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Summary
Background Previous studies have shown that three DNA methylation (DNAm) based algorithms of aging, DNAm
PhenoAge acceleration (AgeAccelPheno), DNAm GrimAge acceleration (AgeAccelGrim), and mortality risk score
(MRscore), to be strong predictors of mortality and aging related outcomes. We aimed to investigate if and to what
extent these algorithms predict cancer.

Methods In four subsets (n = 727, 1003, 910, and 412) of a population-based cohort from Germany, DNA methyla-
tion in whole blood was measured using the Infinium Methylation EPIC BeadChip kit or the Infinium HumanMe-
thylation450K BeadChip Assay (Illumina.Inc, San Diego, CA, USA). AgeAccelPheno, AgeAccelGrim, and a revised
MRscore based on 8 CpGs only (MRscore-8CpGs), were calculated. Hazard ratios (HRs) were calculated to assess
associations of the three DNAm algorithms with total cancer risk and risk of invasive breast, lung, prostate, and colo-
rectal cancer incidence.

FindingsDuring 17 years of follow-up, a total of 697 malignant tumors (thereof breast cancer = 75, lung cancer = 146,
prostate cancer = 114, colorectal cancer = 155) were observed. All three algorithms showed strong positive associations
with lung cancer risk in a dose response manner, with adjusted HRs per SD increase in AgeAccelPheno, AgeAccel-
Grim, and MRscore-8CpGs, of 1¢37 (1¢03-1¢82), 1¢74 (1¢11-2¢73), and 2¢06 (1¢39-3¢06), respectively. By contrast, strong
inverse associations were seen with breast cancer risk [adjusted HRs 0¢65 (0¢49-0¢86), 0¢45 (0¢25-0¢80), and 0¢42
(0¢25-0¢70), respectively]. Weak positive associations of MRscore-8CpGs were seen with total cancer risk.

Interpretation The DNAm algorithms, particularly the MRscore-8CpGs, have potential to contribute to site-specific
cancer risk prediction.
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Cancer ranks as a leading cause of death worldwide,
accounting for nearly 10 million deaths in 20201. With
rapidly growing burden of incidence and mortality,
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Research in context

Evidence before the study

Recently, three DNA methylation based algorithms, DNA
methylation PhenoAge acceleration, DNA methylation
GrimAge acceleration, and mortality risk score were
developed and shown to be strongly associated with
mortality and incidence of various aging-related dis-
eases. However, only very few most recently published
studies have investigated the associations of these algo-
rithms with cancer risk and the results were
inconsistent.

Added value of the study

In this study, based on four subsets from a population-
based cohort study from Germany (n = 727, 1003, 910,
and 412, respectively), we aimed to investigate if and to
what extent these algorithms predict cancer. All three
algorithms showed strong positive associations with
lung cancer risk in a clear dose response manner. By
contrast, strong inverse associations of the three algo-
rithms were seen with breast cancer risk. No associa-
tions were seen with risk of colorectal cancer and
prostate cancer.

Implications of all the available evidence

Our study corroborates and expands evidence on
potential associations between DNA methylation based
algorithms and total cancer risk. At the same time it dis-
closes strong variation of associations with specific
types of cancer. Further research should address poten-
tial implications of the strong positive association with
lung cancer risk for lung cancer risk stratification, e.g. in
selecting high risk people for lung cancer screening.
The intriguing finding of a strong inverse association
with breast cancer risk, potential associations with other
types of cancer and the underlying mechanisms like-
wise require clarification by further research.
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cancer becomes a key barrier to increasing life expec-
tancy in every country of the world.1�3 In the past two
decades numerous studies have evaluated the potential
of genetic factors to predict cancer risk, and polygenic
risk scores are meanwhile established for multiple types
of cancer.4�7 Nevertheless, their contribution to cancer
risk prediction remains limited for most cancers, and
their use for cancer prevention is mostly limited to risk
stratification (e.g. for cancer screening) given their non-
modifiable nature.8,9 An alternative approach to cancer
risk prediction may be algorithms of DNA methylation
(DNAm), which can be modified by environmental and
lifestyle factors.10,11

Recently, three novel DNAm based algorithms of
aging, DNAm phenotypic age (PhenoAge),12 DNAm
GrimAge (GrimAge),13 and the mortality risk score
(MRscore),14 were proposed based on methylation at
513, 1030, and 10 CpGs in DNA from whole blood sam-
ples, respectively. PhenoAge and GrimAge, which are
second-generation epigenetic age clocks, were derived
from DNAm surrogates for several factors related to
age, plasma proteins, and smoking pack-years.12,13

MRscore is a linear combination of ten CpG sites that
were identified to be most robustly related to all-cause
mortality in an epigenome-wide association study with
thorough internal and external validation.14 The resid-
uals from the regression of PhenoAge and GrimAge on
chronological age, termed AgeAccelPheno and AgeAc-
celGrim, together with MRscore were shown to be
strongly associated with all-cause mortality and cancer-
specific mortality across various study populations.15�18

These DNAm algorithms were also reported to be
strongly associated with the incidence of various aging-
related diseases, including diabetes mellitus, myocardial
infarction, and stroke.19,20 With the inclusion of DNAm
surrogates for various risk factors related to aetiology of
multiple cancers such as smoking, the three algorithms
are hypothesized to be associated with incidence of can-
cer, in particular lung cancer. This particularly applies
to MRscore whose 10 CpGs include smoking associated
ones. However, only very few recently published studies
have investigated the associations of these algorithms
with cancer risk (i.e. overall-, lung-, prostate-, and colo-
rectal cancer risk) and the results were inconsistent.20,21

It is therefore unclear whether and to what extent these
algorithms are predictive of cancer risk, and compara-
tive validation of the associations in population-based
cohort studies is essential.

We aimed to investigate and compare the associa-
tions of AgeAccelPheno, AgeAccelGrim, and MRscore
with the overall risk of cancer and risk of specific com-
mon cancers (breast-, lung-, prostate-, and colorectal
cancer) in a population-based cohort of older adults (50-
75 years at baseline) from Germany.
Methods

Study population and data collection
Our analysis is based on the ESTHER study, a large
ongoing prospective, population-based cohort study
conducted in Germany. Details of the study design and
population have been described elsewhere.14,22,23 In
brief, 9940 participants (50 -75 years of age at baseline)
were recruited by their general practitioners (GPs) dur-
ing routine health checkups between July 2000 and
December 2002, and followed up thereafter. Sociode-
mographic characteristics, health characteristics, life-
style habits, and history of major diseases were collected
using standardized self-administered questionnaires.
Comprehensive medical data, including diagnoses of
major diseases and drug prescriptions, were collected
from the GPs’ records. Information on self-reported
smoking at baseline was validated using serum cotinine
www.thelancet.com Vol 81 Month July, 2022
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measurements and was found to be highly accurate in a
subgroup of 1500 study participants.24 Peripheral blood
samples were collected at recruitment and stored at
-80°C for later testing.

For the current analysis, four independent subsets
were used, which were previously selected for genome-
wide DNAm measurements for various projects.25�27

Subsets I and II consist of 741 and 1030 subjects that
were randomly selected from ESTHER study. Subset III
includes the first 500 men and 500 women consecu-
tively enrolled during the first 6 months of recruitment
(recruited between July and October 2000). Subset IV
has a nested case-control design for cancer-related
methylation signatures and included 266 participants
with incident malignant cancer (lung cancer cases=116,
prostate cancer cases=23, colorectal cancer cases=129)
and 205 randomly selected participants among those
free of malignant tumors. To prevent potential bias
resulting from DNAm algorithm changes caused by
cancer, cases of cancer that were diagnosed in the first
two years after enrollment were excluded. Ultimately,
727, 1003, 910, and 412 participants of subset I, II, III,
and IV were included into our current study.

The four subsets in the current study were indepen-
dent of and not overlapping with a subsample of the
ESTHER cohort from which the MRscore had been
derived from in previous research.14
Ethics
All participants provided written informed consent. The
ESTHER study was approved by the ethics committees
of the medical faculty of the University of Heidelberg
and the medical board of the state of Saarland.
Methylation assessment
DNAm levels of subset I and II were assessed with the
Infinium Methylation EPIC BeadChip kit (EPIC, Illu-
mina.Inc, San Diego, CA, USA), and DNAm profiles of
subset III and IV were determined with the Infinium
Human Methylation450K BeadChip Assay (450K, Illu-
mina.Inc, San Diego, CA, USA). As previously
described,14,25,27 the assays were conducted following
the manufacturer’s instruction by the Genomics and
Proteomics Core Facility at the German Cancer
Research Center, Heidelberg, Germany (DKFZ). In data
pre-processing, signals of probes with detection P-value
>0¢01, >10% missing values, and probes targeting the
X and Y chromosomes were excluded.14,25,27,28
Calculation of DNAm aging algorithms
AgeAccelPheno and AgeAccelGrim, which are the
residuals from regression models of PhenoAge and
GrimAge estimates on chronological age, were calcu-
lated using the Horvath’s online tool available at
https://dnamage.genetics.ucla.edu/new.12,13
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The original MRscore was derived from the Infinium
HumanMethylation450K BeadChip Assay (450K, Illu-
mina.Inc, San Diego, CA, USA) and constructed as the
sum of the methylation b values multiplied by the
regression coefficients of each of ten CpGs.14 However,
because two (cg01612140 and cg 23665802) of the ten
CpGs were not included in the EPIC array, we therefore
derived a new MRscore algorithm, the MRscore-
8CpGs.27 The MRscore-8CpGs was adopted by regress-
ing the remaining eight CpGs on the original MRscore
in a third subset from the ESTHER study whose DNAm
had been performed by both 450K and EPIC array
(N=111, independent of and not overlapping with sub-
sets I and II of current study and the ESTHER subsam-
ple from which the MRscore had initially been derived):

MRscore� 8CpGs ¼ �0 ¢ 36909� 1 ¢09957� cg01612140� 1 ¢65446
�cg05575921þ 3 ¢ 12883� cg08362785� 0 ¢ 22268� cg10321156� 0 ¢ 30369
�cg14975410� 0 ¢ 31940� cg19572487 � 3 ¢ 39726� cg24704287
�1 ¢93238� cg25983901

The original MRscore and MRscore-8CpGs were
highly correlated with Spearman correlation coefficients
as 0¢9716 and 0¢9771 in subset III and IV, respectively.
Associations of the original MRscore and MRscore-8CpGs
with total and site-specific cancer risk in subset III and IV
were highly consistent (Supplementary Table 1).
Ascertainment of incident cancer cases
Incident cases of cancer, including total cancer (ICD-10
codes C00�C97 excluding the code C44 for non-mela-
noma skin cancer), breast cancer (ICD-10 code C50),
lung cancer (ICD-10 code C34), prostate cancer (ICD-10
code C61), and colorectal cancer (ICD-10 codes C18-
C20), during follow-up between 2000 and end of 2018
were identified through record linkage with the Saar-
land Cancer Registry, which has been shown to ascer-
tain virtually all cancer diseases in the underlying
population (>=95% in 2015/2016).
Statistical analysis
Standard descriptive methods were used to describe
demographic characteristics of the study subjects at
baseline. Associations of DNAm algorithms with cancer
risk in subset I, II, and III were estimated using Cox
proportional hazard models. In subset IV, the associa-
tions were calculated using weighted Cox regression
models that account for the case-control sampling
design.29 The models were firstly adjusted for age, sex,
leukocyte composition (estimated by the Houseman
approach),30 and batch (Model 1), and we additionally
controlled for educational level (�9 years, 10-11 years,
and �12 years), smoking status (never smoker, former
smoker, current smoker), alcohol consumption (grams
per day), body mass index (kg/m2), and diabetes (yes/
no) (Model 2). Models for incident breast cancer were
further adjusted for menopausal status (yes/no) and
3
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postmenopausal hormone use (yes/no). For lung can-
cer, additional models were run in which we controlled
for smoking pack-years (number of packs of 20 ciga-
rettes smoked per year) rather than smoking status. The
proportional hazards assumption was checked by scaled
Schoenfeld residuals plots.31 Hazard ratios (HR) with
corresponding 95% confidence intervals (CI) per stan-
dard deviation (SD) increase in DNAm algorithms were
calculated for total cancer risk and risk of selected com-
mon cancers (breast, lung, prostate, colon and rectum).
Due to the case-control study design of subset IV, the
associations of the DNAm algorithms with total inci-
dent cancer were estimated in subset I, II, and III only.
When assessing the associations with risk of specific
invasive cancers in subset IV, only targeted cancer cases
and controls were included into the analyses. Further-
more, we conducted subgroup analyses for the associa-
tions of the DNAm algorithms with total incident
cancer by sex and age (50-64 years / 65-75 years), and
we tested for statistical significance of interactions by
the two factors.

To assess potential dose-response relationships of
DNAm algorithms with cancer risk, we also run Cox
regression models including DNAm algorithms as cate-
gorical variables using model 2 for adjustment as
described above. In subset I, II, and III, the three
DNAm algorithms were classified according to quartiles
and the lowest quartile served as the reference category.
In subset IV, these algorithms were categorized accord-
ing to quartiles among controls. P for trends were
derived from tests performed with the median of
DNAm algorithms within each category.

Because the DNAm profiles in the four subsets were
performed in different time periods by different batches
of DNAm assessment chips, HRs and corresponding 95
% CIs were calculated separately and combined by ran-
dom�effects meta�analysis.

All statistical analyses were carried out using SAS,
version 9¢4 (SAS Institute, Inc., Cary, NC). Statistical
significance was defined by P-values < 0¢05 in two-
sided testing.
Role of funding source
All funders did not have any role in study design, data
collection, data analyses, interpretation, writing of
report, or decision to publish the study.
Results
Table 1 shows the baseline sociodemographic character-
istics of participants by subset. In subset I, II, III, and
controls in subset IV, mean ages were approximately
62 years and a slight majority of participants were
women. About three out of four participants were over-
weight or obese, about half had ever smoked, and mean
daily alcohol consumption was 9 to 11 g per day in all
subsets.

During 17 years of follow-up, a total of 697 cancer
cases (invasive tumors of female breast = 75,
lung = 146, prostate = 114, colorectum = 155, Supple-
mental Table 2) were identified in the four subsets.

Table 2 shows the associations of DNAm algorithms
and cancer incidences in the overall study population
and by the type of cancer. Multivariable adjusted HRs of
total incident cancer (meta-analysis of subset I, II, and
III) were 1¢11 (95% CI = 0¢92-1¢34), 1¢12 (95%
CI = 0¢96-1¢30), and 1¢27 (95% CI = 1¢04-1¢56) per SD
increase of AgeAccelPheno, AgeAccelGrim, and
MRscore-8CpGs, respectively. Associations were similar
for men and women and younger and older participants
(Supplemental Table 3), and none of the tests for inter-
actions between DNAm algorithms and sex and age
reached statistical significance (P for interactions >

0¢05).
However, strongly divergent patterns were seen for

individual cancers. Strong inverse associations of the
three DNAm algorithms with breast cancer risk were
seen with multivariable adjusted HRs as 0¢65 (95%
CI = 0¢49-0¢86), 0¢45 (95% CI = 0¢25-0¢80), and 0¢42
(95% CI = 0¢25-0¢70) in per SD increase of AgeAccel-
Pheno, AgeAccelGrim, and MRscore-8CpGs, respec-
tively. By contrast, strong positive associations were
observed for incident lung cancer, with multivariable
adjusted HRs of 1¢37 (95% CI = 1¢03-1¢82), 1¢74 (95%
CI = 1¢11-2¢73), and 2¢06 (95% CI = 1¢39-3¢06) per SD
increase in AgeAccelPheno, AgeAccelGrim, and
MRscore-8CpGs, respectively. When further adjusting
the models for smoking pack-years rather than smoking
status, the positive associations were highly consistent
(Supplementary Table 5). There were no significant rela-
tionships between any of the three DNAm algorithms
with incidence of prostate cancer and colorectal cancer.

Due to the small case number of incident breast can-
cer in subset IV, we assessed the dose-response analysis
of the association of the DNAm algorithms with breast
cancer incidence in subset I, II, and III (Table 3).
MRscore-8CpGs showed monotonic inverse dose-
response relationship with breast cancer risk (P-trend as
0¢006) and very low risk for those in the highest quar-
tiles (HR as 0¢16, 95% CI = 0¢04-0¢74). No clear dose-
response relationship with breast cancer risk was seen
for AgeAccelPheno and AgeAccelGrim.

Table 4 presents results of the dose-response analy-
ses of the association between the DNAm algorithms
and lung cancer incidence. Strong, monotonic increases
of lung cancer incidence were consistently seen with
increasing quartiles for AgeAccelPheno, AgeAccelGrim,
and MRscore-8CpGs, with P-values for trend as 0¢033,
0¢003, and 0¢003, respectively.

Dose-response analyses of the associations of the
three DNAm algorithms with prostate- and colorectal
cancer risk are shown in Supplementary Table 5 and 6,
www.thelancet.com Vol 81 Month July, 2022



Characteristics Subset I
(N=727)

Subset II
(N=1003)

Subset III
(N=910)

Subset IV (N=412) Entire ESTHER
cohort (N=9940)

Controls
(N=205)

Cases
(N=207)

Age (years; mean § SD) 61¢6§6¢5 62¢0§6¢7 61¢9§6¢5 62¢5§6¢4 63¢2§6¢0 62¢1§6¢6

Sex (N/%)

Men 320 (44¢0) 435 (43¢4) 448 (49¢2) 88 (42¢9) 132 (63¢8) 4478 (45¢0)
Women 407 (56¢0) 568 (56¢6) 462 (50¢8) 117 (57¢0) 75 (36¢2) 5462 (55¢0)

Educational levels (N/%)a

Low (�9 years) 519 (73¢5) 748 (76¢3) 672 (73¢9) 149 (74¢5) 162 (78¢3) 7235 (74¢7)
Intermediate (10-11 years) 112 (15¢9) 131 (13¢4) 141 (15¢5) 34 (17¢0) 23 (11¢1) 1372 (14¢2)
High (�12 years) 75 (10¢6) 101 (10¢3) 97 (10¢7) 17 (8¢5) 19 (9¢2) 1081 (11¢2)

Body mass index (N/%)b

Normal weight (<25¢0 kg/m2) 188 (25¢9) 269 (26¢9) 231 (25¢4) 64 (31¢2) 49 (23¢7) 2724 (27¢5)
Overweight (25¢0-<30¢0 kg/m2) 346 (47¢7) 475 (47¢5) 437 (48) 100 (48¢8) 97 (46¢9) 4675 (47¢1)
Obesity (�30¢0 kg/m2) 192 (26¢5) 256 (25¢6) 242 (26¢6) 41 (20¢0) 61 (29¢5) 2525 (25¢4)

Smoking status (N/%)c

Never smoker 354 (48¢7) 520 (51¢8) 445 (48¢9) 96 (49¢5) 63 (30¢4) 4832 (50¢0)
Former smoker 241 (33¢2) 318 (31¢7) 295 (32¢4) 61 (31¢4) 82 (39¢6) 3185 (33¢0)
Current smoker 132 (18¢2) 165 (16¢5) 170 (18¢7) 37 (19¢1) 60 (29¢0) 1649 (17¢0)

Diabetesd

Yes 608 (85) 866 (87¢4) 769 (84¢5) 175 (85¢8) 169 (81¢6) 8230 (85¢0)
No 107 (15) 125 (12¢6) 141 (15¢5) 29 (14¢2) 35 (16¢9) 1455 (15¢0)

Alcohol consumption (grams per day; mean § SD) 9¢3§12¢8 9¢8§13 9¢7§13¢7 10¢4§14¢1 12¢2§17¢7 9¢8§14¢0

Table 1: Characteristics of study population at baseline from ESTHER study.
Abbreviations: SD, standard deviation; AgeAccelPheno, DNA methylation phenotypic age acceleration; AgeAccelGrim, DNA methylation GrimAge accelera-

tion; MRscore-8CpGs, revised version of continuous mortality risk score with 8 CpGs.
a Data missing for 21, 23, 8, and 252 participants in subset I, II, IV, and all study population in ESTHER.
b Data missing for 1, 3, and 16 participants in subset I, II, and all study population in ESTHER.
c Data missing for 13 and 274 participants in subset IV and all study population in ESTHER.
d Data missing for 12, 12, 4 and 255 participants in subset I, II, IV, and all study population in ESTHER.
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respectively. None of the DNAm algorithms showed
clear dose-response relationships with prostate- and
colorectal cancer risk.
Discussion
In this population-based prospective cohort study, 697
participants with incident cancer cases were identified
during 17 years of follow-up. MRscore-8CpGs were posi-
tively associated with total cancer risk. However, large
differences were seen between major cancer sites.
Whereas a strong positive dose-response-relationship
was seen between all DNAm algorithms and lung can-
cer risk, MRscore-8CpGs showed a strong inverse dose-
response relationship with breast cancer risk.

Epigenetic events that are related to cancer risk are
believed to occur in the early process of cancer develop-
ment.32 With the constant effects of the epigenetic
events on genomic stability and gene expression, these
changes might result in carcinogenesis from initiation
through progression. MRscore-8CpGs and the second-
generation epigenetic clocks, the AgeAccelPheno and
www.thelancet.com Vol 81 Month July, 2022
AgeAccelGrim, were derived based on a large represen-
tation of CpGs related to age, plasma protein levels,
smoking pack-years, and key disease and mortality risk
factors, which are also involved in the aetiology of many
cancers. It therefore appears plausible that these DNAm
algorithms might also be associated with cancer risk.

However, only very few recent studies have investi-
gated the associations of epigenetic aging with total can-
cer risk.20,21 Wang et.al.20 conducted a study based on
data from the Normative Ageing Study and the KORA
F4 cohort and reported similar associations of AgeAccel-
Pheno, AgeAccelGrim and MR-score with total cancer
incidence as in our study. However, with only 298 inci-
dent cancer cases these associations had not reached sta-
tistical significance. The Melbourne Collaborative
Cohort found positive associations between AgeAccel-
Pheno and AgeAccelGrim and the total of seven specific
types of cancers (total n=2994).21 This study had not
assessed MRscore or MRscore-8CpGs. In each of the
studies, including ours, the associations of the algo-
rithms with total cancer risk persisted after adjustment
for multiple sociodemographic and lifestyle factors,
5



Predictors HR (95% CI)

Cases Model 1 Model 2a

Overall incident cancera

AgeAccelPheno (per SD) 490 1¢05 (0¢96-1¢15) 1¢11 (0¢92-1¢34)
AgeAccelGrim (per SD) 490 1¢15 (1¢05-1¢26) 1¢12 (0¢96-1¢30)
MRscore-8CpGs (per SD) 490 1¢28 (1¢07-1¢52) 1¢27 (1¢04-1¢56)

Incident breast cancerb

AgeAccelPheno (per SD) 75 0¢73 (0¢56-0¢94) 0¢65 (0¢49-0¢86)
AgeAccelGrim (per SD) 75 0¢67 (0¢48-0¢93) 0¢45 (0¢25-0¢80)
MRscore-8CpGs (per SD) 75 0¢57 (0¢38-0¢87) 0¢42 (0¢25-0¢70)

Incident lung cancerb

AgeAccelPheno (per SD) 146 1¢53 (1¢23-1¢90) 1¢37 (1¢03-1¢82)
AgeAccelGrim (per SD) 146 2¢62 (2¢21-3¢11) 1¢74 (1¢11-2¢73)
MRscore-8CpGs (per SD) 146 2¢87 (2¢36-3¢48) 2¢06 (1¢39-3¢06)

Incident prostate cancerb

AgeAccelPheno (per SD) 114 1¢02 (0¢77-1¢36) 0¢97 (0¢77-1¢24)
AgeAccelGrim (per SD) 114 0¢89 (0¢72-1¢08) 0¢89 (0¢69-1¢15)
MRscore-8CpGs (per SD) 114 0¢90 (0¢64-1¢27) 1¢00 (0¢73-1¢37)

Incident colorectal cancerb

AgeAccelPheno (per SD) 155 1¢01 (0¢80-1¢27) 1¢24 (0¢86-1¢78)
AgeAccelGrim (per SD) 155 0¢83 (0¢60-1¢15) 1¢09 (0¢81-1¢45)
MRscore-8CpGs (per SD) 155 0¢73 (0¢59-0¢90) 1¢03 (0¢70-1¢50)

Table 2: Associations of DNAm algorithms and total and site-specific cancer risk in all subsets.
Abbreviations: DNAm, DNA methylation; HR, hazard ratio; CI, confidence interval; SD, standard deviation; AgeAccelPheno, DNA methylation phenotypic age

acceleration; AgeAccelGrim, DNA methylation GrimAge acceleration; MRscore-8CpGs, revised version of continuous mortality risk score with 8 CpGs.
a Meta-analysis of subset I, II, and III.
b Meta-analysis of all subsets. In subset IV, only targeted cancer cases and controls were included into the analyses.Model 1, adjusted for age, sex, leukocyte

composition, and batch.Model 2, similar as model 1, additionally adjusted for educational level, smoking status (never smoker, former smoker, current

smoker), alcohol consumption (grams per day), body mass index (kg/m2), and diabetes. Models for incident breast cancer were additionally adjusted for meno-

pausal status and postmenopausal hormone use.

Predictors Quartiles Person-years Cases HR (95% CI)a P-trend

AgeAccelPheno Q1 5987¢4 27 1¢00 (Ref¢) 0¢759
Q2 5185¢7 15 0¢83 (0¢17-3¢98)
Q3 4980¢9 18 0¢79 (0¢22-2¢81)
Q4 4398¢6 15 0¢48 (0¢22-1¢04)

AgeAccelGrim Q1 8168¢7 35 1¢00 (Ref¢) 0¢320
Q2 6061¢8 18 0¢36 (0¢10-1¢33)
Q3 3828¢0 15 0¢58 (0¢27-1¢25)
Q4 2494¢1 7 0¢12 (0¢03-0¢47)

MRscore-8CpGs Q1 7058¢5 28 1¢00 (Ref¢) 0¢006
Q2 5820¢7 25 0¢80 (0¢19-3¢34)
Q3 4645¢3 15 0¢55 (0¢15-1¢92)
Q4 3028¢1 7 0¢16 (0¢04-0¢74)

Table 3: Dose-response relationship between the DNAm scores and breast cancer risk in subset I, II, and III.
Abbreviations: DNAm, DNA methylation; HR, hazard ratio; CI, confidence interval; AgeAccelPheno, DNA methylation phenotypic age acceleration; AgeAccel-

Grim, DNA methylation GrimAge acceleration; MRscore-8CpGs, revised version of continuous mortality risk score with 8 CpGs.
a Models adjusted for age, leukocyte composition, batch, educational level, smoking status (never smoker, former smoker, current smoker), alcohol con-

sumption (grams per day), body mass index (kg/m2), diabetes, menopausal status, and postmenopausal hormone use.
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Predictorsa Quartiles Person-years Cases HR (95% CI)b P-trend

AgeAccelPheno Q1 11068¢3 22 1¢00 (Ref¢) 0¢033
Q2 10937¢8 25 1¢36 (0¢66-2¢82)
Q3 11256¢6 35 1¢29 (0¢56-2¢99)
Q4 11448¢9 64 1¢95 (1¢11-3¢41)

AgeAccelGrim Q1 11589¢0 10 1¢00 (Ref¢) 0¢003
Q2 10926¢3 15 1¢76 (0¢13-23¢54)
Q3 11674¢8 25 3¢35 (0¢58-19¢26)
Q4 10521¢5 96 5¢83 (0¢54-63¢55)

MRscore-8CpGs Q1 10927¢1 11 1¢00 (Ref¢) 0¢003
Q2 10925¢8 16 0¢72 (0¢25-2¢11)
Q3 11268¢1 31 1¢59 (0¢27-9¢41)
Q4 11590¢6 88 4¢15 (1¢01-17¢09)

Table 4: Dose-response relationship between the DNAm scores and lung cancer risk in all subsets.
Abbreviations: DNAm, DNA methylation; HR, hazard ratio; CI, confidence interval; AgeAccelPheno, DNA methylation phenotypic age acceleration; AgeAccel-

Grim, DNA methylation GrimAge acceleration; MRscore-8CpGs, revised version of continuous mortality risk score with 8 CpGs.
a In subset IV, only lung cancer cases and controls were included into the analyses.
b Models adjusted for age, sex, leukocyte composition, batch, educational level, smoking status (never smoker, former smoker, current smoker), alcohol con-

sumption (grams per day), body mass index (kg/m2), and diabetes.

Articles
which indicate that these algorithms might capture
information beyond self-reported adverse environmen-
tal and specific lifestyle factors that affect the methyl-
ome over the life course.

Like our study, the Melbourne Collaborative Cohort
(MCC) also reported associations between AgeAccel-
Pheno and AgeAccelGrim and specific cancers, and
found these associations to strongly vary between cancer
sites. Although the list of cancers assessed in that study
and our study was only partially overlapping, results for
lung, prostate and colorectal cancer were reported in
both studies. Despite some discrepancy of the study
population characteristics (e.g. age range 54-66 years in
MCC versus 50-75 years in ESTHER, % of males
approximately 70% in MCC versus 45% in ESTHER)
overall results were quite consistent. Strong positive
associations of AgeAccelPheno and AgeAccelGrim with
lung cancer incidence, and no association or even an
inverse association with prostate cancer were seen in
both studies. However, the positive association with
colorectal cancer observed in the Melbourne Collabora-
tive Cohort was not confirmed in our study.

The positive associations of AgeAccelPheno, AgeAc-
celGrim and MRscore-8CpGs with lung cancer
observed in our study were somewhat reduced but nev-
ertheless remained strong after adjusting for either
smoking status or pack-years, suggesting that they
might be only explained to a limited extent by smoking
whose association with epigenetic changes including
epigenetic aging has long been established.33,34

Another intriguing finding of our study is the
inverse association of the three algorithms with breast
cancer risk. A similar inverse association with breast
cancer risk had also been reported for the age acceler-
ated Horvath’s clock, a first generation epigenetic
www.thelancet.com Vol 81 Month July, 2022
clock.35 By contrast, no association with breast cancer
risk has been observed in a recent case-cohort study
from the United States.36 To what extent this appar-
ent inconsistency may be explained by the differen-
ces in study populations or other design features
remains to be explored in further research. For
example, the US cohort exclusively consisted of sis-
ters of patients with breast cancer, and mean follow-
up and mean time-to-diagnosis were 6.0 and
3.9 years only. Also, possible mechanisms linking
epigenetic age and breast cancer risk are yet to be
fully disclosed. Interestingly, a previous study found
that earlier menopause, which is inversely associated
with breast cancer risk due to reduced estrogen expo-
sure,37 was associated with increased epigenetic age
acceleration in blood.38

Of the three DNA methylation algorithms assessed
in relation to cancer risk in this study, two (AgeAccel-
Pheno, AgeAccelGrim) were specifically derived to
quantify accelerated aging, whereas the third one was
originally derived for predicting all-cause mortality. In
our study, AgeAccelGrim and MRscore-8CpGs pre-
dicted total and individual cancer risks approximately
equally well, whereas associations were generally
weaker with AgeAccelPheno. Given that methylation
quantification is required for a much lower number of
CpGs for MRscore-8CpGs (n=8) than for AgeAccel-
Pheno (n=513) and AgeAccelGrim (n=1030), the former
might be a particularly economic approach for DNA
methylation-based quantification of cancer risk. Apart
from cancer risk quantification and stratification,
another potential use of the algorithms, to be evaluated
in further research, might be their use as intermediate
biomarkers in the assessment of the efficacy of cancer
prevention strategies.
7
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A major strength of our study is that it is based on a
large population-based cohort study with extensive collec-
tion of biospecimen, life style and medical data, and com-
prehensive long-term prospective follow-up with respect to
morbidity and mortality. In particular, record linkage with
the Saarland Cancer Registry ensured complete ascertain-
ment of incident cancer diseases. However, several limita-
tions should also be kept in mind. First, despite the overall
large sample size of our study, statistical power of analyses
and precision of estimates were limited for individual can-
cer sites due to relatively small numbers of patients with
specific cancers. Second, analyses for specific malignant
tumors were limited to four common types of cancer. Fur-
ther research should address and is expected to disclose
associations with additional cancers, as has been most
recently demonstrated, for example, for pancreatic cancer.
Third, our analyses were restricted to measurement of
methylation of DNA from blood samples which is known
to differ from methylation patterns in various tissues, in
particular the tissues of origin of the specific cancers
assessed in our study. Fourth, because two of the ten CpGs
used to construct MRscore are missing in the EPIC micro-
array data, all of our analyses regarding the mortality score
were based on the MRscore-8CpGs rather than the original
MRscore. However, given the very high correlations
between both scores, this should not have had any relevant
impact on the results.

Despite these limitations, our study corroborates and
expands potential associations between DNAm algo-
rithms and site-specific cancer risks, which show major
variation across various types of cancer. Further
research should address potential implications of the
strong positive association with lung cancer risk for
lung cancer risk stratification, e.g. in selecting high risk
people for lung cancer screening. The intriguing find-
ing of a strong inverse association with breast cancer
risk, potential associations with other types of cancer
and the underlying mechanisms likewise require clarifi-
cation by further research.
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