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Abstract: Resveratrol oligomers (REVs), a major class of stilbenoids, are biosynthesized by
regioselective oxidative coupling of two to eight units of resveratrol monomer. Due to their unique
structures and pleiotropic biological activities, natural product chemists are increasingly focusing
on REVs in the last few decades. This study presents a detailed and thorough examination of
REVs, including chemical structures, natural resources, and biological activities, during the period
of 2010–2017. Ninety-two new REVs compounds, including 39 dimers, 23 trimers, 13 tetramers,
six resveratrol monomers, six hexamers, four pentamers, and one octamer, have been reported
from the families of Dipterocarpaceae, Paeoniaceae, Vitaceae, Leguminosae, Gnetaceae, Cyperaceae,
Polygonaceae Gramineae, and Poaceae. Amongst these families, Dipterocarpaceae, with 50 REVs,
accounts for the majority, and seven genera of Dipterocarpaceae are involved, including Vatica, Vateria,
Shorea, Hopea, Neobalanocarpus, Dipterocarpus, and Dryobalanops. These REVs have shown a wide
range of bioactivities. Pharmacological studies have mainly focused on potential efficacy on tumors,
bacteria, Alzheimer’s disease, cardiovascular diseases, and others. The information updated in this
review might assist further research and development of novel REVs as potential therapeutic agents.
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1. Introduction

Resveratrol oligomers (REVs), a major class of stilbenoids, are commonly biosynthesized by
regioselective oxidative coupling of two to eight units of resveratrol monomer [1]. Some plants containing
REVs have been used for a long time in traditional Asian medicine. For example, Nardostachys chinensis
Batal (Valerianaceae), a traditional herbal tranquilizer in China, contains REVs as the active ingredient.
The resin of Shorea species, rich in REVs, has been used as an astringent to treat diarrhea and dysentery
in Malaysia [2–5]. Several pure REVs have been isolated from various plants. Based on pharmacological
studies, REVs are reported to have multi-faceted biological activities [6–8], including antimicrobial,
antioxidant, and antitumor effects, as well as cardiovascular protection. Due to their unique chemical
structures and diverse biological activities, REVs have increasingly captured the attention of medicinal
chemists [9,10].
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As the research information on REVs has accumulated, several reviews appeared from 2010 to
2017 [1,11–19]. In 2013, the biosynthesis, chemistry, and proprieties of REVs in grapes were summarized
by Riccardo et al. [11]; the structures of oligostilbenoids in Dipterocarpaceae plants and their biological
activities were reviewed [12]. Another review published in 2013 [13] summarized 60 stilbenes, including
27 REVs found from 2009 to 2013, but the source plants were not mentioned. In 2014, Lim et al. reviewed
resveratrol and its oligomers in modulating sphingolipid metabolism and signaling in diseases [14];
another article in 2014 reviewed REVs for the prevention and treatment of cancers [15]. Of two papers
published in 2015, one focused on biosynthesis as well as some bioactivities [16]; another one focused
on the diverse bioactivities of ologostibenes [17]. One paper in 2017 [18] chose “cancer chemopreventive
potential” as the topic.

As phytochemistry and pharmacology of naturally occurring REVs has progressed, our review
provides a detailed and thorough examination of their chemical structures, natural resources,
and biological activities, from 2010 to 2017. In this period, 92 new REVs were isolated and identified,
including 39 dimers, 23 trimers, 13 tetramers, six resveratrol monomers, six hexamers, four pentamers, and
one octamer. However, no resveratrol heptamer has been discovered. These REVs are mostly distributed
in the following seven families: Dipterocarpaceae, Paeoniaceae, Vitaceae, Leguminosae, Gnetaceae,
Cyperaceae, and Polygonaceae. Most REVs were isolated from the family of Dipterocarpaceae, as in
the past. The pharmacological activities of REVs are mainly concentrated on antibacterial, antioxidant,
anti-Alzheimer’s disease, anti-Parkinson’s disease, anti-tumors, and cardiovascular protection, as well
as liver protective effects. The review aims to provide readers with comprehensive information on the
progress of REVs.

2. Phytochemistry

Chemical structure analysis showed that REVs were polymerized from two to eight, or even more,
resveratrol units that have great structural diversity and include, but are not limited to, the following
features: (1) a degree of polymerization up to eight; (2) formation of dihydrobenzofuran(s) or a benzofuran
or a chroman; (3) O-glucosylation; (4) condensation of a phenylpropanoid; and (5) formation of a
cyclohexa-2,5-dienone. Chemical structures of the 92 new REVs from dimer to octamer are compiled in
Figures 1–8, and their plant sources are listed in Table A1 in Appendix A.
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2.1. Resveratrol Monomers

Resveratrol monomers are compounds that possess one stilbene skeleton with various substituting
groups. Many resveratrol derivatives have been found in natural products and have been obtained from
chemical synthesis and structure modifications. Due to the simple structures and diverse biological
activities, resveratrol monomers have been intensively studied. Six new resveratrol monomers were
successfully isolated from 2010 to 2017, though the speed of discovery has decreased (Table A1;
Figure 2).

Shan et al. found a new prenylated resveratrol derivative, cudrastilbene (1), from the roots of Cudrania
tricuspidata [19]. A new resveratrol derivative (2) (3,5,3′-trihydroxy-4′-methoxy-5′-isopentenylstilbene,
MIP) was isolated from black skin peanut seeds that had been attacked by the fungal strain Rhizopus
oligoporus [20]. Three new resveratrol derivatives were successfully isolated from peanut seeds infected
by an Aspergillus flavus strain, along with chiricanine B (3). Chiricanine B was not previously reported
in peanuts, but was reported as a synthetic stilbenoid product. The structures of three new putative
phytoalexins were named as arahypin-13 (4), arahypin-14 (5), and arahypin-15 (6) [21]. Resveratrol
derivatives (1, 4, 5 and 6) were all produced in the infected seeds. These new compounds might have a
role in defense against invasive fungi.
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Figure 2. The structure of resveratrol monomers.

2.2. Resveratrol Dimers

A total of 39 resveratrol dimers (7–45) were isolated and distributed in six plant families:
Dipterocarpaceae, Vitaceae, Paeoniaceae, Leguminosae, Gnetaceae, and Cyperaceae. (Table A1, Figure 3).
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In this period, more than half (21/39) of the resveratrol dimers (7–22) were discovered in leaves, stems,
barks, and the heart wood of Dipterocarpaceae plants, and 10 have the moiety of benzofuran (7–11, 13–17
and 23–25) [22–29]. Additionally, vatalbinosides C (7) and E (9) are the first Dipterocarpaceae that possess
two O-D-glucopyranosyl moieties [22,23]. The planar structure of vaticahainols B (13) has an unusual
quinone ring, and vaticahainols C (14) has a unique phenanthrene group [24]. Roxburghiol A (16) has
the same absolute configurations as (−)-ε-viniferin [26]. Upunosides F (20) and G (21) are two dimeric
aglycones [29]. Another dimer, vaticahainol A (12), shows rearrangement from the original resveratrol unit
and contains a lactone moiety [24]. The planar structure of dipterocarpols A (18), a rearranged resveratrol
dimer of hopeahainol A, also contains a lactone moiety, and dipterocarpols B (19) was determined as
hopeafuran-O-β-glucopyranoside [28]. Two new isomeric O-glucosides of resveratrol dimers, ampelopsin
F-11b-O-β-glucopyranosides, with the enantiomeric aglycones cordifoloside A (22), and cordifoloside B (23),
are the first REVs that demonstrate the co-occurrence of diastereomeric O-glucosides with enantiomeric
aglycones in this family [30]. Hopeasides D (24) is a new resveratrol dimer C-Glucoside, possessing a novel
substituent, the 1-hydroxy-1-(3,5-dihydroxy-2-C-glucopyranosylphenyl)-2-(4-hydroxyphenyl) ethane-2-yl
group [31]. Heimiol B (25) is a tricuspidatol A derivative that has two additional symmetrically attached
resveratrol units [32].

In China, plants from the Vitis genus (Vitaceae) have been used in traditional medicines. The roots
and stems of Vitis amurensis Rupr. can alleviate pain from injury, rheumatalgia, stomachache, neuralgia,
and others. Yao et al. found several REVs in Vitis amurensis, and a new resveratrol dimer, amurensin O
(26), obtained from the roots of Vitis amurensis. Amurensin O is connected by two benzofuran stilbene
monomers through a C–C bond [33].

During this period, only one new resveratrol dimer, named (−)-7a,8a-cis-ε-Viniferin (27), was
isolated from the seeds of Paeonia lactiflora (Paeoniaceae). A compound (27) that was synthesized from
resveratrol, by FeCl3 treatment, was isolated from natural resources [34].
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When infected by fungi, the peanut can produce a unique series of REVs to protect themselves.
Aspergillus species were used to infect some types of peanut seeds to obtain stilbene phytoalexins.
Sobolev et al. isolated two new prenylated resveratrol dimers, named arahypin-6 (28) and arahypin-7
(29), from peanut seeds that were wounded by the fungal strain Aspergillus caelatus [35]. Liu et al.
used Rhizopus oligoporus to infect black skin peanut seeds and discovered two new resveratrol dimers,
arahypin-11 (30) and arahypin-12 (31) [20].

The plants of genus Gnetum (Gnetaceae), widely recognized as abundant sources of REVs, are
mainly found in northeastern Thailand. Sri et al. isolated two new REVs, macrostachyols C and D
(32, 33) from the roots of Gnetum macrostachyum [36].

Twenty-seven stilbenoids, including 24 stilbene dimers, are polymerized in many ways, such as
one bond of 8-O-4′ (34 and 35) or 8-8′ (41), two bonds forming an indane (36–39), or a benzofuran, and
three bonds forming an indano[1,2-c]-chromene (40), a dibenzobicyclo [3.2.1] octane, an indano[2,1-a]
indane, or a benzo [6,7] cyclohepta [1,2,3-cd] benzofuran, were isolated from the caulis of Gnetum
macrostachyum. Among them, gnemontanins A-G (34–40) as well as (−)-gnetuhainin P (41) and
(−)-gnetuhainin I (42) were structurally determined as new compounds. Naturally occurring stilbene
dimers, polymerized through one bond of 8-O-4′ (34 and 35), as well as two bonds of 7–8′ and 6–7′ (37)
were reported for the first time [37].

Through bioassay-guided separation, three new resveratrol dimers, longusols A–C (43–45) were
isolated from the Cyperus longus [38]. Longusol A (43) showed a similar carbon skeleton as longusol B
(44), which is connected with two resveratrol monomers by a common benzofuran ring. In addition,
longusol B (44) exhibited the opposing stereostructure, similar to the cis-type isomer in the dihydrofuran
part of trans-scirpusins A. Longusol C (45), composed of two resveratrol units connected by a 1,4-dioxane
moiety, and the stereoisomer was determined to be cis-type isomer in 1,4-dioxane part of cassigarols
E [38].

2.3. Resveratrol Trimers

Resveratrol trimers are composed of three resveratrol units and connected by a head-to-ligation
or circular structure [12]. Similar to the resveratrol dimer, 23 resveratrol trimers (46–68) have been
obtained since 2010 from five plant families: Dipterocarpaceae, Vitaceae, Paeoniaceae, Gnetaceae and
Polygonaceae. Dipterocarpaceaeis is the main source of resveratrol trimers, and 11 resveratrol trimers
(46–56) were isolated from this family during this period (Table A1; Figure 4).
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Dryobalanops is a unique genus in the Dipterocarpaceae family that only lives in the tropical forests of
west Malysia with only seven species worldwide [39]. Two trimers, malaysianol A (46) and malaysianol
D (47), were isolated from D. aromatic and D. beccarii, respectively [40,41]. Interestingly, malaysianol A (46)
has a unique biogenetic pathway, arranged with a dimer of ε-viniferin and one free resveratrol monomer
from oxidative coupling. Malaysianol D (47) is a symmetrical trimer [41]. The Hopea genus is known for
richness of biologically active REVs. The phytochemical investigation of the stem of H. utilis resulted
in a new resveratrol trimer: hopeaside E (48), which is composed of three resveratrol units through
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oxidative condensation, and is the first instance of a C-glucoside of a resveratrol oligomer possessing
two aliphatic OH groups in aglycone [42]. Hopeasides C (49) is a resveratrol trimer possessing the
same novel substituent as the dimer of hopeasides D (20) [29]. Cheng and co-workers completed a
phytochemical investigation of the stem bark of H. chinensis and isolated five new resveratrol trimers,
hopeachinols E–I (50–54) [43]. All these trimers possess a novel REV carbon skeleton in which a
resveratrol trimer is associated with one lignan monomer via a pyran ring. The biosynthetic origin of these
trimers is associated with the same resveratrol trimer, vaticanol A, through continuing the cyclization
reaction of the intramolecular free radical with two-carbon units or phenylpropanoid [43]. The final
two trimers, dipterocarpols C (55) and D (56) were identified from the stem wood of Dipterocarpus
alatus [31]. Notably, the discovery of dipterocarpols C (55) was the first case where the biosynthetic
origin of resveratrol aneuploids was correlated with the loss of a half resveratrol unit through oxidative
cleavage [31].

Gu and coworkers reported the isolation of a trimer, wenchowenol (57), from the roots and stems
of Vitis wenchowensis, and concluded that the biosynthetic origin of wenchowenol (57) was linked to
amurensin A and resveratrol by oxidative coupling [44]. Another new trimer, quinquangularol (58),
contains a similar biosynthetic pathway to wenchowenol (57); one difference is a methylation step
followed by the oxidative coupling between amurensin A and resveratrol [45]. From the grapevine
shoot extracts of Vitis vinifera, a novel resveratrol trimer, (Z)-cis-miyabenol C (59), was isolated,
which possesses a cis-resveratrol and is associated with a resveratrol trimer [46].

During this period, three resveratrol trimers, a pair of stereoisomers trans-suffruticosol D (60) and
cis-suffruticosol D (61), and cis-gnetin H (62), were isolated from the seeds of Paeonia Suffruticosa
(Paeoniaceae) [47]. The new resveratrol trimers all shared a common carbon skeleton, and the
resveratrol units were related to the benzofuran rings.

From the plants of Gnetum macrostachyum (Gnetaceae) mentioned above, in addition to two
more dimers, Sri-in et al. isolated a novel resveratrol trimer, macrostachyol B (63), which contains a
dihydrofuran ring and an interesting bicyclic internal ring system created by the carbon bridge [36].
A new resveratrol trimer, gnetubrunol A (64), is probably related to a resveratrol trimer coupling with
two dihydrobenzofuran rings [48].

Liu and co-workers studied the methanolic extract of roots of Rheum lhasaense, and isolated two new
resveratrol trimers, rheumlhasol A and B (65, 66). These two trimers are isomeride. The biosynthetic
pathway of rheumlhasol B (66) is the gnetin C oxidative coupling with another resveratrol monomer.
This is the first time resveratrol trimers were discovered in the plants of Rheum [49].

The discovery of the stilbene oligomers in the family Gramineae has been reported. Two new stilbene
trimers, cystibenetrimerol A (67) and cystibenetrimerol B (68), were isolated from the EtOAc extract
of the dried grass of Cynodon dactylon (L.) Pers. by successive chromatographic procedures (silica gel,
Sephadex LH-20, MCI gel CHP 20P, and semi-preparative high performance liquid chromatography
(HPLC)). The isolation and structures of two new stilbene trimers suggest that the ordinary grass from
the Poaceae family might be another rich source of stilbene oligomers [50].

2.4. Resveratrol Tetramers

The majority of resveratrol tetramers contain a benzofuran moiety because the tetramers are primarily
“dimers of dimers” [13]. Since 2010, 13 resveratrol tetramers (69–81) were isolated and identified, whereas,
ten tetramers were discovered in the plants of Dipterocarpaceae (Table A1; Figure 5).
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In Dipterocarpaceae plants, two new resveratrol tetramers, vatalbinoside A and B (69, 70), share two
common trans-oriented dihydrobenzofuran ring structures and a sequence of four -CH- groups [22].
Additionally, vatalbinoside B (70), a second instance of a C-glucopyranoside resveratrol tetramer, is the
first where a C-glucopyranoside was isolated from the genus Vatica [22]. A dimeric dimer, vaticanol L (71),
has a unique skeleton without a heterocyclic ring [51]. A novel resveratrol dimer, vateriaphenol F (72),
with a unique C2-symetric structure and a new O-glucoside of REVs, vateriosides B (73), was isolated
from Vateria indica [25]. In the heartwood of Neobalanocarpus heimii, Bayach et al. isolated three new
resveratrol tetramers, heimiols C–E (74–76), all of which have two dihydrofuran rings, and heimiols D (75)
is an oxidative tetramer of resveratrol [30]. The compounds malaysianol B and C (77, 78) were isolated
from the stem bark of Dryobalanops lanceolate. Malaysianol B (77) has a condensation type, initiated
from the oxidative coupling reaction of two ε-viniferin molecules [52], and malaysianol C (78) is a novel
symmetrical resveratrol tetramer, containing a tetrahydrofuran ring moiety and a unique tetrahydrofuran
ring. Further research showed that the biosynthetic origin of malaysianol C (78) is from the condensation
of two molecules of ε-viniferin as the precursor, and one of them will act as an epoxide derivative [53].

In the genus Gnetum (Gnetaceae), a resveratrol tetramer macrostachyol A (79), was condensed by
oxidative coupling of a trimer, latifolol and, a resveratrol unit [36].

The last two resveratrol tetramers, cajyphenol A and cajyphenol B (80, 81), were isolated from the
stems of Cayratia japonica (Vitaceae) and contained a common carbon skeleton without a heterocyclic
ring [54].

2.5. Resveratrol Pentamers

Only four resveratrol pentamers (82–85) were isolated from 2010 to 2017, and all the compounds
were isolated from Dipterocarpaceae plants (Table A1; Figure 6). The first is hopeaside F (82), a new
resveratrol pentamer discovered from the stem of the Hopea utilis, and is the third example of a
C-glucopyranosyl resveratrol pentamer found in natural plants [42]. Two resveratrol pentamers,
hopeasides A and B (83, 84), were also isolated from the stem of H. parviflora. Both have the same
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carbon skeleton and contain the same novel part as hopeasides C and D (55, 20) [29]. Upunoside E (85),
a new O-glucoside of resveratrol pentamer, was purified as a pale yellow solid from an acetone-soluble
extract of the leaves of Upuna borneensis (Dipterocarpaceae) by column chromatography [32].
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2.6. Resveratrol Hexamers

During this period, six resveratrol hexamers (86–91) were separated and identified. Five of them
were isolated from Dipterocarpaceae plants and another was identified from Vitaceae (Table A1; Figure 7).

Albiraminols A (86), condensed by a tetrameric resveratrol (vaticanol B) and a dimeric resveratrol,
was isolated from the stem of Vatica albiramis, and is the first example bearing the blocking unit of vaticanol
B [22]. Four resveratrol hexamers of vatcaside M (87) and vatcasides E–G (88–90) were isolated from three
species, Vatica bantamensis, V. chinensis, and V. albiramis. Vatcasides E (88) and F (89) are two O-glucosides
of (87). Vatcasides G (90) is an epimer of (88). They all contain a common partial structure of (−)-vaticanol
B with a 3-(3,5-dihydroxyphenyl)-4,6-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1H-inden-1-yl
(4-hydroxyphenyl)methyl group [55].

The final new resveratrol hexamer, viniphenol A (91), was isolated from the vine stalks of
Vitis vinifera. It contains three 2,3-trans configuration dihydrobenzofuran rings [56].
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2.7. Resveratrol Heptamers

No new resveratrol heptamer was isolated from 2010 to 2017. Only two heptamers, pauciflorol
D [57] and vaticanol J [58], have been reported from the stern bark of Vatica pauciflora and V. rassak in
2001 and 2004, respectively.

2.8. Resveratrol Octamers

A resveratrol octamer is the largest degree of polymerization of any resveratrol oligomer isolated
to date (Table A1; Figure 8). Upunaphenol Q (92), the only instance of a resveratrol octamer in this
period, was identified from the leaves of Upuna borneensis Sym, coupled with the dimeric structure of
(−)-vaticanol B. It is the second instance of a resveratrol octamer [59]. Before this, only vateriaphenol
A was isolated from the acetone extract of the stem bark of Vateria indica (Dipterocarpaceae) [60].
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3. Pharmacological Activities

REVs have garnered interest due to their versatile bioactivities, including antimicrobial [61,62],
antioxidant [63], and anticancer [64] activies. However, researchers have focused more on other
activities, such as potential for the treatment of Alzheimer’s and Parkinson’s diseases. In 2015, Keylor
et al. summarized some bioactivities of REVs, including anticancer, antioxidant, and modulation
of enzymes [13]. Here, we aimed to provide a more comprehensive review on the progress in
pharmacological activities. Anti-microbial, anti-Alzheimer’s disease, cardiovascular protection,
anti-Parkinson’s disease, anti-tumor activities and other bioactivities are summarized below, with the
exception of those which have been mentioned in the 2015 article [13].

3.1. Anti-Microbial Activities

Resveratrol and its oligomers play an important role in protecting plants from fungal and bacterial
invasion. An evaluation of the anti-bacterial activity of REVs which were isolated from the stem bark
of Dryobalanops lanceolate, against three Gram-positive strains, Staphylococcus epidermidis, S. aureusm and
S. xylosus, had been performed. Two resveratrol tetramers, upunaphenol D and flexuosol A, showed
potent antibacterial properties with a minimum inhibitory concentration (MIC) value of 25/75, 50/100,
and 25/75 µmol/L, respectively. The results suggest that the disruption of the double bond resonance in
the free resveratrol may attribute to the lower flexuosol A activity [52]. The resveratrol trimer α-viniferin
showed significant activity against Staphylococcus aureus and Escherichia coli and showed moderate activity
against Salmonella paratyphi [65]. In another assay, the resveratrol trimer α-viniferin, the resveratrol
dimers ε-viniferin, and johorenol A, inhibited the growth of two methicillin-resistant Staphylococcus
aureus (MRSA), ATCC 33591, and a HUKM strain obtained and characterized from clinical samples
of infected patients in the University Kebangsaan Malaysia Hospital, Kuala Lumpur. α-viniferin and
ε-viniferin showed a potent antibacterial activity on both MRSA strains at MIC at 100 and 400 µg/mL,
respectively, whereas johorenol A showed activity on ATCC 33591 and HUKM strain with a MIC
value of 100 µg/mL and 200 µg/mL, respectively. Either α-viniferin or ε-viniferin, in combination with
vancomycin, exhibited an additive effect (0.5 < fractional inhibitory concentration (FIC)≤ 2.0) against both
MRSA strains. Johorenol A, in combination with vancomycin, also showed an additive effect on HUKM
strains, whereas it demonstrated a synergistic interaction with vancomycin in killing ATCC 33591 strains
(FIC < 0.5) [66]. A resveratrol trimer, davidiol A was capable of inhibiting the growth of both S. uberis and
B. subtilis [2]. The dimer of ε-viniferin had potent antibiofilm activity against the pathogenic Escherichia coli
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O157:H7, inhibiting biofilm formation of Escherichia coli O157:H7 by 98% at 10 µg/mL [67]. Suffruticosol
A, suffruticosol B, and vitisin A had better antibiofilm activities than resveratrol. Vitisin A displayed
the most significant inhibitory activities on E. coli O157:H7, inhibiting biofilm formation by more than
90% at 5 µg/mL. The mechanism of the inhibition on E. coli O157:H7 biofilm formation was related
to the ability of inhibiting fimbriae production [68]. A stereoisomer of hemsleyanols C [69] and four
resveratrol tetramers, vaticanol B, vaticaphenol A, vateriaphenol B, and hopeaphenol, isolated from the
ethyl acetate extracts of the leaves of Hopea acuminata, were found to inhibit protein splicing mediated
by the Mycobacterium tuberculosis RecA intein in a nonspecific manner. The IC50 values for the five
compounds were 3.4, 1.0, 1.7, 2.7, and 1.6 µmol/L, respectively [70].

In addition to antibacterial properties, REVs have antiviral properties. Studies on anti-herpetic
activity found that vaticanol E, pauciflorol B, hopeaphenol A, pauciflorol C, vaticaffinol, and hemsleyanol
D demonstrated significant activity against HSV-1 infection with IC50 values of 12.1 ± 0.5, 16.7 ± 0.5,
17.3 ± 0.5, 24.1 ± 0.6, 17.9 ± 0.3, and 9.1 ± 0.5 µmol/L, respectively, and against HSV-2 with IC50 values
of 4.5 ± 0.1, 3.2 ± 0.5, 3.7 ± 0.2, 3.3 ± 0.1, 3.2 ± 0.3, and 3.8 ± 0.2 µmol/L, respectively. The anti-herpetic
activity of these compounds may be related to the ability to enhance the transient release of reactive
oxygen species [71].

3.2. Anti-Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by impaired
memory and cognition. One of the major pathological hallmarks of AD in the brain is senile
plaques that are composed of heterozygous amyloid-β (Aβ) peptides. Evidence indicates that
accumulation of Aβ peptides in vulnerable brain regions plays a central role in AD pathogenesis [72].
In an anti-AD study, vitisinol C, scirpusin A, and ε-viniferin glucoside demonstrated significant
anti-aggregative activity to prevent Aβ fibril formation with an EC50 value of 5 ± 3 [46], 0.7 ± 0.3,
and 0.2 ± 0.3 µmol/L [73], respectively. The trimer miyabenol C demonstrated an ability to reduce
Aβ generation by inhibiting β-secretase activity, which is related to the reduction of Aβ and sAPPβ
both in vitro and in vivo in an AD model mice [74]. Furthermore, the REVs (−)-7a,8a-cis-ε-viniferin,
trans-ε-viniferin, cis-ε-viniferin, trans-resveratrol, vitisinol C, vitisinol E, gnetin H, suffruticosol A,
and suffruticosol B significantly inhibited baculovirus-expressed beta-site APP-cleaving enzyme 1
(BACE-1) in a concentration-dependent manner. The IC50 values were 1.29, 1.85, 2.21, 11.9, 4.01,
19.8, 0.34, 5.99, and 0.88 µmol/L , respectively [35]. The new resveratrol hexamer, viniphenol A (91)
displayed protective activities against Aβ-induced toxicity in PC12 cells in a concentration-dependent
manner [56].

In addition, four REVs, vaticahainol B, vaticanol E, pauciflorol B, and vatdiospyroidol, showed
significant activities against AChE, which is seen as a potential treatment target for AD, with IC50

values of 18.9 ± 1.7, 12.0 ± 1.4, 10.9 ± 1.2, and 7.3 ± 1.8 µmol/L, respectively. Of note, the IC50 of
vatdiospyroidol is closer to the positive control (±)-huperzine A (IC50 = 1.7 ± 0.3 µmol/L), a clinical
anti-Alzheimer drug [24]. Two REVs, dipterocarpols A (18) and hopeahainol A, showed moderate
AChE inhibitory activity with IC50 values of 8.28 µmol/L and 11.28 µmol/L, respectively [31].

3.3. Anti-Parkinson’s Disease (PD)

Parkinson’s disease (PD) is the second-most encountered neurodegenerative disorder after
Alzheimer’s disease [75]. The aggregation of α-synuclein is one of the key pathogenic events in
PD. Three stilbenes, piceatannol, ampelopsin A, and isohopeaphenol, were tested in lipid vesicle
permeabilization assays for potential protection against membrane damage induced by aggregated
α-synuclein. The viability of PC12 cells was examined to assess the preventive effects of these stilbenes
against α-synuclein-induced toxicity. Piceatannol, a resveratrol monomer, inhibited the formation
of α-synuclein fibrils and was able to destabilize preformed filaments at 100 µmol/L. It seems to
induce the formation of small soluble complexes, protecting membranes against α-synuclein-induced



Molecules 2017, 22, 2050 17 of 26

damage. Further research showed that piceatannol protected cells against α-synuclein-induced toxicity;
however, the oligomers tested, ampelopsin A and hopeaphenol, were less active [76].

3.4. Antitumor Activity

The antitumor activity of natural REVs is well documented. A variety of REVs exhibited cytotoxicity
against various tumor cell lines. Hopeaphenol, vaticanol B, hemsleyanol D, and (+)-α-viniferin showed
a strong antimelanoma effect against SK-MEL-28 melanoma cells. Other than vaticanol B, the other
oligomers can selectively arrest cell cycle at the G1 phase, resulting in apoptosis of cancer cells [77].

The oligostilbene isomers, cis- and trans-suffruticosol D isolated from seeds of P. suffruticosa,
exhibited remarkable cytotoxicity against human cancer cell lines including A549 (lung), BT20 (breast),
MCF-7 (breast), and U2OS (osteosarcoma). Trans-suffruticosol D appeared to be slightly more potent
(IC50 values: 9.93–20.8 µmol/L) than cis-suffruticosol D (IC50 values: 13.42–46.79 µmol/L) in the
cancer cell lines tested, whereas it showed significantly less toxicity on the normal human cell lines,
HMEC (breast) and HPL1A (lung). A mechanistic study demonstrated that cis- and trans-suffruticosol
D exerted their antitumor effects by provoking oxidative stress, stimulating apoptosis, decreasing
the mitochondrial membrane potential, inhibiting cell motility, and blocking the NF-κB pathway in
human lung cancer cells. These studies suggest that cis- and trans-suffruticosol D could be promising
chemotherapeutic agents against cancer [78]. In addition, vaticanol C showed a moderate activity
against human lung cancer A549 cells (IC50 = 11.83 mmol/L). The polarity and stereochemistry of
REVs might influence their cytotoxicity [51].

3.5. Cardiovascular Protection

Vitisin B displayed significant inhibitory activity on the migration of vascular smooth muscle cells,
directly inhibiting platelet-derived growth factor (PDGF) signaling and enhancing the cell adhesiveness
in cultured vascular smooth muscle cells via actin cytoskeleton recombination and phosphorylated
tyrosine protein repartition [79]. Moreover, amurensin G had activities to relax endothelium-intact
aortic rings, promote endothelial nitric oxide synthase (eNOS) phosphorylation, and nitric oxide (NO)
production, and exert an effect on ER-dependent AMPK/PI3K pathways. Amurensin G might be
useful to prevent atherosclerosis [4].

3.6. Liver-Protective Effect

The resveratrol dimer ε-viniferin displayed significant activity to protect Chang liver cells
from hydrogen peroxide (H2O2) damage. When treated with ε-viniferin at 50 µmol/L and
100 µmol/L, the percentage of liver cell viability changed from 78.3% to 106.9% and 111.0%,
respectively. The strong antioxidant activity plays an important role in the capacity to protect liver
cells [80]. In another study, (−)-hopeaphenol, (+)-isohopeaphenol and (+)-α-viniferin, at a dose of
100 or 200 mg/kg, p.o., exhibited hepatoprotective effects in liver injuries in mice, induced with
D-galactosamine (D-galN)/lipopolysaccharide (LPS), by reducing LPS-induced macrophage activation
and the sensitivity of hepatocytes to TNF-α [81].

The resveratrol tetramer vitisin B exhibited a strong inhibition of HCV replication with an EC50

value of 6 nM and showed remarkably low cytotoxicity (EC50 >10 µmol/L). The mechanisms of action
of vitisin B were related to the potent inhibition of a HCV NS3 helicase with IC50 3 nM [82].

3.7. Other Activities

Using Discovery Studio software, Ye and coworkers analyzed the interaction between
REVs (dimer: ε-viniferin, trimer: amurensins D, tetramer: vitisin A) and Fos/Jun molecules.
Using intracerebroventricular injection and the hot plate tests in mice, they concluded that a low degree
polymerization of resveratrol could enhance the central analgesic effect, which is related to an increase
of the active groups and rigid structure. Also, the molecular docking method can be applied in virtual
screening of the analgesic activity of REVs [83].
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In a study for natural fatty acid synthase (FAS) inhibitors, cajyphenol A (80) and cajyphenol
B (81), along with quadrangularin A, pallidol, and resveratrol, demonstrated significant fast-binding
inhibitory activity on FAS with IC50 values of 1.63 ± 0.02, 1.49 ± 0.03, 7.50 ± 0.01, 11.1 ± 0.01,
and 10.2 ± 0.01 µmol/L, respectively [54].

Two REVs, trans-ε-viniferin and r2-viniferin, were found to inhibit the cystic fibrosis transmembrane
conductance regulator (CFTR) through high throughput screening [15]. Both REVs blocked
CFTR-mediated iodide influx with IC50 values of about 20 µmol/L.

Six REVs, MIP (1), arahypin-11 (30), and arahypin-12 (31), together with arachidin-1, arachidin-3,
and SB-1 (compound structure of a new metalolite, isolated from peanut (Arachis hypogaea) kernel,
bears prenylated benzenoid and but-2-enolide moieties) demonstrated anti-adipogenic activities
and showed cytotoxic effects on 3T3-L1 adipocyte differentiation cells at a concentration range of
1–10 µmol/L. The difference in their monomeric units and relative stereoconfigurations might play an
important role in anti-adipogenic and cytotoxic activities [20].

(−)-hopeaphenol, hemsleyanol D, (+)-α-viniferin, and (−)-balanocarpol demonstrated an
inhibitory activity against plasma glucose elevation in sucrose-loaded rats at doses of 100–200 mg/kg,
p.o. and the possible mechanism of action was the inhibitory activity of gastric emptying, α-glucosidase,
and aldose reductase [84]. These REVs showed potent activity in preventing plasma triglyceride
elevation at a dose of 200 mg/kg p.o. in mice, with IC50 values of 32.9, 26.5, 23.2, 46.3, and 340 µmol/L,
respectively. In addition, (−)-hopeaphenol and (+)-isohopeaphenol showed great potent inhibitory
activity of pancreatic lipase with IC50 values of 32.9 and 26.5 µmol/L, respectively [85].

In addition, Scirpusin A, a REV dimer, showed interleukin-1β expression inhibitory activities
on lipopolysaccharide (LPS)-induced THP-1 (the human acute monocytic leukemia) cells, with an
inhibition rate of 35.8% at a concentration of 50 µg/mL [86].

4. Conclusions

In the wide variety of REVs, dimers and trimers account for the majority. Resveratrol octamers have
the largest molecular weight and the least proportion. Many REVs contain the dihydrobenzofuran(s),
O-glucosylation unit, and may be condensed by oxidative coupling of monomers, dimers, or trimers,
and so on. In the past decades, REVs were mainly found in nine plant families. REVs have now been
found in seven additional plant families. Plant chemists had been focusing on the Dipterocarpaceae
family, searching for active stilbenes prior to 2010 [10,87]. Similarly, from 2010 to 2017, most novel REVs
were obtained from the Dipterocarpaceae family, and the Vatica, Shorea, and Hopea genus. Among them,
Vateria plants are the richest source [87]. This indicates that the Dipterocarpaceae family is the biggest
natural source for obtaining highly polymerized REVs, or to isolate lower polymerized REVs as a base for
synthetic highly polymerized oligomers. Compared to early studies, many new studies have concentrated
on anti-Alzheimer’s disease, anti-Parkinson’s disease, and cardiovascular protection, in addition to
bioactivities, such as antimicrobial, antioxidant, and antitumor activities. However, similar to a few years
ago, the study of the structure–activity relationships of REVs is still lacking. In addition, obtaining a
large amount of the naturally occurring resveratrol oligomers is difficult, owing to their low content and
complex structure in plants, severely hampering their biological evaluation and related mechanism of
action exploration in vivo. These deficiencies have limited the progression of REVs in drug development.
Though these bioactivities have been mostly investigated in vitro at present, many of these REVs
have shown significant bioactivities. With the progress in chemical synthesis technology, our enriched
understanding of their chemistry and biology, and novel and potent Rev compounds continuing to be
discovered, several promising REVs could be lead compounds for candidate drug discovery, and further
development could serve as chemotherapeutic agents for cancers and other intractable diseases in the
near future.
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Appendix A

Table A1. The novel resveratrol oligomers isolated from plants over the period from 2010 to present.

No. Chemical Component Source Part of Plant Ref.

Resveratrol Monomer
Moraceae

1 cudrastilbene Cudrania tricuspidata roots [19]
Leguminosae

2 3,5,3′-trihydroxy-4′-methoxy-5′-isopentenylstilbene Arachis hypogaea seeds [20]
3 chiricanine B Arachis hypogaea seeds [21]
4 arahypin-13 Arachis hypogaea seeds [21]
5 arahypin-14 Arachis hypogaea seeds [21]
6 arahypin-15 Arachis hypogaea seeds [21]

Resveratrol Dimer
Dipterocarpaceae

7 vatalbinoside C Vatica albiramis stems [22]
8 vatalbinoside D Vatica albiramis stems [22]
9 vatalbinoside E Vatica albiramis stems [22]

10 albiraminols B Vatica albiramis stems [23]
11 vatalbinoside F Vatica albiramis stems [23]
12 vaticahainols A Vatica mangachapoi. branches and twigs [24]
13 vaticahainols B Vatica mangachapoi. branches and twigs [24]
14 vaticahainols C Vatica mangachapoi. branches and twigs [24]
15 vateriosides A Vateria indica leaves [25]
16 roxburghiol A Shorea roxburghii roots [26]
17 acuminatol Shorea acuminata stem barks [27]
18 dipterocarpols A Dipterocarpus alatus stemwood [28]
19 dipterocarpols B Dipterocarpus alatus stemwood [28]
20 upunosides F Upuna borneensis leaves [29]
21 upunosides G Upuna borneensis leaves [29]
22 cordifoloside A Shorea cordifolia leaves [30]
23 cordifoloside B Shorea cordifolia leaves [30]
24 hopeasides D Hopea parviflora stems [31]
25 heimiol B Neobalanocarpus heimii heartwood [32]

Vitaceae
26 amurensin O Vitis amurensis roots [33]

Paeoniaceae
27 (−)-7α,8α-cis-ε-viniferin Paeonia lactiflora seeds [34]

Leguminosae
28 arahypin 6 Arachis hypogaea seeds [35]
29 arahypin 7 Arachis hypogaea seeds [35]
30 arahypin-11 Arachis hypogaea seeds [20]
31 arahypin-12 Arachis hypogaea. seeds [20]

Gnetaceae
32 macrostachyols C Gnetum macrostachyum roots [36]
33 macrostachyols D Gnetum macrostachyum roots [36]
34 gnemontanins A Gnetum montanum caulis [37]
35 gnemontanins B Gnetum montanum caules [37]
36 gnemontanins C Gnetum montanum caules [37]
37 gnemontanins D Gnetum montanum caules [37]
38 gnemontanins E Gnetum montanum caules [37]
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Table A1. Cont.

No. Chemical Component Source Part of Plant Ref.

39 gnemontanins F Gnetum montanum caules [37]
40 gnemontanins G Gnetum montanum caules [37]
41 (−)-gnetuhainin P Gnetum montanum caules [37]
42 (−)-gnetuhainin I Gnetum montanum caules [37]

Cyperaceae
43 longusol A Cyperus longus whole plant [38]
44 longusol B Cyperus longus whole plant [38]
45 longusol C Cyperus longus whole plant [38]

Resveratrol Trimer
Dipterocarpaceae

46 malaysianol A Dryobalanops aromatica stem barks [40]
47 malaysianol D Dryobalanops beccarii stem barks [41]
48 hopeaside E Hopea utilis stems [42]
49 hopeasides C Hopea parviflora stems [30]
50 hopeachinols E Hopea chinensis stem barks [43]
51 hopeachinols F Hopea chinensis stem barks [43]
52 hopeachinol G Hopea chinensis stem barks [43]
53 hopeachinols H Hopea chinensis stem barks [43]
54 hopeachinols I Hopea chinensis stem barks [43]
55 dipterocarpols C Dipterocarpus alatus stem wood [28]
56 dipterocarpols D Dipterocarpus alatus stem wood [28]

Vitaceae
57 wenchowenol Vitis wenchowensis roots and stems [44]
58 quinquangularol Vitis quinquangularis roots and stems [45]
59 (Z)-cis-miyabenol C Vitis vinifera grapevine shoot [46]

Paeoniaceae
60 trans- suffruticosol D Paeonia suffruticosa seeds [47]
61 cis-suffruticosol D Paeonia suffruticosa seeds [47]
62 cis-gnetin H Paeonia suffruticosa seeds [47]

Gnetaceae
63 macrostachyol B Gnetum macrostachyum roots [36]
64 gnetubrunol A Gnetum brunonianum roots [48]

Polygonaceae
65 rheumlhasol A Rheum lhasaense roots [49]
66 rheumlhasol B Rheum lhasaense roots [49]

Gramineae
67 cystibenetrimerol A Cynodon dactylon dried grass [50]
68 cystibenetrimerol B Cynodon dactylon dried grass

Resveratrol Tetramer
Dipterocarpaceae

69 vatalbinoside A Vatica albiramis stems [22]
70 vatalbinoside B Vatica albiramis stems [22]
71 vaticanol L Vatica chinensis stems [51]
72 vateriaphenol F Vateria indica leaves [25]
73 vateriosides B Vateria indica leaves [25]
74 heimiols C Neobalanocarpus heimii heartwood [30]
75 heimiols D Neobalanocarpus heimii heartwood [30]
76 heimiols E Neobalanocarpus heimii heartwood [30]
77 malaysianol B Dryobalanops lanceolata stem barks [52]
78 malaysianol C Dryobalanops lanceolata stem barks [53]

Gnetaceae
79 macrostachyol A Gnetum macrostachyum. roots [36]

Vitaceae
80 cajyphenol A Cayratia japonica stems [54]
81 cajyphenol B Cayratia japonica stems [54]

Resveratrol Pentamer
Dipterocarpaceae

82 hopeaside F Hopea utilis stems [42]
83 hopeasides A Hopea parviflora stems [29]
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Table A1. Cont.

No. Chemical Component Source Part of Plant Ref.

84 hopeasides B Hopea parviflora stems [29]
85 upunosides E Upuna borneensis leaves [32]

Resveratrol Hexamer
Dipterocarpaceae

86 albiraminols A Vatica albiramis stems [22]

87 vatcaside M
Vatica bantamensis;

leaveas [55]Vatica chinensis;
Vatica chinensis

88 vatcasides E
Vatica bantamensis,

leaveas [55]Vatica chinensis;

89 vatcasides F
Vatica bantamensis,

leaveas [55]Vatica chinensis;

90 vatcasides G
Vatica bantamensis,

leaveas [55]Vatica chinensis;

Vitaceae
91 viniphenol A Vitis vinifera vine stalks [56]

Resveratrol Octamer
Dipterocarpaceae

92 upunaphenol Q Upuna borneensis leaves [59]
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