in
Fig. 3 is similar to the residual block and shortcut connection in Resnet.13

By creating both feature extractors A and B containing the building block
shown in Fig. 3, we suppress the disappearance of the gradient when train-
ing a model that identifies the presence or absence of LAIB recurrence.
Fig. 2. Network architecture of DAB model consisting of feature extractors A

3

The DAB model also includes one FC layer. Feature extractors A and B
each consist of three convolutional (Conv) layers, one max pool layer,
and five building block layers (one building block layer consists of three
convolution layers, i.e., Conv 1st, Conv 2nd, Conv 3rd, batch normalization,
and ReLU). Feature extractor A convolves the image in the Conv1 layer to
extract features that represent the partial shape of non-recurrence tumors
or recurrence tumors in H&E-stained RGB images. In the max pool layer,
the features of the presence or absence of recurrence are extracted to absorb
small displacements in the H&E-stained image. After the building block 0
layer in Fig. 2, the image is convolved to extract features that express a
larger partial shape of non-recurrence or recurrence tumors in the H&E-
stained image compared with the previous layer.

Feature extractor B then extracts the features of the partial shapes of dif-
ferent sizes for non-recurrence or tumors that will recur, which cannot be
captured only fromRGB images, fromH&E-stained LLL images and the fea-
tures of the presence or absence of recurrence to absorb the displacement in
the LLL image. In the final FC layer, the results of the FC layers of feature
extractors A and B are combined and aligned into a one-dimensional
array (see Fig. 8 for details). The DAB model, which consists of the above
architecture, identifies whether LAIB will or will not recur. The weights
and biases of each Conv layer, FC layer, and final FC layer are obtained
by machine learning using multiple H&E-stained pathological images.

DA model
The DA model consists only of Feature extractor A, as shown in Fig. 4.

SD model
As shown in Fig. 5, the SDmodel switches between DA and DABmodels

in accordance with the image. We constructed the DA and DAB models by
and B: input of model is RGB and LLL image pair of size 800 × 800 × 3.



Fig. 4. DA model consisting of feature extractor A.
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machine learning in advance. The RGB and LLL images are input to the SD
and DAB models. However, only RGB images are input to the DA model.
The identification results of both DA and DAB models are obtained. The
SD model was constructed so that when training it, the cost Ccost decreases
by using Eq. (2). On the basis of the obtained Ccost, the parameter of the SD
model is updated using Adam.14 In Eq. (2), where CA and CAB represent
the output of the DA and DAB models, respectively, nll represents the neg-
ative log likelihood and label represents teaching data. The coefficients gk
represent the coefficients that select each model, and ∑k=1

2 gk = 1.

Gv ¼ g1 � CAþ g2 � CAB (2)

Ccost ¼ nll Gv, labelð Þ

The architecture of the SD model is shown in Fig. 6. This model has the
same architecture as that of the DAB model. However, the output of the
model is the result of model selection to select the DAB or DA model.

The DA or DAB model is automatically selected for each image to iden-
tify the presence or absence of LAIB recurrence using the SD model.

Convolution layer
In the convolution layers of the DA, DAB, and SD models, as shown in

Fig. 7, multiple filters are prepared for feature extractors A and B. The con-
volution of each filter is executed for the input data xconv, then the output y
shown in Eq. (3) is calculated for each feature extractor. The xconv is an
input image (three channels of RGB) for Conv1 of feature extractor A,
input image (three channels of LLL) for Conv1 of feature extractor B, output
data of the max pool layer for building block 0, and output data of the
4

previous layer for building block 11 and later. The bold italics in each equa-
tion represent a matrix.

y ¼ convolution xconv,Wð Þ þ b (3)

zconv ¼ ReLU yð Þ

Next, the nonlinear function ReLU11 is applied to y to calculate the out-
put data zconv for each feature extractor. Usingmultiple pathological images
for training, the filter weight W and bias b are calculated in accordance
with Eq. (3) bymachine learning so that a tumor thatwill not recur is deter-
mined to be such a tumor, and a tumor that will recur is determined to be
such a tumor. During machine learning, it is desirable to set the filter size
to a size that includes a part of the cell and set the number of filters to the
number of shape types that express the partial shape that constitutes
one cell.

Pooling layer
In the max pool layers of the DA, DAB, and SD models, the horizontal

and vertical information is thinned out to extract the features robust to
the displacement of the object in the pathological image. If the zconv of
the convolution layer is set as the input data xpool of the pooling layer,
the pooling size8 should be set to a size that suppresses the position fluctu-
ation of cells in the pathological image and extracts tumor information
regarding the presence or absence of LAIB recurrence.

Fully connected layer
In the final FC layers of the DA and DABmodels, the predicted value for

identifying the presence or absence of tumor recurrence is calculated as



Fig. 6. Architecture of SD model.
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between 0 and 1. As shown in Fig. 8, the data obtained by combining the
output data zApool of the FC layer of feature extractor A and the output
data zBpool of the FC layer of the feature extractor B are aligned into the out-
put data zpool of the one-dimensional array, and zpool is set as the input data
xLR of thefinal FC layer. In the DA andDABmodels, a unit for determining a
tumor that does not recur and one for determining a tumor that will recur
are arranged, and these units are fully combined with xLR. In the SD
model, a unit that selects the DA model and one that selects the DAB
model are arranged, and these units are fully combined as xLR. As shown
in Eq. (4), the bias bLR is added to obtain the output yv after calculating
the matrix product of xLR and weightWLR. Finally, the DA and DABmodels
apply the softmax function to yv to calculate the identification prediction
value zLR (range 0–1.0) for both the lung adenocarcinoma that does not
recur and that will recur. In the SD model, the softmax function is applied
to yv to calculate zLR (range is 0–1.0) that selects the DA and DAB models.

xLR zpool
� � ¼ concat zApool, zBpool

� �
(4)

yv ¼ xLR �WLR þ bLR

zLR ¼ softmax yvð Þ

For the parameter update process of the DA and DABmodels, the cost of
thesemodels is calculated using the zLR of the tumor that does not recur and
the tumor that will recur, then W and b of the convolution layer and WLR

and bLR of the FC layer are updated so that the cost is minimized using
Adam.14 However, Ccost is calculated using the zLR for selecting the DA
and DAB models, then W and b are updated so that Ccost is minimized
using Adam in the parameter-update process of the SD model.
filter size

filter

Number of filters

Input data xconv

Output data zconv

Fig. 7. Convolution-layer processing.
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The DA and DAB models, which identify the presence or absence of
LAIB recurrence and consist of feature extractor A, feature extractor B,
and a final FC layer, were constructed using CNNs.

The SDmodel, which automatically selects the DA and DABmodels and
consists of feature extractor A, feature extractor B, and a final FC layer, was
also constructed using CNNs. The DA and DABmodels are automatically se-
lected for each image using the SD model, and the presence or absence of
LAIB recurrence in the input H&E-stained image is identified.

The parameters of the models we constructed for the proposed method,
i.e., the SD and DAB models, model-training parameters, and computa-
tional environment and framework are summarized in Tables 1, 2, and 3,
respectively. We also set the parameter of "Number of filters" so that fea-
tures that express some of the shapes, sizes, and arrangement relationships
of cells, cell nuclei, etc. are captured in the first layer of ourmodels.We also
set the parameters of these models so that the features that express these
complex shapes are captured in building block 0 and subsequent layers.

Table 4 shows the classification of the identification results. Sensitivity,
specificity, and accuracy rate (accuracy) are calculated as true positive
(TP)/(TP + false negative (FN)), true negative (TN)/(false positive (FP)
+ TN), and (TP + TN)/(TP + FP + TN +FN), respectively, and were
set as the evaluation index.

Results

We used 19986 H&E-stained partial images and 4000 for training and
validation. We also used the validation images for validation during train-
ing to suppress overfitting of themodels to be constructed and improve gen-
eralization performance. The training and validation imageswere extracted
from the same samples, but the partial image containing the same area as
zApool

zBpool

zpool

Recurrence status

or

Model-selection status

F
C

Parameter Update

Fig. 8. Final FC layer processing.



Table 1
Parameters of the SD and DAB models.

Parameter Filter size Number of filters

Conv1 7x7, 32

Building block 0(Conv 1st,2nd,3rd) 1x1,3x3,1x1, 32,64,64

Building block 11(Conv 1st,2nd,3rd) 1x1,3x3,1x1, 64,64,64

Building block 12(Conv 1st,2nd,3rd) 1x1,3x3,1x1, 64,64,64

Conv2 1x1, 128

Building block 21(Conv 1st,2nd,3rd) 1x1,3x3,1x1, 128,128,128

Building block 22(Conv 1st,2nd,3rd) 1x1,3x3,1x1, 128,128,128

Conv3 1x1, 256 

Table 2
Model-training parameters.

Parameter Value

Batch size 6

Optimizer (Learning rate) 0.001

Optimizer (Adam) beta1 0.9

Optimizer (Adam) beta2 0.999

Optimizer (Adam) epsilon 1e-8

Table 3
Computational environment and framework.

OS Ubuntu 16.04 64bits

CPU 3.6GHz 8cores

Memory 32GB

GPU Geforce RTX 2080 SUPER

Framework Pytorch

Table 4
Classification of identification results.

Ground Truth

LAIB recurrence No LAIB recurrence

LAIB recurrence TP FP

Prediction with proposed method

No LAIB recurrence FN TN

H. Hattori et al. Journal of Pathology Informatics 14 (2023) 100175
the training datawas not included in the validation images.We also created
7106 evaluation images randomly selected from samples different from the
training and validation samples. Using SD (RGB+LLL) and DAB
(RGB+LLL) for predicting tumor recurrence, we conducted an identifica-
tion experiment to predict recurrence of LAIB. The results are shown in
Table 5. However, the training, validation, and evaluation images did not
include partially overlapping of partial images.

We first compared SD (RGB+LLL) and DAB (RGB+LLL) with various
DA and DAB models using images in various color spaces, i.e., DA (RGB),
DA (HSV), DA (HLS), DA2 (RGB), DA2 (LLL), DAB (RGB + HLS), DAB
(RGB+L), DAB (RGB+HSV), and DAB (RGB+Lab), where DA2 denotes
a model consisting of double the number of filters of feature extractor A,
then compared our models with the conventional VGG16 (RGB), Resnet18
(RGB), Inception v3 (RGB), and Densenet121 (RGB)15 models, as shown in
Table 5. The type of image used is shown in parentheses.

The sensitivity, specificity, and accuracy of DA (RGB) constructed using
only the RGB image and feature extractor A in Fig. 4were respectively 93.6,
6

83.3, and 87.1%, and those of DAB (RGB+LLL) using the RGB and LLL im-
ages and feature extractors A and B in Fig. 2 were respectively 91.2, 89.6,
and 90.2%, and those of SD (RGB+LLL) in Fig. 6, which switches between
DA (RGB) and DAB (RGB+LLL) in accordance with the image were respec-
tively 91.7, 90.2, and 90.9%.
Discussion

Partial image-based analysis results
By creating a feature extractor using not only the RGB component but

also three L components, i.e., in DAB (RGB+ LLL), our method can extract
the morphological features regarding the presence or absence of LAIB re-
currence in the image that cannot be captured by the R, G, and B compo-
nents alone. Fig. 9 shows examples of LAIB images from which DAB (RGB
+ LLL) correctly identified the presence or absence of LAIB recurrence
and that DA (RGB) misidentified.



Table 5
Identification results of presence or absence of LAIB recurrence in partial image units.

Identification model Sensitivity [%] Specificity [%] Accuracy [%]

(Image type used)

SD (RGB+LLL): proposed 91.7 90.2 90.9

DAB (RGB+LLL) 91.2 89.6 90.2

DA (RGB) 93.6 83.3 87.1

DA (HSV) 91.2 83.4 86.3

DA (HLS) 91.7 78.7 83.5

DA2 (RGB) 93.6 79.4 84.6

DA2 (LLL) 93.7 78.7 84.3

DAB (RGB+HLS) 93.3 77.8 83.5

DAB (RGB+L) 91.6 86.0 88.1

DAB (RGB+HSV) 91.0 82.6 85.7

DAB (RGB+Lab) 91.6 79.9 84.2

VGG16 (RGB) 88.7 84.4 86.0

Inceptionv3 (RGB) 92.4 80.7 85.0

Resnet18 (RGB) 95.0 81.8 86.7

Densenet121 (RGB) 88.7 79.4 84.0

Fig. 9. Example images that were misidentified with DA (RGB) and correctly identified with DAB (RGB+ LLL). (a) Acinar subtype with recurrence correctly identified with
DAB (RGB + LLL), (b) papillary subtype with recurrence correctly identified with DAB (RGB+ LLL), (c) acinar subtype without recurrence correctly identified with DAB
(RGB+ LLL), and (d) papillary subtype without recurrence correctly identified with DAB (RGB+ LLL).

(a) (b)

Fig. 10. Example images that weremisidentifiedwith DAB (RGB+L) and correctly
identified with DAB (RGB + LLL). (a) Cancer cells showing papillary growth
correctly identified with DAB (RGB + LLL), (b) cancer cells showing glandular
structure correctly identified with DAB (RGB+ LLL).
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As shown in Fig. 9, DAB (RGB+ LLL) could correctly identify the pres-
ence or absence of LAIB recurrence for acinar and papillary subtypes of
LAIB by using RGB and LLL components together. In this experiment, the
acinar and papillary subtypes accounted for 60.3% of all LAIBs for which
DAB (RGB + LLL) could correctly identify compared with DA (RGB). The
acinar subtype forms glandular structures with a central luminal space
surrounded by tumor cells. Tumor cells in the papillary subtype character-
istically grow in a papillary fashion. These lung adenocarcinomas contain
many white areas. By using the model with a parallel structure of feature
extractors and the features of RGB and LLL images, i.e., DAB (RGB+LLL),
features of tubular structures surrounded by tumor cells are extracted in
the acinar subtype, while in the papillary subtype, features of papillary
growth of tumor cells within the glandular structure are extracted. There-
fore, DAB (RGB+LLL) enables more accurate distinction of the presence
or absence of LAIB recurrence.

Fig. 10 shows examples of images that were misidentified with DAB
(RGB + L) but correctly identified with DAB (RGB + LLL). The specificity
of DAB (RGB + LLL) improved by 3.6% and its accuracy improved by
2.1%. When training a model that configures feature extractors A and B
in parallel, it is possible that the model better reflects the features of L by
giving the same amount of image components.

From the results of DA2 (RGB) and DA2 (LLL), which are configured by
doubling the number of filters in feature extractor A, the presence or ab-
sence of LAIB recurrence could not be accurately identified simply by in-
creasing the number of filters in the model. Therefore, we believe it is
effective to combine the features of both RGB and LLL to identify the pres-
ence or absence of LAIB recurrence.
7

Comparing the results of conventional VGG16 (RGB), Inceptionv3
(RGB), Resnet18 (RGB), and Densenet121 (RGB), the accuracy of Resnet18
(RGB) was 86.7%, which is the most accurate result. Comparing the results
of DA (RGB), DA (HSV), DA (HLS), and Resnet18 (RGB) using one type of
image, the accuracy of DA (RGB) was 87.1%. Although the specificity and
sensitivity of DA(RGB) were respectively 1.5% higher and 1.4% lower
than Resnet 18(RGB), the accuracy of DA(RGB) was 0.4% higher
than Resnet 18 (RGB). However, DA (RGB) tended to misidentify non-
recurrence LAIB as recurrence LAIB. Comparing the results of DAB (RGB
+ LLL), DAB (RGB + HLS), DAB (RGB + HSV), and DAB (RGB + Lab)



Table 6
Prediction results of presence or absence of LAIB recurrence in image units.

Model (Image type used) Prediction rate [%]

SD (RGB+LLL): proposed 84.8

DAB (RGB+LLL) 78.8

DA (RGB) 72.7

Fig. 11. Display examples of identification grounds of feature extractors A and B. (a) Identification grounds for RGB image with LAIB recurrence that feature extractor A
predicted, (b) identification grounds for LLL image with LAIB recurrence that feature extractor B predicted, (c) identification grounds for RGB image without LAIB
recurrence that feature extractor A predicted, and (d) identification grounds for LLL image without LAIB recurrence that feature extractor B predicted.

Fig. 12. Example of mask image.
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using two types of images in themodel architecture of the proposal method,
the accuracy of DAB (RGB + LLL) was 90.2%, which is the most accurate
result. Although the sensitivity of DAB (RGB + LLL) was 2.4% lower than
DA (RGB), the specificity and accuracy of DAB (RGB + LLL) improved by
6.3 and 3.1%, respectively, compared with DA (RGB). Thus, DAB (RGB +
LLL) can identify between non-recurrence and recurrence LAIB in a well-
balanced manner. Comparing the results of SD (RGB+LLL) and DAB
(RGB+LLL), the sensitivity, specificity, and accuracy of SD (RGB+LLL) re-
spectively improved by 0.5, 0.6, and 0.7%.

Image-based analysis results
Table 6 shows the results of recurrence prediction of LAIB by image unit

of SD (RGB + LLL), which automatically switches between DAB
(RGB+LLL) and DA (RGB) for each image; DAB (RGB + LLL) only; and
DA (RGB) only. When the presence or absence of LAIB recurrence was cor-
rectly identified for 70% or more of the partial images in an image, the
imagewas regarded as a correct prediction, and the prediction rate was cal-
culated by dividing the number of images predicted correctly by the total
number of images. DAB (RGB + LLL) had a 6.1% improvement in the pre-
diction rate for images compared with DA (RGB). Thus, DAB (RGB+ LLL)
can determine the presence or absence of LAIB recurrence more accurately
than DA (RGB). Furthermore, SD (RGB+ LLL) had a 6.0% improvement in
the prediction rate for images compared with only DAB (RGB+ LLL). It is
therefore possible that SD (RGB + LLL) can determine the presence or ab-
sence of LAIB recurrence more accurately than only DAB (RGB + LLL).
Thus, SD (RGB + LLL) makes it possible to appropriately select a model
that determines the presence or absence of LAIB recurrence for each image.

Identification-grounds-based analysis results
As shown in Fig. 11, the identification grounds for feature extractors A

and B of SD (RGB+LLL) and DAB (RGB+LLL) are displayed on the image
using Grad-CAM.16 The numerical values (0.0–1.0) indicating the
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identification grounds are displayed in gradation from blue (0.0) to red
(1.0) (the display of the identification grounds of 0.0 was omitted).

Fig. 11 (a) shows the identification grounds when feature extractor A
predicted that LAIB in RGB images will recur, and Fig. 11 (b) shows the
identification grounds when feature extractor B predicted that LAIB in
LLL images will recur. Fig. 11 (c) shows the identification grounds when
feature extractor A predicted that LAIB in RGB images will not recur, and
Fig. 11 (d) shows the identification grounds when feature extractor B pre-
dicted that LAIB in LLL images will not recur.

Comparing Fig. 11 (a) with (b), and (c) with Fig. 11 (d), the features
captured by feature extractor A using RGB images differed from those cap-
tured by feature extractor B using LLL images. It is thus possible that feature
extractor B using LLL images can capture the features related to the pres-
ence or absence of LAIB recurrence, such as in the glandular structures or
luminal structures, which cannot be captured only with conventional
models or feature extractor A using only RGB images. Therefore, the pres-
ence or absence of LAIB recurrence for lung adenocarcinoma including
glandular structures or luminal structures can be accurately predicted



(a) (b)

Fig. 13. Example image that was misidentified with DAB (RGB + LLL) and
correctly identified with SD (RGB + LLL). (a) Cancer cells with recurrence
correctly identified with SD (RGB + LLL), (b) cancer cells without recurrence in
solid subtype correctly identified with SD (RGB + LLL).

Table 7
Comparison of regions of identification grounds for cancer-cell and non-cancer-cell regions. Numbers
indicate number of blocks (400 × 400 pixels) of identification grounds. Numbers in parentheses indicate
percentage of total number of pixels of cancer and non-cancer identification grounds. We calculated
P-values for number of blocks of identification grounds using chi-square test.

Region of identification grounds Recurrence Non-recurrence P-value

RGB

Region of RGB identification grounds for cancer 68 (76.7%) 162 (74.0%) P=0.656

Region of RGB identification grounds for non-cancer 21 (23.3%) 57 (26.0%)

LLL

Region of LLL identification grounds for cancer 24 (58.3%) 28 (85.1%) P=0.027

Region of LLL identification grounds for non-cancer 17 (41.7%) 5 (14.9%)

(a) (b)

Fig. 14. Example of images misidentified with SD (RGB+ LLL). (a) Cancer cells at
upper- and lower right, (b) cancer cells at upper right.
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using the features that feature extractor A extracts from RGB images and
those that feature extractor B extracts from LLL images.

Next, we analyzed the percentage of identification grounds contained in
the cancer-cell and non-cancer-cell regions. As shown in Fig. 12, we created
a mask image in which the cancer-cell region was black and the non-cancer
cell region was white. Comparing the mask image with the identification
grounds, we calculated the ratio of the identification grounds contained
in each region for the RGB image of feature extractor A and the LLL
image of feature extractor B by using Eq. (5). Table 7 lists the results. In
Eq. (5), CNC represents the number of pixels of the identification grounds
for the non-cancer cell or the cancer-cell region, and RIBall represents the
total number of identification grounds.

RIBratio ¼ CNC=RIBall (5)

As shown in Table 7, when comparing the percentage of identification
grounds for LLL images indicated by feature extractor B in the cancer-cell
region for with and without LAIB recurrence, it is clear that the region of
the identification grounds for LAIB without recurrence is 26.8% larger
than that of the identification grounds for LAIBwith recurrence. The region
of LLL identification grounds in the cancer-cell region for without LAIB re-
currence is statistically different from that for with LAIB recurrence (P-
value = .027). This study has shown that LAIB consisting of glandular
structures or luminal structures that have a large area tends not to recur.
Therefore, SD (RGB + LLL) switching between DAB (RGB + LLL) and
DA (RGB) in accordance with the image, and DAB (RGB+ LLL) consisting
of feature extractors A and B can more accurately capture the features re-
garding the presence or absence of LAIB recurrence including in glandular
structures or luminal structures.

DAB (RGB + LLL) is suitable for identifying the presence or absence of
LAIB recurrence in acinar, lepidic, and papillary subtypes, including white
areas such as glandular structures or luminal structures. However, DA (RGB)
is suitable for identifying the presence or absence of LAIB recurrence of the
solid subtype, which does not contain many white areas. As shown in
Fig. 13, SD (RGB+LLL) can further improve the identification accuracy of
9

cancer cells by appropriately switching DAB (RGB + LLL) and DA (RGB) for
each image and accurately identifying the recurrence or no recurrence of LAIB.

Fig. 14 shows example images misidentified with SD (RGB + LLL). If
the partial image contains almost no features of the presence or absence
of LAIB recurrence, SD (RGB + LLL) may misidentify.

Conclusions

The proposed tumor-identification method is capable of extracting fea-
tures related to the presence or absence of LAIB recurrence.

Since the proposed method can improve the accuracy of predicting the
presence or absence of LAIB recurrence in pathological images, it had been
shown to be effective as an identificationmethod for predicting LAIB recur-
rence. Therefore, our method should be effective in formulating clinical
treatment plans.

Compliance with ethical standards

The data of this study were examined and obtained in accordance with
the ethical examination standards established by Keio University (approval
number: 2021-52) and National Cancer Center (IRB number:2020-158).

Funding

This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

In carrying out this study, wewould like to express our deep gratitude to
Dr. Yutaro Tamiya of the Department of RespiratoryMedicine for providing
pathological image data and compiling clinical data.



H. Hattori et al. Journal of Pathology Informatics 14 (2023) 100175
References

1. Yu K, Zhang C, Berry GJ, et al. Predicting non-small cell lung cancer prognosis by fully
automated microscopic pathology image features. Nat Commun 2016;7:1-10.

2. Consonni D, Pierobon M, Gail HM, et al. Lung cancer prognosis before and after recur-
rence in a population-based setting. J Natl Cancer Inst 2015;107(6):1-12.

3. Amin MB, Edge SB, Greene FL, et al. American Joint Committee on Cancer. AJCC Cancer
Staging Manual. 8th ed. NY: Springer, New York. 2017.

4. Wang X, Janowczyk A, Zhou Y, et al. Prediction of recurrence in early stage non-small
cell lung cancer using computer extracted nuclear features from Digital H&E images.
Scient Rep 2017;7(1):1-10.

5. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architec-
ture for computer vision. Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Las Vegas; 2016. p. 2818–2826.

6. Wang S, Chen A, Yang L, et al. Comprehensive analysis of lung cancer pathology images
to discover tumor shape and boundary features that predict survival outcome. Scient Rep
2018;8:1–9.

7. Diaz-Cely J, Arce-Lopera C, Mena JC, Quintero L. The effect of color channel representa-
tions on the transferability of convolutional neural networks. In: Arai K, Kapoor S, eds.
CVC 2019. AISC. Cham: Springer; 2020. p. 27–38. https://doi.org/10.1007/978-3-030-
17795-9_3.
10
8. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
recognition. Proc IEEE 1998;86(11):2278–2324.

9. Otsu N. Threshold selection method from gray-level histograms. IEEE Trans Syst Man
Cybern 1979;9:62–66.

10. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing
internal covariate shift. ICML; 2015.

11. Nair V, Hinton GE. Rectified linear units improve restricted Boltzmann machines. ICML;
2010.

12. Lin M, Chen Q, Yan S. Network in network. Proc. of ICLR; 2014.
13. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas; 2016.
p. 770–778.

14. Kingma DP, Ba J. Adam: a method for stochastic optimization. International Conference
on Learning Representations (ICLR), San Diego; 2015. p. 1-13.

15. Huang G, Liu Z, Van der Maaten L,Weinberger KQ. Densely connected convolutional net-
works. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu; 2017. p. 4700–4708.

16. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual
explanations from deep networks via gradient-based localization. IEEE International
Conference on Computer Vision (ICCV), Venice; 2017. p. 618–626.

http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0005
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0005
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0010
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0010
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0015
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0015
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0020
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0020
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0020
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0025
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0025
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0025
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0030
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0030
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0030
mailto:hideharu.hattori@keio.jp
mailto:hideharu.hattori@keio.jp
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0040
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0040
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0045
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0045
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0050
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0050
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0055
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0055
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0060
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0065
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0065
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0065
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0070
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0070
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0075
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0075
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0075
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0080
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0080
http://refhub.elsevier.com/S2153-3539(22)00775-1/rf0080

	Tumor-�identification method for predicting recurrence of early-�stage lung adenocarcinoma using digital pathology images b...
	Introduction
	Materials and methods
	Sample information
	Luminance-image creation
	Experimental-data creation
	Tumor-recurrence-prediction models
	DAB model
	DA model
	SD model
	Convolution layer
	Pooling layer
	Fully connected layer

	Results
	Discussion
	Partial image-based analysis results
	Image-based analysis results
	Identification-grounds-based analysis results


	Conclusions
	Compliance with ethical standards
	Funding
	Conflict of interest
	Acknowledgments
	References




