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Abstract

Background: P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its
effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H
rhodopsin in RPE cells and further assess whether LEDGF1-326, a protein devoid of heat shock elements of LEDGF, a cell
survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage.

Methods: ARPE-19 cells were transiently transfected/cotransfected with pLEDGF1-326 and/or pWT-Rho (wild type)/pP23H-
Rho. Rhodopsin mediated cellular damage and rescue by LEDGF1-326 was assessed using cell viability, cell proliferation, and
confocal microscopy assays. Rhodopsin monomers, oligomers, and their reduction in the presence of LEDGF1-326 were
quantified by western blot analysis. P23H rhodopsin mRNA levels in the presence and absence of LEDGF1-326 was
determined by real time quantitative PCR.

Principal Findings: P23H rhodopsin reduced RPE cell viability and cell proliferation in a dose dependent manner, and
disrupted the nuclear material. LEDGF1-326 did not alter P23H rhodopsin mRNA levels, reduced its oligomers, and
significantly increased RPE cell viability as well as proliferation, while reducing nuclear damage. WT rhodopsin formed
oligomers, although to a smaller extent than P23H rhodopsin. Further, LEDGF1-326 decreased WT rhodopsin aggregates.

Conclusions: P23H rhodopsin as well as WT rhodopsin form aggregates in RPE cells and LEDGF1-326 decreases these
aggregates. Further, LEDGF1-326 reduces the RPE cell damage caused by P23H rhodopsin. LEDGF1-326 might be useful in
treating cellular damage associated with protein aggregation diseases such as retinitis pigmentosa.
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Introduction

Intracellular protein aggregation has been linked to many

degenerative diseases including retinitis pigmentosa (RP) [1,2].

Rhodopsin, a protein present in retinal cells is one such protein,

which forms aggregates upon cellular accumulation. Some

mutations of rhodopsin such as the point mutation P23H (Proline

23 R Histidine) result in greater aggregation [3,4]. These

aggregates cause progressive degeneration of retinal cells, leading

to blindness in RP. The P23H point mutation constitutes one of

the most common causes of autosomal dominant RP in North

America. P23H rhodopsin forms protein aggregates and accu-

mulates as aggresomes in the cytosol, leading to the death of

human embryonic kidney cells [3,5]. P23H rhodopsin also exerts

a dominant negative effect on the biosynthesis of normal wild

type (WT) rhodopsin and induces formation of WT/P23H

rhodopsin aggregates as well P23H/P23H rhodopsin aggregates

[6,7,8]. While numerous studies have investigated P23H

rhodopsin aggregation including its localization, morphology, as

well as its effect on the expression of WT rhodopsin [3,4,9,10],

there is a distinct lack of methods for potentially reducing the

pathological effects of this mutation that may be applied to the

clinical setting.

In this study we investigated the ability of LEDGF1-326, a

fragment of lens epithelium derived growth factor (LEDGF), to

prevent cellular damage mediated by P23H rhodopsin and WT

rhodopsin. LEDGF, a 530 amino acid (aa) protein originally

isolated from a cDNA library of lens epithelial cells [11], is a

transcription factor that confers cellular resistance to oxidative and

thermal stresses and increases cell survival. Once in the nucleus, it

binds to stress response elements and/or heat shock elements

present in the promoters of stress associated genes, and thereby

upregulates their transcription and expression [12,13,14,15].

LEDGF was also isolated in a screen for proteins that interact

with the HIV integrase [16] and appears to be essential for nuclear

targeting of the integrase in human cells [17].
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Bioinformatic analysis of the structural organization of LEDGF

predicted various domains of LEDGF [18]. LEDGF contains an

N-terminal DNA binding domain spanning from amino acid aa5

to aa62 (Figure 1). This amino acid region contains a proline-

tryptophan-tyrptophan-proline (PWWP) motif that has been

shown to bind to stress response elements (STRE; A/

TGGGGA/T; A = Alanine, T = Threonine, G = Glycine) of

DNA and transactivate stress related genes. A nuclear localization

signal spans aa148 to aa156 (GRKRKAEKQ; R = Arginine, K =

Lysine, E = Glutamic acid, Q = Glutamine). An AT hook-like

domain at aa178 to aa197, a looped structure at aa178to aa250,

and a coiled coil domain rich in lysine from aa216 to aa343, are

also present in LEDGF. The C- terminus of LEDGF contains two

helix-turn-helix (HTH) domains at aa421 to aa442 and aa471 to

a492 that are capable of binding to heat shock elements (HSE)

within the promoters of various genes. The minimum requirement

for LEDGF activity appears to be a nuclear binding domain to

upregulate various stress related proteins, a nuclear localization

sequence to translocate LEDGF fragment to the nucleus, and a

stretch of lysine rich residues to assist binding to the DNA [18].

While heat shock proteins are known to act like chaperones in

reducing protein aggregation [19,20], the ability of LEDGF or its

derivatives in reducing protein aggregation are unknown.

Considering all the requirements for LEDGF activity, we designed

LEDGF1-326, a fragment of LEDGF, which contained all the

functionally important residues of LEDGF, minus the heat shock

elements and tested its ability to reduce rhodopsin aggregates and

cell damage.

Retinal pigmented epithelial (RPE) cells play an important role

in the generation and maintenance of photoreceptors [21]. They

are located between the choroid and the photoreceptors of the

neural retina. They supply nutrients to the neural retina and

phagocytose dead photoreceptors. They also maintain the visual

function of photoreceptors. With aging, RPE cells in human eyes

are known to accumulate rod outer segments containing

rhodopsin, due to a deficiency of rhodopsin degrading enzymes

including alpha-mannosidase [22]. Given the propensity of

rhodopsin to aggregate, it is possible that rhodopsin accumulation

contributes to RPE loss. Indeed, mice expressing rhodopsin

mutations such as P23H lose RPE at a much accelerated rate [23].

Since RPE degeneration is an integral part of RP, we chose in this

study to more directly examine the effects of rhodopsin aggregates

(both P23H and WT) on RPE survival. Another objective of this

study was to assess whether LEDGF1-326 reduces rhodopsin

aggregates as well as the cellular damage induced by rhodopsin

proteins in RPE cells leading to decreased survival. Towards these

objectives, we performed in vitro transient transfections of P23H/

WT rhodopsin and LEDGF1-326 plasmids in a human retinal

pigmented epithelial cell line (ARPE-19). Subsequently, we

performed trypan-blue assay for cell viability, BrDu assay for cell

proliferation, confocal microscopy to visualize the proteins and

their localization, western blot analysis to quantify rhodopsin

monomers and aggregates, and real time quantitative PCR to

measure the mRNA level of P23H rhodopsin in the presence and

absence of LEDGF1-326.

Our work has shown that both P23H and WT rhodopsin form

aggregates in retinal pigment epithelial cells and LEDGF1-326 is

capable of reducing these protein aggregates. Further, LEDGF1-

326 decreases P23H rhodopsin mediated cell damage in RPE cells.

Results

P23H Rhodopsin decreases RPE cell viability and
proliferation

To determine the effect of P23H rhodopsin expression in

ARPE-19 cells, a trypan-blue cell viability assay was done

(Figure 2B). Before cells were trypsinized, Hoffman Modulation

Contrast (HMC) images were taken of the live cells, using phase

contrast microscopy (Figure 2A). The untransfected and LF2000

(LipofectamineH 2000) transfected (control) groups showed

confluent cells. As the transfection level of pP23H-Rho increased,

the number of cells per frame of the image decreased.

In our cell viability assay (Figure 2B), cells transfected with

LF2000 alone were indistinguishable from cells transfected with,

low levels (,0.25 mg) of pP23H-Rho. As the level of transfected

pP23H-Rho was increased, we observed a significant decrease in

the percentage of viable cells (p,0.001). At transfection level of

1.0 mg, the cell viability was 2565%, whereas at 2.0 mg, the cell

viability was only 1561%, indicating a significant loss in cell

viability (p,0.001). A similar trend was seen when cells were

transfected with pP23H-CFP-Rho (P23H rhodopsin tagged with

cyan fluorescent protein). Transfection of 1.0 mg of P23H resulted

in a cell viability of 3464%, whereas at 2.0 mg, the cell viability

was only 1562%, indicating a significant loss in cell viability

(p#0.001).

Similar to P23H rhodopsin, as the transfection level of pWT-

Rho increased, the number of cells per frame of the image

decreased (Figure 2A), but the change was not as prominent as

Figure 1. Schematic representation of LEDGF domains. PWWP, DNA binding domain (aa5–62); Nuclear localization signal (aa148–156); Loop1,
contains AT hook like domain (aa178–250), lysine rich coiled coil domain (aa216–343), HTH1, Helix-turn-helix domain (aa421–442); HTH2, Helix-turn-
helix domain (aa471–492).
doi:10.1371/journal.pone.0024616.g001
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pP23H-Rho transfected groups. While there was no significant

difference at 0.25, 0.5, and 0.75 mg doses, there was a significant

difference between the cell viability of pWT-Rho and pP23H-

Rho/pP23H-CFP-Rho groups at 1 and 2 mg doses. At the 2 mg

dose for instance, the viability with pWT-Rho was 72611% as

opposed to 1561% with pP23H-CFP.

Figure 2. P23H rhodopsin is toxic to RPE cells. A) For HMC images, cells were visualized using Nikon inverted light microscope at 10x
magnification. Representative images from one of the three independent studies have been shown. B) For cell viability, the cells were trypsinized,
collected and resuspended in PBS. Total number of viable cells was determined in each group using trypan blue dye and percent viability was
calculated with respect to the group transfected with LF2000 (LipofectamineH 2000) alone. C) For cell proliferation cells were treated with BrDU for
24 h and then detected using anti-BrDU antibody. The percentage proliferation was calculated with respect to LF2000 transfected group. Data is
expressed as mean 6 S.D. for N = 3. *, p, 0.01 compared with corresponding pWT-Rho transfected group. *, p,0.05 compared to LF2000 group.
doi:10.1371/journal.pone.0024616.g002
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To further understand whether the loss of viability of cells is due

to a decrease in cell proliferation, a BrDU assay was performed

(Figure 2C). pP23H-Rho decreased proliferation of ARPE-19 cells

in a dose-dependent manner when compared to LF2000 controls,

with the % proliferation being 5066% at 2 mg, the highest dose

tested. Although there appeared to be a decline in cell proliferation

with pWT-Rho, the differences were not statistically significant.

Cells transfected with pP23H-Rho showed significantly lower

proliferation when compared to cells transfected with pWT-Rho at

all doses. Although there was no dose dependent decline in cell

viability with pWT-Rho, the decline in viability was significant

with transfections of 0.75 and 1 mg DNA, when compared to

controls.

LEDGF1-326 decreases RPE cell viability loss induced by
P23H rhodopsin

To demonstrate the ability of LEDGF1-326 to rescue cells from

rhodopsin induced damage, ARPE-19 cells were cotransfected

with a constant dose of pP23H-CFP-Rho/pP23H-Rho/pWT-Rho

and increasing doses of pLEDGF1-326. An empty plasmid

(pCMV5) was introduced to keep the total transfected plasmid

constant in the various treatment groups. Trypan-blue cell viability

assays (Figure 3B) and BrDU cell proliferation assays (Figure 3C)

were then performed. Further, HMC images (Figure 3A) were

taken in those groups with fluorescently tagged proteins. Figure 3A

represents images from one of the three independent studies. The

HMC images indicated a significant loss in number of cells in

groups transfected with pP23H-CFP-Rho alone. As the cotrans-

fection level of pLEDGF1-326 was increased, cell loss commensu-

rably decreased.

The percentage viability of ARPE-19 cells in the group

transfected with pP23H-CFP-Rho alone was 4065% as compared

to the LF2000 transfected group (Figure 3B). In the presence of

pLEDGF1-326, cell viability increased in a dose dependant

manner. As the level of cotransfected pLEDGF1-326 was increased

from 0 to 3 mg, the percentage cell viability increased from 4065

to 7268%, that is, about ,1.7 times (p,0.01). However, cell

viability could not be restored to 100% even at the highest dose of

pLEDGF1-326.

In the BrDU cell proliferation assay (Figure 3C), cell

proliferation in the group transfected with pP23H-Rho was low

(4666%) as compared to the LF2000 transfected group. When

pLEDGF1-326 was cotransfected with pP23H-Rho, there was an

increase in cell proliferation in a dose dependent manner. The %

proliferation of pP23H-Rho transfected cells increased from 4666

to 7762% at the highest dose of pLEDGF1-326. On the other

hand, pWT-Rho transfected groups did not show any significant

changes in the proliferation in the absence or presence of

pLEDGF1-326.

P23H rhodopsin disrupts RPE nuclear shape and content
We assessed the effect of P23H rhodopsin expression on ARPE-

19 cells histologically by confocal microscopy. ARPE-19 cells were

cultured on cover slips and transiently transfected with increasing

level of pP23H-CFP-Rho. To visualize the nucleus, cells were

stained with red TOPRO-3 iodide dye, while P23H rhodopsin

expression was represented by blue fluorescence emitted by P23H

rhodopsin tagged with CFP (Figure 4A). Representative images

from one of the three independent studies are shown. As the level

of pP23H-CFP-Rho was increased there was an increase in blue

fluorescence. When ,0.5 mg of pP23H-CFP-Rho was used for

transfection, the nucleus was distinct and well formed (Figure 4A

(a, and b)). This distinct nuclear structure (defined as well formed

ovals) started disappearing as the transfection level of pP23H-CFP-

Rho was increased (Figure 4A (c, d, and e)). When cells were

visualized at higher magnification (Figure 4A, Row 4), disrupted

nuclear material was observed (Figure 4A (s, and t)). The LF2000

treated control group (Figure 4A, p), in contrast, did not show any

such structural damage. HMC images were taken at 10x

magnification (Figure 4A, Row 5). As the transfection level of

pP23H-CFP-Rho was increased, the number of cells present in a

given area decreased, indicating loss of cells. This result correlates

both with our cell viability and proliferation data (Figure 2).

Further, to understand the significance of the confocal data, the

numbers of distinct nuclei visible in each confocal image were

counted from images from three independent studies (Figure 4B).

The number of distinct nuclei were significantly reduced in groups

transfected with 2.0 mg of pP23H-CFP-Rho as compared to

LF2000 transfected control group (p,0.01). Thus, P23H rhodop-

sin expression disrupts nuclear structure.

LEDGF1-326 rescues RPE cells from nuclear damage
induced by P23H rhodopsin

To further investigate the role of LEDGF1-326 in reducing

aggregation, confocal microscopy was performed on cotransfected

ARPE-19 cultures (Figure 5A). Nuclei were stained red as

previously described, LEDGF1-326 expression was visualized by

green fluorescence emitted by tagged GFP protein with LEDGF1-326,

and P23H rhodopsin was visualized as blue. The LF2000

transfected control group (Figure 5, Column 1) indicated clear

red nuclei staining and the nuclei exhibited well formed oval

structures. The group transfected with pLEDGF1-326 (Figure 5,

Column 2) showed clear green fluorescence colocalized with the

red labeled nuclei, indicating the presence of LEDGF1-326

primarily in the nucleus. The group transfected with pP23H-

CFP-Rho (Figure 5, Column 3) showed blue fluorescence and

once again indicated disrupted nuclear material as before

(Figure 4A). However, in the presence of cotransfected

pLEDGF1-326, disrupted nuclear material (broken, non-uniform

red pattern) was decreased and the intact nuclear structure was

restored (Figure 5, Column 4). Interestingly, while P23H

rhodopsin expression was clearly visible near the perinuclear

region of the cell in the absence of LEDGF1-326 (Figure 5, Row

3), it was diffused and far less visible in the presence of LEDGF1-

326 (Figure 5, Column 4).

WT rhodopsin expression was similarly visualized similarly

(Figure 6). Unlike P23H rhodopsin, WT rhodopsin was expressed

evenly in the cytoplasm. The plasma membrane was clearly

marked by its expression leading us to believe that WT rhodopsin

migrated to the plasma membrane after its expression. No

disrupted nuclear material was evident due to the expression of

WT rhodopsin.

LEDGF1-326 reduces rhodopsin aggregates
Aggregation of P23H rhodopsin was monitored by western

blotting in the absence and presence of LEDGF1-326. Figure 7A

represents blots from one of four independent experiments. The

band at 50-55 kDa represented the monomeric form of P23H

rhodopsin, whereas the dimers and trimers were represented by

smears at about 100–120 kDa and 180–200 kDa, respectively.

The oligomers represented all higher molecular weight

($200 kDa) species of P23H rhodopsin.

A high molecular weight smear (representing oligomers) of

P23H rhodopsin was seen within the detergent insoluble fraction

in all groups transfected with pP23H-CFP-Rho (Figure 7A (i),

Lane 2, 4–7). This dark smear gradually diminished as the cells

were cotransfected with increasing doses of pLEDGF1-326, while

keeping pP23H-CFP-Rho constant. At a transfection ratio of 1:1
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of pP23H-CFP-Rho to pLEDGF 1-326, there was slight increase in

total P23H rhodopsin. Interestingly we also observed a decrease in

the oligomers and an increase in the monomers at this ratio.

However, at transfection ratio of 1:2 and 1:3, total P23H

rhodopsin was seen to decrease with increasing levels of

pLEDGF1-326 for both detergent insoluble and soluble portion.

For P23H rhodopsin, the percentage of oligomers in the

detergent insoluble fraction decreased from 3962 to 2769% in a

dose proportionate manner in the presence of LEDGF1-326

(Figure 7B(i(b))) (p,0.05). The percentage of monomers increased

from 1861 to 2564%, but did not attain statistical significance.

The P23H rhodopsin oligomer percentage in the detergent

insoluble fraction was significantly (p,0.05) higher than the

monomer percentage in controls (Figure 7B(i(b)), Group1); but

with increasing dose of LEDGF1-326, this difference diminished.

The monomer to oligomer ratio increased with increasing dose of

Figure 3. LEDGF1-326 increases the cell viability and proliferation in a dose-dependent manner in RPE cells expressing P23H
rhodopsin. A) For HMC images, cells were visualized using Nikon inverted light microscope at 10x magnification. Representative images from one of
the three independent studies have been shown. B) For cell viability, cells were trypsinized, collected and resuspended in PBS. Total number of viable
cells was determined in each group using trypan blue assay and percent viability was calculated with respect to the group transfected with LF2000
(LipofectamineH 2000) alone. C) For cell proliferation assay, cells were treated with BrDU for 24 h and then detected using anti-BrDU antibody. The
percentage proliferation was calculated with respect to LF2000 transfected group. Data is expressed as mean 6 S.D. for N = 3. p,0.01 compared with
LF2000 transfected (control) group.
doi:10.1371/journal.pone.0024616.g003
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Figure 4. P23H rhodopsin disrupts the nuclear material and aggregates in RPE cells. A) For confocal images, cells were fixed with 4%
buffered formalin, permeabilized with 0.2% Triton X-100, and treated with RNase. The nucleus was then stained with TO-PRO-3 iodide. Confocal
images were taken using the excitation/emission wavelengths of 637–605/75 and 408–450/35 nm for TO-PRO-3 iodide and CFP, respectively.
Representative images from one of the three independent studies have been shown. For HMC images, the cells were visualized using Nikon inverted
light microscope at 10x magnification. B) The number of distinct nuclei was counted in each confocal image from three independent studies and was
plotted against the pP23H-CFP-Rho transfection level. Data is expressed as mean 6 S.D. for N = 3. *, p,0.01 compared with LF2000 transfected
(control) group.
doi:10.1371/journal.pone.0024616.g004
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LEDGF1-326 (Figure 7B(i(c))). In the detergent insoluble fraction

(Figure 7B), it was apparent that the total P23H rhodopsin

abundance increased when the transfection ratio of pP23H-CFP-

Rho and pLEDGF1-326 was 1:1, but decreased in the presence of

higher levels of pLEDGF1-326 (Figure 7B (i(a)). However, these

changes were not statistically significant. For the detergent soluble

fraction, similar, but less evident trends were seen (Figure 7B (ii)).

To further investigate whether LEDGF1-326 had a similar effect

on WT rhodopsin, western blot studies were repeated with pWT-

CFP-Rho (wild type rhodopsin tagged with cyan fluorescent

protein). Figure 8A represents blots from one of four independent

studies. The detergent insoluble (Figure 8A (i)) and detergent soluble

fraction (Figure 8A (ii)) indicated a ladder of WT rhodopsin.

For WT rhodopsin in the detergent soluble fraction, the

percentage of monomer was higher than the oligomer and this

difference increased due to a decline in oligomer percentage and

an increase in monomer percentage and became statistically

significant (p,0.05) with increasing dose of LEDGF1-326

(Figure 8B(ii(b))).There was a decrease in the WT rhodopsin

oligomer percentage from 1265 to 962% and an increase in the

monomer percentage from 2466 to 2867% in presence of

LEDGF1-326 at the highest dose. Further, the monomer to

oligomer ratio in the detergent soluble fraction increased with

increasing dose of LEDGF1-326 (Figure 8B(ii(c))). In the detergent

insoluble fraction, although not statistically significant, the WT

rhodopsin oligomer percentage was slightly higher than the

monomer percentage in control (Group1) and this difference

decreased with increasing dose of LEDGF1-326.due to an increase

in the monomer percentage. Specifically, there was a decrease in

the WT rhodopsin oligomer percentage from 2367 to 2164%

and an increase in the monomer percentage from 1767 to

2467% in the presence of LEDGF1-326 (Figure 8B(i(b)). The

monomer to oligomer ratio increased with increasing dose of

LEDGF1-326 (Figure 8B(i(c))). Although statistically not significant,

densitometry analysis indicated that, similar to P23H rhodopsin,

there was a decrease in the total WT rhodopsin in both detergent

insoluble as well as in soluble fraction (Figure 8B(i(a)), and (ii(a))),

especially at the highest dose of LEDGF1-326. Compared to P23H

rhodopsin, the oligomer percentage of WT rhodopsin in each

individual group was less (compare Figure 7B(i(b))) and 8B(i(b)))).

Apart from rhodopsin smears, another band was seen at about

65–70 kDa in all blots (Figure 7, and 8). Since this band was well

separated from the rhodopsin smears and was visualized only in

those groups transfected/cotransfected with pLEDGF1-326, it was

assumed to be representing LEDGF1-326, possibly due to cross

reactivity of anti-CFP antibody with GFP tag of LEDGF1-326.

Figure 5. LEDGF1-326 reduces P23H rhodopsin mediate nuclear damage. Cells were fixed with 4% buffered formalin, permeabilized with
0.2% Triton X-100 and treated with RNase. The nucleus was then stained with TO-PRO-3 iodide. Confocal images were taken using the excitation/
emission wavelengths of 408–450/35, 488–515/30, and 637–605/75 nm for CFP, TO-PRO-3 iodide, and GFP, respectively. Images were analyzed using
EZ-C1 3.20 FreeViewer software. Data presents representative images from one of the three independent studies.
doi:10.1371/journal.pone.0024616.g005
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LEDGF1-326 has no effect on transcription of P23H
rhodopsin

To determine if LEDGF1-326 had an effect on P23H rhodopsin

transcription, we examined the levels of P23H rhodopsin mRNA

(Figure 9). Rhodopsin mRNA was measured by qRT-PCR

(quantitative real time polymerase chain reaction). No significant

difference in the mRNA levels was found between the group

transfected with pWT-Rho, pP23H-Rho, and pP23H-CFP-Rho.

Further, the mRNA level of P23H-CFP rhodopsin was seen to

have no significant change in the absence and presence of

LEDGF1-326, indicating that LEDGF1-326 has no effect on the

transcription of P23H-CFP rhodopsin. Thus, the LEDGF1-326

mediated decrease in total P23H-CFP rhodopsin abundance is not

due to decreased P23H transcription.

Discussion

The principal findings of this study are: 1) P23H rhodopsin and

WT rhodopsin form aggregates in RPE cells 2) LEDGF1-326

decreases both P23H and WT rhodopsin aggregates; 3) P23H

rhodopsin disrupts nuclei and decreases the viability and

proliferation of RPE cells; and 4) LEDGF1-326 decreases the

cellular damage caused by P23H rhodopsin. Thus, LEDGF1-326

might be a suitable therapeutic agent for reducing rhodopsin

aggregates and preventing cellular degeneration in diseases like

retinitis pigmentosa.

Others have shown that P23H rhodopsin mediated aggregation

is not limited to photoreceptors, but rather is a fundamental

property of the mutant protein [5]. Our data is consistent with this

observation. P23H rhodopsin, when expressed in RPE cells,

formed insoluble aggregates and decreased cell viability. P23H

rhodopsin likely induced cell death via aggregation mediated

stress. RPE cells play an important role in the development and

maintenance of photoreceptor cells. They are closely associated

with photoreceptor outer segments and phagocytose the constantly

shed segments throughout the life of the organism. Additionally,

they play an active role in photoreceptor metabolism, taking up

waste products and supplying essential metabolic intermediates.

Given that RPE take up large quantities of shed outer segments,

they are almost certainly exposed to the P23H rhodopsin mutant.

LEDGF1-326 partially rescued RPE cultures from P23H

rhodopsin mediated cell death as measured by cell viability

(Figure 3). LEDGF1-326 also appeared to rescue cells from P23H

rhodopsin mediated damage as measured by confocal microscopy

(Figure 5). In multiple independent experiments, P23H rhodopsin

expression resulted in a distinct reduction in the number of nuclei

and disruption of nuclear shape and content, indicating nuclear

damage (Figure 4, and 5). Cotransfection of pLEDGF1-326

appeared to rescue cells from this damage (Figure 5). Compared

to pP23H-CFP-Rho transfected group, the group cotransfected

with both plasmids indicated a higher number of distinct, normal

nuclei and more viable cells. Further, P23H rhodopsin was

localized near the perinuclear region, consistent with protein

aggregation, as reported by others [5]. Conversely, we observed a

significant diffused fluorescence of P23H rhodopsin when the cells

were cotransfected with pLEDGF1-326. WT rhodopsin, on the

other hand, showed diffuse fluorescence pattern in the absence

and presence of pLEDGF1-326 (Figure 6).

Our western blot analysis indicated that although both P23H

and WT rhodopsin aggregated in ARPE-19 cells, the percentage

of WT rhodopsin oligomers were less as compared to P23H

rhodopsin in both detergent insoluble and soluble fractions

(Figure 7 and 8). Further, LEDGF1-326 can reduce the aggregates

of rhodopsin in RPE cells. As the level of pLEDGF1-326

cotransfection was increased, there was a dose-dependent decrease

in the oligomers of P23H as well as WT rhodopsin. At low doses,

LEDGF1-326 reduced P23H and WT rhodopsin oligomers and

increased their monomers, without affecting the total rhodopsin.

However, at the higher doses of pLEDGF1-326 there was also a

Figure 6. Diffuse fluorescent signal of WT rhodopsin in RPE
cells. Cells were fixed with 4% buffered formalin, permeabilized with
0.2% Triton X-100 and treated with RNase. The nucleus was then
stained with TO-PRO-3 iodide. WT rhodopsin visualization was done
using Zeiss LSM 510 NLO laser scanning confocal microscope with 63x
optical zoom. The excitation-emission wavelengths used for CFP, GFP,
and TO-PRO-3 iodide were 800 nm (2-photon excitation)-435/485, 488–
505 (long pass), 633–650/710 nm, respectively. Images were analyzed
using Zen 2000 light edition. Data presents representative images from
one of the three independent studies.
doi:10.1371/journal.pone.0024616.g006
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Figure 7. LEDGF1-326 decreases the oligomers of P23H rhodopsin in RPE cells in a dose-dependent manner. A) For western blotting
cells were lysed using 1% Triton X-100 lysis buffer and the detergent soluble fraction (ii) was collected after centrifugation. Thereafter, the detergent
insoluble pellet was sonicated using a probe sonicator in 1% SDS buffer, the supernatant was collected by centrifugation and described as detergent
insoluble fraction (i). SDS-PAGE was run for both fractions on 4–20% gradient gel. The protein was then transferred onto nitrocellulose membrane
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decrease in the total rhodopsin protein indicating possibly

degradation of rhodopsin. This indicates that LEDGF1-326

function is complex, apart from deaggregation, it might be

assisting the aggregated rhodopsin to degrade. Although LEDGF1-

326 was present in detergent insoluble fraction, it was not present in

oligomeric forms, indicating it is not aggregation prone. Since

LEDGF1-326 was found primarily in the nucleus (Figure 5), it

might be tightly bound to DNA and the initial mild lysis condition

(1% Triton-x 100) may not have been sufficient to fully extract

LEDGF1-326 into the soluble fraction. Thus, LEDGF1-326, a

protein that may not aggregate by itself, reduces the intracellular

aggregates of rhodopsin.

Since our western blots were performed with CFP tagged

rhodopsin, there may be a concern that CFP might show

aggregation behavior. However, although CFP was tagged to

both P23H rhodopsin as well as to WT rhodopsin, the aggregation

behavior and cellular damage was more prominent with P23H

rhodopsin (Figures 7 and 8). Further, both P23H rhodopsin and

P23H rhodopsin tagged with CFP resulted in similar loss in cell

viability (Figure 2B). Hence, it appears that CFP itself may have

minimal effects, if any, on the observed aggregation behavior of

rhodopsin proteins and cytotoxicity of P23H rhodopsin. Further, it

was previously demonstrated that CFP fusion at the C-terminal of

rhodopsin has no discernable effect on its folding or intracellular

distribution [24].

Given that LEDGF has transcriptional activity, it is theoretically

possible that coexpression of LEDGF1-326 may alter the expression

of rhodopsin in our co-transfection experiments. Since the qPCR

study (Figure 9) showed no change in the mRNA level of P23H

rhodopsin in the presence and absence of LEDGF1-326, it appears

that LEDGF1-326 does not play a role in the transcription of P23H

rhodopsin. However, whether LEDGF1-326 is acting directly on

P23H rhodopsin or exerting its effect via the upregulation of

various stress related proteins is unknown at this time.

A previous study conducted using LEDGF protein showed that

there was no rescue of b-waves in the electroretinogram (ERG) of

P23H transgenic rat model with rapidly degenerating photore-

ceptors (Line 1), indicating that LEDGF cannot rescue P23H

mediated photoreceptor damage in the rat model, when dosed

intravitreally on day 10 at a dose of 1 mg [25]. However, the same

study showed that LEDGF can rescue photoreceptors in light-

damaged and RCS rats. Another study employing AAV vectors

capable of expressing LEDGF also showed photoreceptor rescue

in RCS rats but not P23H transgenic (Line 1) rat model [26].

While the in vivo studies in P23H rats would seem to contradict

our findings, it is possible that once the aggregates of P23H

rhodopsin are formed to a certain extent, LEDGF cannot prevent

further damage. Dosing at an earlier stage than the previous study

and at a higher level might be necessary in order to obtain

significant benefits with LEDGF or its derivatives in animal

models. Thus, LEDGF1-326 is of potential value in treating retinal

degenerations associated with P23H rhodopsin.

We have found that the deletion of the HSE from LEDGF has

not abrogated its ability to promote cell survival or protein

deaggregation, indicating that the HSE domain is not essential for

this function. The effect of this deletion on the ability of LEDGF to

activate gene expression has not been directly assessed. Deletion

studies in which somewhat larger sections of the C-terminus were

removed resulted in significant decreases in the transcriptional

activity of the construct [18]. Additionally, LEDGF constructs

consisting only of N-terminal sequence retained much of their

ability to drive the transcription of a reporter gene, indicating that

the N-terminus of LEDGF provides domains important for

transcription. These data would suggest that LEDGF1-326 may

be transcriptionally impaired. However, this has not yet been

explicitly tested. Further investigations are warranted in this

context. Since LEDGF1-326 reduced rhodopsin aggregates in RPE

cells, we speculate that this contributes at least in part to its ability

to reduce nuclear damage and cell death in RPE cells.

RPE degeneration contributes to vision loss in human RP. Our

data demonstrates that P23H can be toxic to RPE, suggesting that

the uptake of toxic photoreceptor components may play an

important role in RP pathogenesis. The degree to which

phagocytosed P23H rhodopsin contributes to RPE degeneration

will be dependent on the ability of the RPE to process

phagocytosed material; an important and underappreciated issue

requiring further investigation.

Materials and Methods

Plasmid pP23H-CFP-Rho was a gift from Dr. Ron R. Kopito,

(University of Stanford, Stanford, CA) and pCMV5 was a gift

from Dr. David W Russell (University of Texas Southwestern

Medical Center, Dallas, Texas). Rabbit polyclonal anti-cyan

fluorescent protein (anti-CFP) antibody, goat polyclonal horse

peroxidase linked anti-rabbit antibody and CFP protein was

purchased from BioVision (Mountain View, CA). ARPE-19 cells

were obtained from ATCC (Manassas, VA). DMEM/F12 cell

culture medium, fetal bovine serum, LF2000 (LipofectamineH
2000), and nucleic acid staining dye TO-PRO-3 iodide was

obtained from Invitrogen (Carlsbad, CA). All other chemicals,

unless specified otherwise, were purchased from Sigma- Aldrich

(St. Louis, MO).

Plasmid construction
pP23H-Rho was cloned from the pP23H-CFP-Rho by cutting out

CFP using Ecor1 and Not1 restriction enzymes. The cloned plasmid

was ligated and then transformed in E. coli DH5a. The plasmid

construct was confirmed for molecular weight by gel electrophoresis

and for gene sequence by sequencing.

For point mutation of pP23H-CFP to pRho-CFP and pP23H-Rho

to pWT-Rho, the primers used were 59GGGTGTGGTACG-

CAGCCCCTTCGAGTACCCACAG39 and 59CGTTGGGTACT-

CGAAGGGGCTGCGTACCACACCC 39. The mutation was done

using the Quick Change kit (Stratagene, La Jolla, CA) as per

manufacturer’s protocol. The mutation was confirmed by sequencing

the gene.

Cell transfection
ARPE-19 cells were cultured in DMEM/F12 (1:1) medium

containing 10% (v/v) fetal bovine serum(FBS), 2% (v/v) L-

glutamine (200 mM), and 1% (v/v) penicillin-streptomycin (10,000

and then immunoblotted using rabbit polyclonal anti-CFP antibody and goat polyclonal anti-rabbit. b-actin was probed after stripping the
membrane and then immunoblotting with mouse monoclonal anti-actin antibody and sheep polyclonal anti-mouse antibody. The protein was
detected using enhanced chemiluminescence film detection method. Representative blot from one of the four independent studies has been shown.
B) For densitometry analysis equal regions were selected from each lane corresponding to each fraction (monomer, dimer, trimer, and oligomer).
Total rhodopsin mean density was calculated by adding all the fractions and then mean density was normalized to b-actin. Data is expressed as mean
6 S.D. for N = 4. *, (p,0.05), indicates significant difference from oligomer in the same group.
doi:10.1371/journal.pone.0024616.g007

LEDGF1-326 for Protein Aggregation Diseases

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24616



LEDGF1-326 for Protein Aggregation Diseases

PLoS ONE | www.plosone.org 11 September 2011 | Volume 6 | Issue 9 | e24616



units/ml of penicillin G sodium mixed with 10,000 mg/ml of

streptomycin sulphate) in a cell incubator maintained at 37uC and

5% carbon dioxide as per ATCC protocol. For transient transfection,

about 105 cells were plated in 12-well plate and incubated. After 24 h,

the medium was aspirated out and the cells were transfected/

cotransfected with pP23H-CFP-Rho/pLEDGF1-326 (this plasmid

contained GFP tag at the N-terminus of LEDGF1-326)/pCMV5

(empty vector) using LF2000 in serum free DMEM/F12 medium.

Plasmids of different ratios (e.g., increasing pLEDGF1-326, with

decreasing pCMV5 plasmid, with a constant total plasmid level)

were used a) to keep the lipofectamine level in various groups

constant and b) to control plasmid transfection efficiency, since an

increase in plasmid level can saturate the transfection process.

Cells transfected with LF2000 alone (control) were also used.

After 8 h of incubation, the transfection medium was removed

and the cells were further incubated for 24 h in normal serum

containing medium. Thereafter, cells were treated as per

individual experiments. All the transfection reagents including

cells and plasmids were up scaled to five times for studies done in

60 mm plates according to LF2000 transfection protocol. All

figures are labeled to represent the dose exposed as the level used

per 10,000 cells. Similar transfection was done for WT

rhodopsin.

Phase contrast microscopy
For phase contrast microscopy, after transfection, cells were

kept on ice and live cells were imaged using an inverted light

microscope (Nikon Eclipse TE300). Hoffman Modulation Con-

trast images were taken using 10x optical lens. The images were

captured using Image proH software (Nikon).

Cell viability assay
After transfection, cells were trypsinized using 0.25% trypsin-

EDTA and collected in Eppendorf tubes. They were then

centrifuged at 1000 g for 5 min to form a pellet. The supernatant

was discarded and the pellet was resuspended in PBS. To this

0.4% of trypan blue was added to stain the dead cells. Unstained

viable cells were thereafter counted using Bright-Line haemocy-

tometer (Hausser Scientific, Horsham PA). The percentage

viability of cells in individual group was calculated with respect

to the LF2000 group.

Cell proliferation assay
The proliferation assay of ARPE-19 cells was done using

bromodeoxyuridine (BrDU) assay kit (Calbiochem, San Diego,

CA) as per manufacturer’s protocol. BrDU, a thymidine analogue,

gets incorporated into newly synthesized DNA strands as the cells

proliferate. Thus, a reduction in percentage of BrDU incorpora-

tion is indicative of reduction in percentage of cells proliferating.

The number of cells and the transfection reagents were scaled

down ten times, as compared to 12-well plate, for transfection in

96-well plate. BrDU label (20 ml) was added to each well along

with the serum containing medium after 8 h of transfection. Two

types of negative controls were maintained: blank (BrDU label but

no cells) and background (untransfected cells with no BrDU label).

The cells were further incubated for 24 h and thereafter fixed,

permeabilized, and the DNA was denatured. The cells were

incubated with mouse anti-BrDU antibody for 1 hour. After

washing the unbound antibody, goat anti-mouse antibody

conjugated with horseradish peroxidase was added and incubated

for 30 min and then tetra-methylbenzidine (TMB), a chromogenic

substrate was added and the absorbance of color developed was

measured at dual wavelengths of 450 nm and 540 nm using a

microplate reader. The absorbance at 450 nm minus the

absorbance at 540 nm indicated the proliferation. The percentage

proliferation of individual group was then calculated with respect

to LF2000 group.

Confocal microscopy
For confocal microscopy, ARPE-19 cells were grown on cover

slips. After transfection, the cells were fixed with 4% buffered

formalin for 20 min, and permeabilized with 0.2% Triton X-100

for 10 min. They were then treated with RNase (100 mg/ml) for

20 minutes to prevent staining of RNAs with TO-PRO-3 iodide.

The nucleus (nuclear DNA) was then stained with TO-PRO-3

iodide (1 mM) for 15 min. All treatments were done at 37uC unless

Figure 8. LEDGF1-326 decreases the oligomers of WT rhodopsin in RPE cells in a dose-dependent manner. A) For western blotting cells
were lysed using 1% Triton X-100 lysis buffer and the detergent soluble fraction (ii) was collected after centrifugation. Thereafter, the detergent
insoluble pellet was sonicated using a probe sonicator in 1% SDS buffer, the supernatant was collected by centrifugation as detergent insoluble
fraction (i). SDS-PAGE was run for both fractions on 4–20% gradient gel. The protein was then transferred onto nitrocellulose membrane and
immunoblotted using rabbit polyclonal anti-CFP antibody and goat polyclonal anti-rabbit. b-actin was probed after stripping the membrane and
then immunoblotting with mouse monoclonal anti-actin antibody and sheep polyclonal anti-mouse antibody. The protein was detected using
enhanced chemiluminescence film detection method. Representative blot from one of the three independent studies has been shown. B) For
densitometry analysis equal regions were selected from each lane corresponding to each fraction (monomer, dimer, trimer, and oligomer). Total
rhodopsin mean density was calculated by adding all the fractions and then mean density was normalized to b-actin. Data is expressed as mean 6

S.D. for N = 4. *,( p,0.05), indicates significant difference from oligomer in the same group.
doi:10.1371/journal.pone.0024616.g008

Figure 9. LEDGF1-326 does not alter the transcription level of
P23H rhodopsin. mRNA was isolated from transfected ARPE-19 cells
using the RNeasy kit. To remove contaminating genomic DNA, 10 mg
RNA from each sample was treated with DNase using the Turbo DNA
free kit. First strand synthesis was done using the high capacity RNA to
DNA. PCR was performed to amplify the DNA on an ABI 7500 PCR
machine. The threshold thermal cycle was used to calculate the mRNA
level of rhodopsin and was normalized to GAPDH mRNA level. Data is
expressed as mean 6 S.D. for N = 3. Data was considered significant at
p,0.01 compared with pWT-Rho transfected group.
doi:10.1371/journal.pone.0024616.g009
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specified and were followed by three washes with PBS. The cover

slip was mounted on a glass slide using SupermountH (Biogenex,

San Ramon, CA) mounting media to prevent rapid loss of

fluorescence. The slides were allowed to dry for 20 min at room

temperature and fluorescence was visualized using confocal

microscope (Nikon Eclipse C1) at 60x optical zoom. The

excitation-emission wavelengths used for CFP, GFP, and TO-

PRO-3 iodide were 408–450/35, 488–515/30, and 637–605/

75 nm, respectively. Images were captured using Nikon EZ-C1

software version 3.40. For nuclei count, images from three

independent studies were taken and the number of distinct nuclei

per frame in each image was counted and the mean number of

distinct nuclei per group was plotted against the level of pP23H-

CFP-Rho transfected.

For WT-CFP rhodopsin visualization, Zeiss LSM 510 NLO

laser scanning confocal microscope was used at 63x optical zoom.

The excitation-emission wavelengths used for CFP, GFP, and TO-

PRO-3 iodide were 800 nm (2-photon excitation)-435/485, 488–

505 (long pass), 633–650/710 nm, respectively. Images were

analyzed using Zen 2000 light edition software (Carl Zeiss,

Thornwood, NY).

Western blotting
For western blotting, cells were cultured in 60 mm dishes. The

number of cells and the transfection reagents were scaled up five

times. After transfection, the cells were lysed for 30 min using

200 ml of lysis buffer (5 mM EDTA, 1% Triton X-100, protease

inhibitor (Complete Mini, Roche Diagnostic, IN) in PBS) under

ice-cold conditions. The lysed cells were collected and centrifuged

at 13000 g for 10 min. The supernatant was collected (named as

detergent soluble fraction) and the pellet was further redissolved

into 50 ml of PBS containing 1% SDS at room temperature for

10 min. Then 150 ml of lysis buffer was added and samples were

sonicated for 20 sec using a probe sonicator (Mesonix 3000) set at

3 Watts. The cells were recentrifuged and the supernatant (named

as detergent insoluble fraction) was collected. Protein estimation of

both the detergent soluble and the insoluble fraction was done

using BCA protein assay reagent (Pierce, Rockford, IL). For gel

electrophoresis the samples were mixed with 4x loading dye,

however, boiling was avoided to prevent heat induced aggregation

of rhodopsin. For detergent soluble fraction 40 mg and for

detergent insoluble fraction 30 mg of protein was loaded for each

experimental group. CFP protein was loaded for positive control.

Samples were run on 4–20% gradient SDS-PAGE gel (Bio-Rad,

Hercules, CA) and then transferred to nitrocellulose membrane.

The membrane was then immunoblotted using rabbit polyclonal

anti-CFP antibody (1:1000) as primary antibody and anti-rabbit

antibody (1:10000) as secondary antibody. Protein bands were

visualized using enhanced chemiluminecence ECLTM detection

kit (GE Healthcare, Piscataway, NJ), and high performance

chemiluminescence films (GE Healthcare, Piscataway, NJ).

Thereafter, the membrane was stripped with stripping buffer

containing 2% SDS, and 0.1 M beta-mercaptoethanol at 50uC for

15 min and reprobed for b-actin protein using mouse monoclonal

anti-actin antibody as primary antibody (1:1000) and sheep anti-

mouse antibody (1:10000) as secondary antibody. Similarly, WT

rhodopsin immunoblotting was also done.

Densitometry analysis was done using Quantity One 1-D

analysis software from Bio-Rad. Equal regions from individual

lanes of blots were selected and the mean intensity of each region

was measured and normalized for b-actin. Thereafter, the mean

intensity was subtracted from the corresponding region of the

untransfected group to reduce the background noise. The mean

intensity of corresponding lane and protein fraction was then

plotted for rhodopsin transfected groups.

Real-Time quantitative PCR
ARPE-19 cells were transfected as above and thereafter RNA

was isolated from cultured cells using the RNeasy kit (Qiagen,

Valencia CA) according to the manufacturer’s protocol. To

remove contaminating genomic DNA, 10 mg RNA from each

sample was treated with DNase using the Turbo DNA free kit

(Ambion, Austin, TX) as per user’s manual to degrade any DNA

present in the sample. Thereafter, first strand of DNA was

synthesized from the mRNA using the high capacity RNA to DNA

kit (Applied Biosystems, Inc., Carlsbad, CA). Then, PCR was

performed on an ABI 7500 PCR machine to amplify the DNA.

The number of thermal cycle required to reach threshold was

obtained. Rhodopsin mRNA level was calculated from this

threshold cycle. Similarly GAPDH mRNA (mRNA commonly

present in all cells) level was detected and rhodopsin mRNA level

was normalized to GAPDH mRNA to represent the mRNA level

of rhodopsin present in each group.

Statistical analysis
All statistical analysis was done using SPSS, ver. 19; (SPSS,

Chicago, IL). The data is represented as the mean 6 SD,

Independent samples student’s t-test was done for statistical

comparisons between two experimental groups. To compare

between multiple experimental groups one-way ANOVA followed

by the Tukey’s post hoc analysis was used. The results were

considered statistically significant at p,0.05.
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