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ABSTRACT The choice of summary statistics is a crucial step in approximate Bayesian computation (ABC). Since statistics are often not
sufficient, this choice involves a trade-off between loss of information and reduction of dimensionality. The latter may increase the
efficiency of ABC. Here, we propose an approach for choosing summary statistics based on boosting, a technique from the machine-
learning literature. We consider different types of boosting and compare them to partial least-squares regression as an alternative. To
mitigate the lack of sufficiency, we also propose an approach for choosing summary statistics locally, in the putative neighborhood of
the true parameter value. We study a demographic model motivated by the reintroduction of Alpine ibex (Capra ibex) into the Swiss
Alps. The parameters of interest are the mean and standard deviation across microsatellites of the scaled ancestral mutation rate (05, =
4Neu) and the proportion of males obtaining access to matings per breeding season (w). By simulation, we assess the properties of the
posterior distribution obtained with the various methods. According to our criteria, ABC with summary statistics chosen locally via
boosting with the L,-loss performs best. Applying that method to the ibex data, we estimate 6nc &~ 1.288 and find that most of the
variation across loci of the ancestral mutation rate u is between 7.7 x 104 and 3.5 x 1073 per locus per generation. The proportion of

males with access to matings is estimated as @ = 0.21, which is in good agreement with recent independent estimates.

NDERSTANDING the mechanisms leading to observed

patterns of genetic diversity has been a central objective
since the beginnings of population genetics (Fisher 1922;
Haldane 1932; Wright 1951; Charlesworth and Charlesworth
2010). Three recent trends keep advancing this undertak-
ing: (1) molecular data are becoming available at an ever
higher pace (Rosenberg et al. 2002; Frazer et al. 2007),
(2) new theory continues to be developed, and (3) in-
creased computational power allows solution of problems
that were intractable just a few years ago. In parallel, the
focus has shifted to inference under complex models (e.g.,
Fagundes et al. 2007; Blum and Jakobsson 2011) and to the
joint estimation of parameters (e.g., Williamson et al. 2005).
Usually, these models are stochastic. The increasing com-
plexity of models is justified by the underlying processes like
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inheritance, mutation, modes of reproduction, and spatial
subdivision. On the other hand, complex models are often
not amenable to inference based on exact analytical results.
Instead, approximate methods such as Markov chain Monte
Carlo (MCMC) (Gelman et al. 2004) or approximate Bayes-
ian computation (ABC) (Marjoram and Tavaré 2006) are
used. These approximate methods address different issues
in inference and the choice therefore depends on the specific
problem. A significant part of research in the field is cur-
rently devoted to the refinement and development of such
methods. ABC is a Monte Carlo method of inference that
emerged from the confrontation with models for which
the evaluation of the likelihood is computationally prohibi-
tive or impossible (Fu and Li 1997; Tavaré et al. 1997; Weiss
and Von Haeseler 1998; Pritchard et al. 1999; Beaumont
et al. 2002). ABC may be viewed as a class of rejection algo-
rithms (Marjoram et al. 2003; Marjoram and Tavaré 2006),
where the full data are projected to a lower-dimensional
set of summary statistics. Here, we propose an approach for
choosing summary statistics based on boosting (see below),
and we apply it to the estimation of the mean and variance
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across microsatellites of the scaled ancestral mutation rate
and of the mating skew in Alpine ibex (Capra ibex). We
further show that focusing the choice of statistics on the
putative neighborhood of the true parameter value improves
estimation in this context.

The principle of ABC is to first simulate data under the
model of interest and then accept simulations that produced
data close to the observation. Parameter values belonging to
accepted simulations yield an approximation to the posterior
distribution, without the need to explicitly calculate the
likelihood. The full data are usually compressed to summary
statistics to reduce the number of dimensions. Formally, the
posterior distribution of interest is given by

Dl)(d)  w(Dl)w(d)
TP =Dy T aDleymdds D

where ¢ is a vector of parameters living in space ®, D
denotes the observed data, w(¢p) the prior distribution,
and 7(D|¢) the likelihood. With ABC, (1) is approximated
by

mo(pls) = m(p(s!s) = 8:|d)(db), 2

where s and s’ are abbreviations for realizations of S(D)
and S(D’), respectively, and S is a function generating a
g-dimensional vector of summary statistics calculated from
the full data. The prime denotes simulated points, in con-
trast to quantities related to the observed data. Further, p(-)
is a distance metric and §, the rejection tolerance in that
metric space, such that on average a proportion ¢ of all
simulated points is accepted. ABC, its position in the en-
semble of model-based inference methods, and its applica-
tion in evolutionary genetics are reviewed in Marjoram
et al. (2003), Beaumont and Rannala (2004), Marjoram and
Tavaré (2006), Beaumont (2010), Bertorelle et al. (2010), and
Csilléry et al. (2010). Although the origin of ABC is generally
assigned to Fu and Li (1997), Tavaré et al. (1997), and
Pritchard et al. (1999), some aspects, such as the summary
description of the full data, inference for implicit stochastic
models, and algorithms directly sampling from the posterior
distribution, trace farther back (e.g., Diggle 1979; Diggle
and Gratton 1984; Rubin 1984).

A fundamental issue with the basic ABC rejection
algorithm (e.g., Marjoram et al. 2003) is its inefficiency: A
large number of simulations are needed to obtain a satisfac-
tory number of accepted runs. This problem becomes worse
as the number of summary statistics increases and is known
as the curse of dimensionality. Three solutions have been
proposed: (1) more efficient algorithms combining ABC with
principles of MCMC (e.g., Marjoram et al. 2003; Wegmann
et al. 2009) or sequential Monte Carlo (e.g., Sisson et al.
2007, 2009; Beaumont et al. 2009; Toni et al. 2009); (2)
fitting a statistical model to describe the relationship of
parameters and summary statistics after the rejection step,
allowing for a larger tolerance 6, (Beaumont et al. 2002;
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Blum and Frangois 2010; Leuenberger and Wegmann
2010); and (3) reduction of dimensions by sophisticated
choice of summary statistics (e.g., Joyce and Marjoram
2008; Wegmann et al. 2009). In this study, we focus on
point 3, which involves two further issues. First, most sum-
mary statistics used in evolutionary genetics are not suffi-
cient. A summary statistic S(D) is sufficient for parameter ¢
if the conditional probability distribution of the full data D,
given S(D) and ¢, does not depend on ¢, i.e., if

7(D =d|S(D) =s,¢) = w(D =d|S(D) =s).  (3)

In other words, a statistic is sufficient for a parameter of
interest, if it contains all the information on that parameter
that can possibly be extracted from the full data (e.g., Shao
2003). Second, the choice of summary statistics implies the
choice of a suitable metric p(-) to measure the “closeness” of
simulations to observation (except for the nongeneric case
¢ = 0 in which no metric needs to be defined). The Euclidean
distance (or a weighted version, e.g., Hamilton et al. 2005)
has been used in most applications, but it is not obvious why
this should be optimal. By “optimal” we mean that the
resulting posterior estimate performs best in terms of an
error criterion (or a set of criteria). The Euclidean distance
is a scale-dependent measure of distance—changing the
scale of measurement changes the results. Since this scale
is determined by the summary statistics, the choice of sum-
mary statistics has implications for the choice of the metric.
For these reasons, the choice of summary statistics should
aim at reducing the dimensions, but also at extracting (com-
binations of) statistics that contain the essential information
about the parameters of interest. This task is reminiscent of
the classical problem of variable selection in statistics and
machine learning (Hastie et al. 2011), and it is of principal
interest here.

The choice of summary statistics in ABC has become
a focus of research only recently. Joyce and Marjoram
(2008) proposed a sequential scheme based on the principle
of approximate sufficiency. Statistics are included if their
effect on the posterior distribution is larger than some
threshold. Their approach seems demanding to implement,
and it is not obvious how to define an optimal threshold.
Wegmann et al. (2009) suggested partial least-squares
(PLS) regression as an alternative. In this context, PLS re-
gression seeks linear combinations of the original summary
statistics that are maximally decorrelated and, at the same
time, have high correlation with the parameters (Hastie
et al. 2011). A reduction in dimensions is achieved by choos-
ing only the first r PLS components, where r is determined
via cross-validation. PLS is one of several approaches for
variable selection, but it is an open question how it com-
pares to alternative methods in any specific ABC setting.
Moreover, the optimal choice of summary statistics may de-
pend on the location of the true (but unknown) parameter
values. By definition, this is to be expected whenever the



summary statistics are not sufficient, because then the in-
formation extracted from the full data by the summary sta-
tistics depends on the parameter value (see Equation 3). It is
therefore not obvious why methods that assess the relation
between statistics and parameters on a global scale should
be optimal. Instead, focusing on the correlation only in the
(supposed) neighborhood of the true parameter values
might be preferable. The issue is that this neighborhood is
not known in advance—if we could choose an arbitrarily
small neighborhood around the truth, our inference problem
would be solved and we would not need ABC or any other
approximate method. However, the neighborhood may be
established approximately, as we will argue later. The idea
of focusing the choice of summary statistics on some local
optimization has also been followed by Nunes and Balding
(2010) and Fearnhead and Prangle (2012). Nunes and Balding
(2010) proposed using a minimum-entropy algorithm to
identify the neighborhood of the true value and then chose
the set of summary statistics that minimized the mean
squared error across a test data set. Fearnhead and Prangle
(2012), on the other hand, first proved that, for a given loss
function, an optimal summary statistic may be defined. For
example, when the quadratic loss is used to quantify the
cost of an error, the optimal summary statistic is the pos-
terior mean. Since the latter is not available a priori, the
authors devised a heuristic to estimate it and were able to
show good performance of their approach. The choice of
the optimization criterion may include a more local or
a global focus on the parameter range. Different criteria
will lead to different optimal summary statistics. The
approaches by Nunes and Balding (2010) and Fearnhead
and Prangle (2012), and the one we take here, have in
common that they employ a two-step procedure, first de-
fining “locality” and then using standard methods from
statistics or machine learning to select summary statistics
in this restricted range. They differ in the details of these
two steps (see Discussion).

Here, we propose a novel approach for choosing sum-
mary statistics in ABC. It is based on boosting, a method
developed in machine learning to establish the relationship
between predictors and response variables in complex
models (Schapire 1990; Freund 1995; Freund and Schapire
1996, 1999). Given some training data, the idea of boosting
is to iteratively train a function that describes this relation-
ship. At each iteration, the training data are reweighted
according to the current prediction error (loss), and the
function is updated according to an optimization rule. It
has been argued that boosting is relatively robust to over-
fitting (Friedman et al. 2000), which would be an advantage
with regard to high-dimensional problems as encountered in
ABC. Different flavors of boosting exist, depending on
assumptions about the error distribution, the loss function,
and the learning procedure. In a simulation study, we com-
pare the performance of ABC with three types of boosting to
ABC with summary statistics chosen via PLS and to ABC with
all candidate statistics. We further suggest an approach for

choosing summary statistics locally and compare the local
variants of the various methods to their global versions.
Throughout, we study a model that is motivated by the
reintroduction of Alpine ibex into the Swiss Alps. The
parameters of interest are the mean and standard deviation
across microsatellites of the scaled ancestral mutation rate
and the proportion of males that obtain access to matings
per breeding season. This model is used first in the simula-
tion study for inference on synthetic data and assessment of
performance. Later, we apply the best method to infer pos-
terior distributions given genetic data from Alpine ibex. It is
not our goal to compare all the approaches recently pro-
posed for choosing summary statistics in ABC. This would
reach beyond the scope of this article, but provides a per-
spective for future research. Recently, Blum et al. (2012)
carried out a comparative study of the various approaches
and found that, for an example similar to our context, PLS
performed slightly better than approximate sufficiency
(Joyce and Marjoram 2008), but worse than a number of
alternative approaches including the posterior loss method
(Fearnhead and Prangle 2012) and the two-stage mini-
mum entropy procedure (Nunes and Balding 2010). Nev-
ertheless, PLS has been widely used in recent applications
and we have therefore focused on comparing our approach
to PLS.

We start by describing the ibex model and its parameters.
We then present an ABC algorithm that includes a step for
choosing summary statistics. Later, we describe the boosting
approach for choosing the statistics and we suggest how to
focus this choice on the putative neighborhood of the true
parameter value. Comparing different versions of boosting
among each other and with PLS, we conclude that boosting
with the Lj-loss restricted to the vicinity of the true param-
eter performs best, given our criteria. However, the differ-
ence from the next best methods (local boosting with the
L;-loss and local PLS) is small.

Model and Parameters

We study a neutral model of a spatially structured popula-
tion with genetic drift, mutation, and migration. The de-
mography includes admixture, subdivision, and changes in
population size. This model is motivated by the recent
history of Alpine ibex and their reintroduction into the Swiss
Alps (Figures 1 and 2). By the beginning of the 18th century,
Alpine ibex had been extinct except for ~100 individuals in
the Gran Paradiso area in Northern Italy (Figure 1). At the
beginning of the 20th century, a schedule was set up to
reestablish former demes in Switzerland (Couturier 1962;
Stuwe and Nievergelt 1991; Scribner and Stuwe 1994;
Maudet et al. 2002). The reintroduction has been docu-
mented in great detail by game keepers and authorities.
We could reconstruct for 35 demes their census sizes be-
tween 1906 and 2006 (Supporting Information, File S2,
census sizes) and the number of females and males trans-
ferred between them, as well as the times of these founder/
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admixture events (File S3, transfers). Inference on muta-
tion and migration can therefore be done conditional on
this information. The signal for this inference comes from
the distribution of allele frequencies across loci and across
demes.

We constructed a forward-in-time model starting with an
ancestral gene pool d,;,. of unknown effective size, N,, rep-
resenting the Gran Paradiso ibex deme. At times t; and ¢,
two demes, d; and d,, are derived from the ancestral gene
pool. They represent the breeding stocks that were estab-
lished in two zoological gardens in Switzerland in 1906 and
1911 (Figure 1) (Stuwe and Nievergelt 1991). Further
demes are then derived from these. We let t; be the time
at which deme d; is established. Once a derived deme has
been established, it may contribute to the foundation of
additional demes. The sizes of derived demes follow the
observed census size trajectories (File S2, census sizes).
We interpolated missing values linearly, if the gap was only
1 year, or exponentially, if values for =2 successive years
were missing. Derived demes may exchange migrants if
they are connected. This depends on information obtained
from game keepers and on geography (Figure 1). Given
a pair of connected demes d; and d;, we define the forward
migration rates, m;; and m;;. More precisely, m;; is the pro-
portion of potential emigrants (see File S1) in deme d; that
migrate to deme d; per year. We assume that m;; is constant
over time and the same for females and males. Migration
is included in the model, although we do not estimate
migration rates in this article, but in a related article (S.
Aeschbacher, A. Futschik, and M. A. Beaumont, unpub-
lished results). Here, we restrict our attention to the an-
cestral mutation rate and the proportion of males getting
access to matings, marginal to the migration rates (see
below). Estimating migration rates comes with additional
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Figure 1 Location of Alpine ibex demes
in the Swiss Alps. The parts with dark
shading represent areas inhabited by
ibex. The ancestral deme is located in
the Gran Paradiso area in Northern [taly,
close to the Swiss border. The two
demes in the zoological gardens 33
and 34 were first established from the
ancestral one. Further demes, including
the two in zoological gardens 32 and
35, were derived from demes 33 and
34. Putative connections indicate the
pairs of demes for which migration is
considered possible. For a detailed re-
cord of the demography and the gene-
alogy of demes see Figure S1 and File
S3. For deme names see Table S1. The
map was obtained via the Swiss Federal
Office for the Environment (FOEN) and
modified with permission.

Ancestral deme

Derived deme

mHO®

Zoological garden

—= Putative connection

complications that go beyond the focus of this article. A
schematic representation of the model is given in Figure
2. When modeling migration, reproduction, and founder
events, we take into account the age structure of the pop-
ulation (see File S1 for details).

Population history is split into two phases. The first
started at some unknown point in the past and ended at t; =
1906, when the first ibex were brought from Gran Paradiso
(dane) to dy. For this ancestral phase, we assume constant,
but unknown effective size N. and mutation following the
single stepwise model (Ohta and Kimura 1973) at a rate u
per locus and generation. Accordingly, we define the scaled
mutation rate in the ancestral deme as 0,4, = 4N.u. Muta-
tion rates may vary among microsatellites for several rea-
sons (Estoup and Cornuet 1999). To account for this, we use
a hierarchical model, assuming that 6,,. is normally distrib-
uted across loci on the log,¢-scale with mean w4 _ and stan-
dard deviation oy,,. In our case, u, and oy, are the
hyperparameters (Gelman et al. 2004) of interest. We as-
sume that N, is the same for all loci, so that variance in 0.,
can be attributed to u exclusively. In principle, variation in
diversity across loci could also be due to selection at linked
genes (Maynard Smith and Haigh 1974; Charlesworth et al.
1993; Barton 2000), rather than variable mutation rates.
Most likely, we cannot distinguish these alternatives with
our data. The second, recent phase started at time t; and
went up to the time of genetic sampling, t, = 2006. During
this phase, the numbers of males and females transferred at
founder/admixture events and census population sizes are
known and accounted for. Mutation is neglected, since, in
the case of ibex, this phase spans only ~11 generations at
most (Stuwe and Grodinsky 1987). At the transition from
the ancestral to the recent phase, genotypes of the founder
individuals introduced to demes d; and d, are sampled at
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Figure 2 Schematic representation of the demographic model motivated
by the reintroduction of Alpine ibex into the Swiss Alps. Shaded shapes
represent demes, indexed by d;, and the width of the shapes reflects the
census size. Time goes forward from top to bottom, and the point in time
when deme dj is established is shown as t; tq is the time of genetic
sampling. The total time is split by t; into an ancestral phase with muta-
tion and a recent phase for which mutation is ignored (see text for
details). Solid horizontal arrows represent founder/admixture events and
dashed arrows migration. The parameters are (1) the scaled mutation rate
in the ancestral deme, 61, = 4Nu; (2) the proportion of males getting
access to matings, w; and (3) forward migration rates between putatively
connected demes, m;;. The actual model considered in the study contains
35 derived demes (Figure 1 and Table S1). The exact demography is
reported in Figure S1 and File S3, transfers.

random from the ancestral deme, d,,.. At the end of the
recent phase (tg), genetic samples are taken according to
the sampling scheme under which the real data were
obtained. Of the total 35 demes, 31 were sampled (Table
S1).

In Alpine ibex, male reproductive success is highly skewed
toward dominant males. Dominance is correlated with male
age (Willisch et al. 2012), and ranks are established during
summer. Only a small proportion of males obtain access to
matings during the rut in winter (Aeschbacher 1978; Stuwe
and Grodinsky 1987; Scribner and Stuwe 1994; Willisch and
Neuhaus 2009; Willisch et al. 2012). To take this into ac-
count, we introduce the proportion of males obtaining ac-
cess to matings, w, as a parameter. It is defined relative to
the number of potentially reproducing males (and therefore
conditional on male age; see File S1) and has an impact on
the strength of genetic drift. For simplicity, we assume that w
is the same in all demes and independent of deme size and
time.

In principle, we want to infer the joint posterior dis-
tribution 7(m, «|D), where « = (uq__,0y,,.,») and m =
{mij:i1#j,1€ Tm, j € Im}, with J,, denoting the set of all
demes connected via migration to at least one other deme
(Figure 1). This is a complex problem because there are
many parameters and even more candidate summary statis-
tics; the curse of dimensionality is severe. Targeting the joint
posterior with ABC naively would give a result, but it would
be hard to assess its validity. It is more promising to address

intermediate steps and assess them one by one. A first step
is to focus on a subset of parameters and marginalize over
the others. By marginalizing we mean that the joint poste-
rior distribution is integrated with respect to the parameters
that are not of interest. In our case, we may focus on «
and integrate over the migration rates m where they have
prior support (Table 1). In practice, marginal posteriors can
be targeted directly with ABC—without the need to com-
pute the joint likelihood explicitly and integrate over it
(see below). A second step is to clarify what summary sta-
tistics should be chosen for the subset of focal parameters
(«). A third one is to deal with the curse of dimensionality
related to estimating m. In this article, we deal with steps
one and two: We aim at estimating o marginally to m
and we seek a good method for choosing summary statistics
with respect to a.. The third step—estimating m and dealing
with its high dimensionality—is treated separately (S.
Aeschbacher, A. Futschik, and M. A. Beaumont, unpublished
results). Note that this division of the problem implies the
assumption that priors of the migration rates and male mat-
ing success are independent. We make this assumption
partly for convenience and partly because we are not aware
of any study that has shown a relation between the two in
Alpine ibex. The division into two steps also requires that
the set of all summary statistics (S) can be split into two
subsets, such that the first (S,) contains most of the infor-
mation on «, whereas the second (Sg) contains most of the
information on m. Moreover, S, should not be affected
much by m. As shown in the Appendix, the results are not
much affected in such a situation while the computational
burden decreases significantly. The arguments in the Appen-
dix rely on the notions of approximate sufficiency and ap-
proximate ancillarity.

Methods

The joint posterior distribution of our model may be
factorized as

m(m, a|D) = 7 (mje, D)m(alD). @

As mentioned, here we target only the marginal posterior of
«, which is formally obtained as

(a|D) = [Mﬂ-(rh, o|D)dr, ®)

where M is the domain of possible values for m. By the
nature of our problem, 7(m,a|D) is not available. How-
ever, with ABC we may target (5) directly by sampling from
T(a|Sq = Sa(D)), where we assume that S, is a subset of
summary statistics approximately sufficient for estimating
« (Appendix). Note that S, may not be sufficient to esti-
mate the joint posterior (4), however (Raiffa and Schlaifer
1968). The following standard ABC algorithm provides an
approximation to w(a|s,) (e.g., Marjoram et al. 2003):
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Table 1 Parameters and prior distributions

Parameter Description Prior distribution
Oanc,/ Scaled ancestral mutation rate at locus /, 4N.u 10910 (Banc) ~ N(;Lgm,zrzw)a
Mg, Mean across loci of ,nc/ (0n logqo-scale) Mg, ~N(0.5,1)

b, Standard deviation across loci of 64, (on logie-scale) o9, ~ log;p-uniform in [0.01, 1]

® Proportion of mature males with access to matings
Forward migration rate per year from deme i to deme j

fﬁ,‘Jb

 ~ logqp-uniform in [0.01, 1]
mjj ~ log;g-uniform in [10735, 10795

? N(u, o), normal distribution with mean w and variance o2.

® Although migration rates are not estimated here, they are drawn from the prior in all simulations (see main text).

Algorithm A

Al. Calculate summary statistics s, = S (D) from observed
data.
A2.Fort =1tot =N,
i. Sample (a{,m¢) from 7 (o, m) = 7(a)7(m).
ii. Simulate data D/ (at all loci and for all demes) from
7(D| eaf, my¢).
ili. Calculate sq¢ = So(D{) from simulated data.
A3. Scale s, and sq¢ (t = 1,...,N) appropriately.
A4. For each t, accept a if p(Sq., Sa) = 8., using scaled sum-
mary statistics from A3.
A5. Estimate the posterior density 7 (e|s,) from the &N
accepted points (Se, 0tf).

Step A2 may be easily parallelized on a cluster computer.
In doing so, one needs to store (sqr, @{). Step A5 may in-
clude postrejection adjustment via regression (Beaumont
et al. 2002; Blum and Frangois 2010; Leuenberger and
Wegmann 2010) and scaling of parameters. In general,
the set of well-chosen, informative summary statistics S,
is not known in advance. Instead, a set of candidate statis-
tics S (chosen based on intuition or analogy to simpler
models) may be available. Therefore, we propose algo-
rithm B—a modified version of algorithm A—that includes
an additional step for the empirical choice of summary
statistics S, informative on « given a set of candidate sta-
tistics, S (for similar approaches, see Hamilton et al. 2005;
Wegmann et al. 2009):

Algorithm B

B1. Calculate candidate summary statistics s = S(D) from
observed data.
B2. Fort =1tot =N,
i. Sample (af, m/) from 7(a, m) = 7(a)7r(m).
ii. Simulate data D/ (at all loci and for all demes) from
7(D|e} ,my).
iii. Calculate candidate summary statistics s; = S(Dy)
from simulated data.
B3. Sample without replacement n =< N simulated pairs
(s{,a(), denote them by (s/,a/), and use them as
a training data set to choose informative statistics S,,.
According to B3, obtain s, from s; fort = 1 tot = N,
obtain s, from s{.
B5. Scale s, and sg¢ (t = 1,...,N) appropriately.
B6. For each t, accept o/ if p(Sg., Sa) =8,, using scaled sum-
mary statistics from B5.

B4.
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B7. Estimate the posterior density 7.(a|S,) from the ¢N
accepted points (S4, f).

Note that S, in steps B3 and B4 may be either a subset of
S or some function (e.g., a linear combination) of S (details
of implementation given below). In the following, we de-
scribe a novel approach based on boosting and recently pro-
posed by Lin et al. (2011) for the choice of S, in B3.

Choice of summary statistics via boosting

Boosting is a collective term for meta-algorithms originally
developed for supervised learning in classification problems
(Schapire 1990; Freund 1995). Later, versions for regression
(Friedman et al. 2000) and other contexts were developed
(Bithlmann and Hothorn 2007 and references therein). As-
sume a set of n observations indexed by i and associated
with a one-dimensional response Y;. For (binary) classifica-
tion, Y; € {0, 1}, but in a regression context, Y; may be
continuous in R. Further, each observation is associated with
a vector of g predictors X; = (Xf”, . ,qu) ). Given a training
data set {(Xy, Y1), ..., (Xp, Y,)}, the task of a boosting algo-
rithm is to learn a function F(X) that predicts Y. Boosting
was invented to deal with cases where the relationship be-
tween predictors and response is potentially complex, for
example, nonlinear (Schapire 1990; Freund 1995; Freund
and Schapire 1996, 1999). Establishing the relationship be-
tween predictors and response, and weighting predictors
according to their importance, directly relates to the prob-
lem of choosing summary statistics in ABC: Given candidate
statistics S, we want to find a subset or combination of
statistics S, informative for the kth parameter a® in a,
for every k. Taking the set of simulated pairs (s, f(a:)) (t =
1,...,N) from step B3 of algorithm B as a training data set,
this may be achieved by boosting. For this purpose, we in-
terpret the summary statistics S as predictors X and the
parameters e as the response Y. Note that we use f(a/)
to be generic in the sense that the response might actually
be a function—such as a discretization step (see below)—of
of.

The principle of boosting is to iteratively apply a weak
learner to the training data and then combine the ensemble
of weak learners to construct a strong learner. While the
weak learner predicts only slightly better than random
guessing, the strong learner will usually be well correlated
with the true Y. This is because the training data are
reweighted after each step according to the current error,



such that the next weak learner will focus on those obser-
vations that were particularly hard to assign. However, too
strong a correlation will lead to overfitting, so that in prac-
tice one defines an upper limit for the number of iterations
(see below). The behavior of the weak learner is described
by the base procedure g(-), a real valued function. The final
result (strong learner) is the desired function estimate F OF
Given a loss function L(-, -) that quantifies the disagreement
between Y and F(X), we want to estimate the function
that minimizes the expected loss,

F*(-) = arg ming()E[L(Y,F(X))]. (6)

This can be done by considering the empirical risk
n~ 15" L(Y;,F(X;)) and pursuing iterative steepest descent
in function space (Friedman 2001; Bithlmann and Hothorn
2007). The corresponding algorithm is given in the Appen-
dix. The generic boosting estimator obtained from this algo-
rithm is a sum of base procedure estimates,

Mitop

F(y=vY_gM(). %)
m=1

Both v and myyp are tuning parameters that essentially con-
trol the overfitting behavior of the algorithm. Biihlmann and
Hothorn (2007) argue that the learning rate v is of minor
importance as long as » =< 0.1. The number of iterations,
Mseop, however, should be chosen specifically in any applica-
tion via cross-validation, bootstrapping, or some information
criterion [e.g., Akaike’s information criterion (AIC)].

Base procedure: Different versions of boosting are obtained
depending on the base procedure g(-) and the loss function
L(., -). Here, we let g(-) be a simple componentwise linear
regression (Bithlmann and Hothorn 2007; see Appendix).
With this choice, the boosting algorithm selects in every
iteration only one predictor, namely the one that is most
effective in reducing the current loss. For instance, with
the L,-loss (defined below), after each step, F (+) is updated
linearly according to

") + w2 E)xlln), ®

ﬁ[m] (X) _ F[
where Z,, denotes the index of the predictor variable se-
lected in iteration m. Accordingly, in iteration m only the
/th component of the coefficient estimate A s updated.
As m goes to infinity, F(-) converges to a least-squares solu-
tion. In practice, we stop at mgp, and we denote the final
vector of estimated coefficients as A = A" Recall that in
our context, the predictor variables X correspond to the
candidate summary statistics S. For each of the k parameters
in @, we estimate one function F' "™ and use it to obtain
new parameter-specific statistics Sy -

Loss functions: We employed boosting with three loss
functions. The first two, Li-loss and L,-loss, are appropriate

for a regression context with a continuous response Y € R.
In this case, the parameters «; are directly interpreted as y;
[i.e., f(a{) = e(]. The Ly-loss is given by

Ly, (y,F) = |y = F| ©)

and results in L,Boosting. The L,-loss is given by

1
Li, (¥, F) = 5|y = F*| (10)

and results in L,Boosting. The scaling factor % in (10)
ensures that the negative gradient vector U in the functional
gradient descent (FGD) algorithm (Appendix and File S1)
equals the residuals (Biihlmann and Hothorn 2007). L;-
and L,Boosting result in a fit of a linear regression, similarly
to ordinary regression using the least absolute deviation (L1-
norm) or the least-squares criterion (L,-norm), respectively.
The difference, and a potential advantage of boosting, is that
residuals are fitted multiple times depending on the impor-
tance of the components of X. Moreover, boosting is consid-
ered less prone to overfitting than ordinary L;- or L,-fitting
(Biihlmann and Hothorn 2007). In general, the L;-loss is
more robust to outliers, but it may produce multiple, poten-
tially unstable solutions. Using L,- and L,Boosting to choose
summary statistics means assuming a linear relationship be-
tween summary statistics and parameters. This is a strong
assumption and most likely not globally true. However, the
advantage is that the resulting linear combination has only
one dimension, such that the curse of dimensionality in ABC
may be strongly reduced. Again, the approach using the L;-
or L,-loss results in one linear combination fimeer per pa-
rameter «®®, such that S, has only one component. These
linear combinations may end up being correlated across
parameters, especially if parameters are not identifiable,
e.g., because they are confounded with each other.

To motivate the third loss function, we propose consid-
ering the choice of summary statistics as a classification
problem. Imagine two classes of parameter values—say,
high values in one class and low values in the other. We
may ask what summary statistics are important to assign
simulations to one of these two classes. With Y € {0, 1} as
the class label and p(x) := Pr[Y = 1|X = x], a natural choice
is the negative binomial log-likelihood loss

Liog-tik (v,p) = — [y log(p) + (1 —y)log(1 —p)], (1D

omitting the argument of p for ease of notation. If we pa-
rameterize p = ef/(1 + ) so that we obtain F = log[p/(1 —
p)] corresponding to the logit-transformation, the loss in
(11) becomes

Llog-lik(va) = log[l + e—(Zy—l)F}. (12)
The corresponding boosting algorithm is called LogitBoost

(or binomial boosting) (Bithlmann and Hothorn 2007). An
advantage is that it does not assume a linear relationship
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between summary statistics and parameters, as is the case for
L;- and L,Boosting. Instead, LogitBoost fits a logistic regression
model, which might be more appropriate. On the other hand,
it requires choosing a discretization procedure f(-) to map e, €
R to y € {0, 1} (see below). Since such a choice is arbitrary,
it would be problematic to use the resulting fit (a linear com-
bination on the logit-scale) directly as S, . In practice, we
instead assigned a candidate statistic 89 (j = 1,...,q)
to S, if the corresponding boosted coefficient AU (¢f. Equa-
tion 8) was different from zero and omitted it otherwise.
Therefore, compared to Li- and L,Boosting, the reduction
in dimensionality was on average lower, but the strong as-
sumption of a linear relationship between a® and S« was
avoided. Note that, in principle, nonlinear relationships may
be fitted with the L;- and L,-loss, too (Friedman et al. 2000).
In File S1 we provide explicit expressions for the population
minimizers (Equation 6) and some more insight on the boost-
ing algorithms under the three loss functions used here.

Partial least-squares regression: Recently, Wegmann et al.
(2009) proposed to choose summary statistics in ABC via
PLS regression (e.g., Hastie et al. 2011 and references
therein). PLS is related to principal component regression.
But in addition to maximizing the variance of the predictors
X, at the same time, it maximizes the correlation of X with
the response Y. Applied to the choice of summary statistics,
it therefore not only decorrelates the summary statistics, but
also chooses them according to their relation to . Hastie
et al. (2011) argue that the first aspect dominates over the
latter, however. The number r of PLS components to keep is
usually determined based on some cross-validation proce-
dure (see below). In the context of ABC, the r components
are multiplied by the corresponding statistics S (j < r) to
obtain S,x (Wegmann et al. 2009).

Global vs. local choice

We have so far suggested that S, is close to sufficient for
estimating «. This will hardly be the case in practice. By
definition, the optimal choice of S, then depends on the
unknown true parameter value(s). Ideally, we therefore
want to focus the choice of S, on the neighborhood of the
truth. The latter is not known in practice. As a workaround,
we propose to use the n simulated pairs (s¢+, /) from step
B3 in algorithm B and the observed summary statistics s to
approximately establish this neighborhood as follows.

Local choice of summary statistics in B3:

1. Consider the n pairs (s¢, af) (t* = 1,...,n) from step
B3 in algorithm B.

2. Mean center each component s’ (j =1, ..., q) and scale
it to have unit variance.

3. Rotate s’ using principal component analysis (PCA).

4. Apply the scaling from steps 2 and 3 to the observed
summary statistics s.

5. Mean center the PCA-scaled summary statistics obtained

in step 3, and scale them to have unit variance. Do the
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same for the PCA-scaled observed statistics obtained in
step 4. Denote the results by §" and §, respectively.

6. For each t* € n, compute the Euclidean distance
Op = Hst’ - st*“-

7. Keep the n' pairs (si+, o) (t** =
8+ =z, where z is some threshold.

8. Use the n' points accepted in step 7 as a training set to
choose statistics S, with the desired method.

9. Continue with step B4 in algorithm B.

1,...,n") for which

In step 2 above, the original summary statistics are
brought to the same scale. Otherwise, summary statistics
with a high variance would on average contribute relatively
more to the Euclidean distance than summary statistics with
a low variance. However, whether a simulated data point is
far from or close to the target (s) in multidimensional space
may depend not only on the distance along the dimension of
each statistic, but also on the correlation among statistics.
This can be accounted for by decorrelating the statistics, as
is done by PCA in step 3. In combination with the Euclidean
distance in step 6, the procedure above essentially uses the
Mahalanobis distance as a metric (Mahalanobis 1936). Al-
though we cannot prove the optimality of this approach, it
seems to work well in our simulations. Note that in steps 8
and 9, the summary statistics are used on their original scale
again. This is because we want our method for choosing
parameter-specific combinations of statistics to use the in-
formation comprised in the difference in scale among the
original statistics—even in the vicinity of s. The PCA scaling
in step 5 is only used temporarily to determine 8.« in step 6.
Figure S2 visualizes the different scales and the effect of
determining an approximate neighborhood around s.

The scheme just described may be combined with any
of the methods for choosing summary statistics described
above. In our case, we considered ABC with global and local
versions of PLS (called pls.glob and pls.loc in the following),
LogitBoost (Igb.glob and Igb.loc), L;Boosting (I1b.glob and
l1b.loc), and L,Boosting (I2b.glob and [2b.loc). Moreover,
we performed ABC with all candidate statistics S (all) as
a reference.

Candidate summary statistics: Our set S of candidate sum-
mary statistics consisted of the mean and standard devation
across loci of the following statistics: the average within-
deme variance of allele length, the average within-deme
gene diversity (H,), the average between-deme gene diver-
sity (H,), the total Fig, the total Fgr, the total within-deme
mean squared difference (MSD) in allele length (S;), the
total between-deme MSD in allele length (S,), the total
Rgt, and the number of allele types in the total population.
This amounts to a total of 18 summary statistics. We com-
puted H,, H,, Fis, and Fgr according to Nei and Chesser
(1983) and Si, S,, and Rgr according to Slatkin (1995).
Note that all summary statistics are symmetrical with re-
spect to the order of the loci, which is consistent with our
hierarchical parameterization of the ancestral mutation rate.
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Implementation: Throughout, we used the prior distribu-
tions given in Table 1. In algorithm B, we performed N = 10°
simulations and in B2i we assumed that 7(e, m) = 7(e)7r(m).
In B3, we used n = 10* simulations for the choice of sum-
mary statistics (in both the global and the local versions).
Moreover, we first chose sets of summary statistics for each
parameter separately and then took the union of the sets,
i.e., Sa = UxSqm, Where each S« is chosen according to one
of the methods proposed. This also applies to step 8 in the
procedure for the local choice of summary statistics (see above).
For the local choice, we kept the n’ = 1000 pairs closest to the
observation s, and we used the pcrcomp function in R version
2.11 (R Development Core Team 2011) for PCA. Note that the
set of the n’ simulations closest to s and, hence, z in step 7 of
the procedure for the local choice were the same for all local
methods compared. In B5, we mean centered the summary
statistics and scaled them to have unit variance. In B6, we chose
the Euclidean distance as metric p(-). In B7 we did post-
rejection adjustment with a weighted local-linear regres-
sion with weights from an Epanechnikov kernel (Beaumont
et al. 2002), without additional scaling of parameters. For steps
B6 and B7 we used the abc package (Csilléry et al. 2011) for R.
We estimated the parameters and performed the linear regres-
sion on the same scale as the respective priors were defined.

For the PLS method, we used the pls package (Mevik and
Wehrens 2007) for R and followed Wegmann et al. (2009,
2010). Specifically, we performed a Box—Cox transformation
of the summary statistics prior to the PLS regression, and we
chose the number of components to keep based on a plot of
the root mean squared prediction error. We kept r = 10
components, both for pls.glob and pls.loc (Figure S3). For
all methods based on boosting, we mean centered the sum-
mary statistics before boosting and used the glmboost func-
tion of the mboost package (Biihlmann and Hothorn 2007;
Hothorn et al. 2010) for R. For the LogitBoost methods, we
chose for each k the first and third quartiles of the sample of
a® drawn in step B3 of algorithm B3 as the centers of the
two classes of parameter values. For Igb.glob, we then
assigned the 500 a®-values closest to the first quartile to
the first class (y = 0) and the 500 values closest to the third
quartile to the second class (y = 1). For Igb.loc, we analo-
gously assigned the 100 a®-values closest to the two quar-
tiles to the two classes. For both Igb.glob and Igb.loc, we
chose the optimal mg., based on the AIC (Akaike 1974;
Bithlmann and Hothorn 2007), but set an upper limit for
Mgop Of 500 iterations. For [1b.glob and [1b.loc, we chose
Mgrop Via 10-fold cross-validation with the cvrisk function of
the mboost package, setting an upper limit of 100. Finally,
for 12b.glob and [2b.loc, we chose mg,p, based on the AIC,
with an upper limit of 100. Figure S4, Figure S5, and Figure
S6 further illustrate the boosting procedure.

Simulation study and application to data

To assess the performance of the different methods for
choosing summary statistics and to study the influence of
the rejection tolerance ¢, we carried out a simulation study.

For each ¢ € {0.001, 0.01, 0.1}, we simulated 500 test data
sets with parameter values sampled from the prior distribu-
tions and then inferred the posterior distribution for each
set. In the case of local choice of summary statistics, the
procedure of defining informative summary statistics based
on the candidate statistics was run for each test data set
separately. For the global choice, it was run only once per
method, because there is no dependence on the supposed
true value. Similar to Wegmann et al. (2009), we used as
a measure of accuracy of the marginal posterior distributions
the root mean integrated squared error (RMISE), defined as

RMISE; = 1/ [y (6% — ) *m(b® |s)dp™), where py is the
true value of the kth component of the parameter vector ¢
and 7(¢p®|s) is the corresponding estimated marginal pos-
terior density. Recall that ¢ =« = (uy,_,0,,,®) in our
case. From this, we obtained the relative absolute RMISE
(RARMISE) as RARMISE, = RMISE,/|u«|. We also com-
puted the absolute error (AE,) between three marginal pos-
terior point estimates (mode, mean, and median) and .
Dividing by |ux|, we obtained the relative absolute error
(RAE,). To directly compare the various methods to ABC
with all summary statistics, we computed standardized var-
iants of the RMISE and AE as follows: If ai!! is the measure of
accuracy for ABC with all summary statistics, and aj is the
one for ABC with the method of interest, the standardized
measure was obtained as a}/ a!'. Importantly, we also
assessed whether—across the 500 test data sets—the values
obtained by evaluating the cumulative posterior distribution
function at the respective true parameter value were uni-
formly distributed in [0, 1]. This indicates whether an
inferred posterior distribution has converged to a distribu-
tion with correct coverage properties, given the respective
computational constraints and summary statistics. We refer to
this criterion as “coverage property” or “uniform distribution
of posterior probabilities.” This approach has been motivated
by Cook et al. (2006) and applied in previous ABC studies
(e.g., Wegmann et al. 2009). Note that Cook et al. (2006)
called these posterior probabilities “posterior quantiles,” which
is somewhat misleading. We tested for a uniform distribution
of the posterior probabilities, using a Kolmogorov—-Smirnov
test (Sokal and Rohlf 1981). Since 81 such tests had to be
performed, it would at first glance seem appropriate to correct
for multiple testing. However, we want to protect ourselves
from keeping by mistake the null hypothesis of uniformly
distributed posterior probabilities, rather than to avoid re-
jection of the null hypothesis in marginal cases. Therefore,
correcting for multiple testing would be conservative in the
wrong direction. As a measure of our skepticism against
uniformly distributed posterior probabilities, we report the
Kolmogorov—-Smirnov distance

KS;,, = sup|Fn(x) — F(x)|, (13)

where F,,(x) is the empirical distribution function of n iden-
tically and independently distributed observations x; from
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a random variable X, and F(x) is the null distribution func-
tion (the uniform distribution between 0 and 1 in our case).

For the application to Alpine ibex, we used allele
frequency and repeat length data from 37 putatively neutral
microsatellites as described in Biebach and Keller (2009)
(Figure 1 and Table S1). The data were provided to us by
the authors. ABC simulations and inference were identical to
those in the simulation study, with the same number of
markers (see also File S1). The program called SPoCS that
we wrote and used for simulation of the ibex scenario and
a collection of R and shell scripts used for inference are avail-
able on the website http://pub.ist.ac.at/~saeschbacher/phd
e-sources/.

Results
Comparison of methods for choice of summary statistics

We have suggested boosting with componentwise linear
regression as a base procedure for choosing summary
statistics in ABC. Three loss functions were considered: the
L1- and the L,-loss and the negative binomial log-likelihood.
We have compared the performance of ABC with summary
statistics chosen via different types of boosting to that of
ABC with statistics chosen via PLS (Wegmann et al. 2009)
and to that of ABC with all candidate summary statistics
(Table 2). The RAE behaved similarly for the three point
estimates (mode, mean, and median), but the mode was
less reliable in cases where the posterior distributions did
not have a unique mode (Figure S7). We decided to focus on
the median. For assessment of the methods, we sought a low
RARMISE and a low RAE of the median (RAEedian in the
following), and we required that the distribution of poste-
rior probabilities of the true value did not deviate from uni-
formity for any parameter.

ABC with all summary statistics (all) and ABC with Log-
itBoost (Igb.glob) performed well in terms of RARMISE and
RAE edian, €specially when estimating w, and o (Figure 3,
A and B). However, the posteriors of u, inferred with all
and Igb.glob tended to be biased (Kolmogorov-Smirnov dis-
tance and coverage P-value in Table 2).

Figure S8 implies that all yielded too narrow a posterior
on average (U-shaped distribution of posterior probabilities
of the true value), while Igb.glob tended to underestimate
Ko, (left-skewed distribution of posterior probabilities).
This made us disfavor the methods all and Igb.glob.
Throughout, ABC with L;- and L,Boosting on the global
scale (l1b.glob and [2b.glob) performed very similarly in
terms of RARMISE and RAEeqian (Figure 3, A and B). Be-
cause the Ly-loss is in general more sensitive to outliers,
similarity in performance of 11b.glob and [2b.glob suggests
that there were no problems with outliers, i.e., no simula-
tions producing extreme combinations of parameters and
summary statistics. The accuracy of the pls.glob method
was intermediate, except for the RAEncdian Of wp, . and
0,,., Where pls.glob performed worst (Figure 3B). For all
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methods, the RARMISE and the RAE, cqian Were consider-
ably lower for y,__ than for oy,,, and w. This implies that the
latter two are more difficult to estimate with the data and
model given here (see Figure S7). For an idea of how the
data drive the parameter estimates, it is instructive to con-
sider the correlation of individual summary statistics with
the parameters (see Figure S11, Figure S12, and Figure
S13).

The accuracy of estimation is expected to depend on the
acceptance rate ¢ in a way determined by a trade-off be-
tween bias and variance (e.g., Beaumont et al. 2002). While
the RAE measures only the error of the point estimator, the
RARMISE is a joint measure of bias and variance across the
whole posterior distribution. The variance may be assigned
to different sources. A first component—call it simulation
variance—is a consequence of the finite number N of simu-
lations. The lower ¢ is, the fewer points are accepted in the
rejection step (B6 of algorithm B, see above). Posterior den-
sities estimated from fewer points will be less stable than
those inferred from more points, i.e., show higher variance
around the true posterior. A second variance component—
the sampling variance—is due to the loss of information
caused by using summary statistics that are not sufficient.
To illustrate the trade-off between simulation and sampling
variance, assume ¢ is fixed. If a large number of summary
statistics are chosen, these may extract most of the informa-
tion and thus limit the sampling variance. However, more
summary statistics mean more dimensions and therefore
a lower chance of accepting the same number of simulations
than with fewer summary statistics and hence a higher sim-
ulation variance. In addition, accepting with §, > 0—which
is characteristic of ABC—will introduce a systematic bias if
the multidimensional density is not symmetric on the chosen
metric with respect to the observation s. On the other hand,
increasing 8, reduces the simulation variance. Hence, there
are in fact multiple trade-offs. It is not obvious in advance
which one will dominate, and it is hard to make a prediction.
This is reflected in our results: We found no uniform pattern
for the dependence on ¢ of the RARMISE and the RAE cgjan-
For instance, with [2b.glob the RARMISE increased as a func-
tion of ¢ for o7,,, but decreased for w (Figure 3A). Moreover,
and typically for a trade-off, the relationship between accu-
racy and ¢ need not be monotonic (Figure 3) (¢f. Beaumont
et al. 2002).

Attempting to mitigate the lack of sufficiency, we have
proposed to choose summary statistics locally—in the puta-
tive neighborhood of the true parameter values—rather
than globally over the whole prior range. As expected, the
local choice led to different combinations of statistics, and it
had an effect on the scaling of the statistics for pls.loc, [1b.
loc, and 12b.loc (Figure S14). However, the local versions of
the different methods performed similarly to their global
counterparts in terms of RARMISE and RAE cgian (Table 3
and Figure 3). The only exception to this is PLS when esti-
mating pu{ {0 _anc}}, where the local version (pls.loc)
resulted in an estimation error that increased more strongly
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Table 2 Accuracy of different methods for choosing summary statistics on a global scale

Method £ Parameter RARMISE? RAE? mode RAE mean RAE median KSs00¢ Cov. P4
all 0.001 M, 0.143 (0.147) 0.062 (0.074) 0.065 (0.075) 0.062 (0.075) 0.072 0.011*
T, 0.452 (0.231) 0.269 (0.213) 0.269 (0.222) 0.265 (0.218) 0.034 0.610
® 0.446 (0.272) 0.221 (0.225) 0.215 (0.218) 0.219 (0.22) 0.027 0.859
0.01 Mo 0.141 (0.145) 0.061 (0.072) 0.064 (0.074) 0.065 (0.075) 0.082 0.003*
T, 0.466 (0.257) 0.299 (0.21 0.286 (0.225) 0.282 (0.226) 0.019 0.992
0] 0.432 (0.259) 0.233 (0.232) 0.226 (0.23) 0.232 (0.232) 0.026 0.880
0.1 Mo, 0.140 (0.134) 0.065 (0.075) 0.067 (0.078) 0.067 (0.075) 0.081 0.003*
T, 0.463 (0.272) 0.324 (0.238) 0.306 (0.248) 0.296 (0.243) 0.032 0.677
® 0.431 (0.263) 0.234 (0.229) 0.228 (0.22) 0.226 (0.223) 0.038 0.482
pls.glob 0.001 o, 0.171 (0.16) 0.077 (0.087) 0.083 (0.089) 0.081 (0.088) 0.038 0.466
T, 0.488 (0.276) 0.291 (0.223) 0.289 (0.252) 0.276 (0.228) 0.024 0.936
w 0.451 (0.275) 0.238 (0.221) 0.234 (0.224) 0.237 (0.227) 0.022 0.969
0.01 Mo, 0.166 (0.152) 0.080 (0.09 0.079 (0.09) 0.079 (0.089) 0.035 0.562
T, 0.480 (0.291) 0.307 (0.223) 0.295 (0.268) 0.293 (0.242) 0.038 0.473
® 0.441 (0.262) 0.241 (0.234) 0.230 (0.225) 0.229 (0.226) 0.035 0.562
0.1 Mo, 0.171 (0.146) 0.083 (0.091) 0.086 (0.097) 0.087 (0.094) 0.037 0.497
0o, 0.469 (0.283) 0.319 (0.237) 0.307 (0.286) 0.310 (0.276) 0.056 0.089
® 0.433 (0.265) 0.240 (0.226) 0.234 (0.224) 0.234 (0.23) 0.049 0.178
Igb.glob 0.001 Mo, 0.149 (0.152) 0.064 (0.074) 0.065 (0.076) 0.064 (0.074) 0.082 0.002*
T, 0.435 (0.204) 0.270 (0.231) 0.261 (0.214) 0.247 (0.205) 0.038 0.466
® 0.456 (0.275) 0.235 (0.23 0.230 (0.237) 0.232 (0.224) 0.025 0913
0.01 o, 0.145 (0.15) 0.066 (0.076) 0.066 (0.078) 0.066 (0.076) 0.103 <0.001*
0o, 0.450 (0.223) 0.281 (0.215) 0.269 (0.217) 0.258 (0.209) 0.046 0.238
® 0.436 (0.27) 0.235 (0.234) 0.222 (0.223) 0.225 (0.228) 0.025 0.916
0.1 Mo, 0.147 (0.142) 0.068 (0.079) 0.067 (0.078) 0.069 (0.079) 0.135 <0.001*
T, 0.471 (0.284) 0.288 (0.209) 0.301 (0.249) 0.271 (0.233) 0.054 0.103
® 0.427 (0.259) 0.232 (0.222) 0.225 (0.216) 0.228 (0.22) 0.042 0.329
|1b.glob 0.001 o, 0.188 (0.178) 0.075 (0.087) 0.074 (0.087) 0.076 (0.088) 0.035 0.573
T, 0.445 (0.202) 0.271 (0.236) 0.261 (0.232) 0.256 (0.216) 0.023 0.954
® 0.487 (0.297) 0.251 (0.259) 0.226 (0.227) 0.232 (0.226) 0.031 0.723
0.01 179 0.178 (0.17) 0.075 (0.087) 0.075 (0.088) 0.075 (0.085) 0.031 0.711
T, 0.463 (0.217) 0.288 (0.24 0.271 (0.238) 0.259 (0.221) 0.029 0.805
® 0.468 (0.288) 0.255 (0.262) 0.228 (0.222) 0.235 (0.233) 0.034 0.595
0.1 o, 0.177 (0.173) 0.078 (0.092) 0.078 (0.094) 0.079 (0.094) 0.043 0.311
T, 0.508 (0.299) 0.307 (0.21 0.304 (0.269) 0.290 (0.248) 0.051 0.144
® 0.449 (0.272) 0.238 (0.241) 0.237 (0.222) 0.239 (0.227) 0.031 0.716
12b.glob 0.001 Mo, 0.183 (0.173) 0.075 (0.087) 0.074 (0.085) 0.074 (0.086) 0.029 0.794
T, 0.441 (0.202) 0.273 (0.229) 0.257 (0.228) 0.254 (0.212) 0.028 0.828
® 0.487 (0.296) 0.251 (0.257) 0.231 (0.226) 0.234 (0.229) 0.033 0.648
0.01 M, 0.180 (0.173) 0.077 (0.087) 0.077 (0.088) 0.076 (0.087) 0.030 0.766
T, 0.459 (0.213) 0.278 (0.242) 0.262 (0.235) 0.259 (0.214) 0.028 0.815
® 0.470 (0.288) 0.253 (0.26 0.231 (0.221) 0.237 (0.229) 0.037 0.497
0.1 Mo 0.176 (0.171) 0.080 (0.092) 0.080 (0.096) 0.080 (0.093) 0.041 0.365
T, 0.503 (0.281) 0.300 (0.213) 0.297 (0.249) 0.283 (0.253) 0.052 0.139
® 0.445 (0.267) 0.240 (0.24 0.239 (0.227) 0.236 (0.225) 0.030 0.755

RARMISE and RAE are given as the median across 500 independent estimations with true values drawn from the prior (median absolute deviation in parentheses). oy, and
were estimated on the logio-scale. *P < 0.05 without correction for multiple testing; cf. Figure S8.
“ Relative absolute root mean integrated squared error (see text) with respect to the true value.

b Relative absolute error with respect to the true value.

¢ Kolmogorov-Smirnov distance between empirical distribution of posterior probabilities of the true parameter and U(0, 1).

9 pvalue from a Kolmogorov-Smirnov test.

with ¢ compared to the global version (pls.glob). More impor-
tantly, however, the coverage properties of the posteriors for
ey, deteriorated for pls.loc, l1b.loc, and [2b.loc (Table 3),
compared to their global versions (Table 2). The effect was
weakest for [2b.loc and in general increased as a function of e.
The pls.loc method tended to overestimate w,__, while Igb.loc,
l1b.loc, and [2b.loc tended to underestimate it (Figure S9).
For direct comparison of methods, before averaging
across test sets, we standardized the measures of accuracy

relative to those obtained with all summary statistics (Figure
4). The only local method that, for all parameters, led to
lower RARMISE and RAEegian than its global version was
2b.loc. In contrast, Igh.glob and Igb.loc performed very sim-
ilarly; pls.loc did worse than pls.glob for u,_, but better than
pls.glob for oy, and w. Overall, we chose [2b.loc with ¢ =
0.01 as our favored method. This configuration provided
good coverage for all parameters (Table 3). At the same
time, it had lower RARMISE and RAE,c4ian than pls.glob,
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Figure 3 Accuracy of different methods for choosing summary statistics as a function of the acceptance rate (¢). (A and B) Results for different methods
when applied to the whole parameter range (global choice). (C and D) The methods were applied only in the neighborhood of the (supposed) true value
(local choice). The performance resulting from using all candidate summary statistics is shown for comparison in both rows. A and C show the root mean
integrated squared error (RMISE), relative to the absolute true value. B and D give the absolute error of the posterior median, relative to the absolute true
value. Plotted are the medians across n = 500 independent test estimations with true values drawn from the prior (error bars denote the

median=MAD/+/n, where MAD is the median absolute deviation).

the method that would also have had good coverage prop-
erties for u, . We disfavored all, igb.glob, and Igb.loc due to
their relatively weak coverage properties. Note that all
methods compared in Figure 4 performed worse in terms
of RARMISE and RAEcdian than all when estimating u,_ .
This might be due to the loss of information caused by leav-
ing out some summary statistics. Apparently, this loss is not
fully compensated in our setting by the potential gain from
reducing the dimensions. In models with many more dimen-
sions, this may be different.

In summary, although performance in terms of RMISE and
absolute error was only partially in favor of [2b.loc, we pre-
ferred this method based on its good coverage properties
(Tables 2 and 3). Moreover, for log;y(cy,.) and logip(w),
the differences between methods measured by RMISE and
absolute error were small compared to the error bars
(=MAD/+/n), implying that too much weight should not be
given to the respective rankings in Figures 3 and 4.

It is worth recalling some of the characteristics of the
methods compared here. The pls method is the only one that
involves decorrelation of the statistics. Apparently, this did not
lead to a net improvement compared to the other methods.
Although one explanation might be that the statistics were
only weakly correlated, Figure S10 shows evidence of strong
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correlation among some statistics. Thus, it would appear that
correlation among statistics does not substantially reduce effi-
ciency (but this finding cannot be readily extrapolated to other
settings, as we have used only a moderate number of sum-
mary statistics here). The reduction of dimensions is strongest
with the 11b and [2b methods, since they result in one linear
predictor per parameter. On the other hand, these methods
assume a linear relationship between parameters and statis-
tics. Since the latter was clearly not the case (e.g., Figure S11),
it seems that the reduction of dimensions compensated for
that assumption. This effect might be more pronounced in
problems with many more statistics.

Application to Alpine ibex

Posterior distributions inferred for the ibex data with the
various methods and ¢ = 0.01 are shown in Figure 5. The
projection of some posterior density out of the prior support
is not an artifact of kernel smoothing, but a consequence of
regression adjustment. Leuenberger and Wegmann (2010)
suggested a way of avoiding this problem. Since the effect is
small—essentially absent for our favored method [2b.loc—
we did not correct for this (¢f. Figure S7). Moreover, the
uniform distribution of posterior probabilities obtained with
[2b.loc and ¢ = 0.01 (Figure S9) shows that the concerns
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Table 3 Accuracy of different methods for choosing summary statistics on a local scale

Method & Parameter RARMISE RAE mode RAE mean RAE median KSs00 Cov. P
pls.loc 0.001 Mo, 0.168 (0.136) 0.081 0.091) 0.088 (0.095) 0.086 (0.091) 0.043 0.314
T, 0.490 (0.262) 0.283 0.229) 0.277 (0.234) 0.271 (0.226) 0.043 0.314

® 0.450 (0.278) 0.232 0.234) 0.225 (0.228) 0.225 (0.228) 0.031 0.723
0.01 |7 0.175 (0.126) 0.088 0.094) 0.098 (0.103) 0.094 (0.099) 0.067 0.023*

0o, 0.485 (0.274) 0.287 0.222) 0.287 (0.243) 0.280 (0.223) 0.046 0.232

[0} 0.434 (0.259) 0.240 0.238) 0.235 (0.224) 0.236 (0.227) 0.033 0.655
0.1 Mo, 0.220 (0.147) 0.101 0.103) 0.113 (0.108) 0.106 (0.104) 0.087 0.001*

T, 0.489 (0.282) 0.294 0.216) 0.275 (0.243) 0.288 (0.231) 0.057 0.078

® 0.429 (0.259) 0.239 0.226) 0.239 (0.227) 0.234 (0.223) 0.045 0.273
Igb.loc 0.001 Mo, 0.149 (0.151) 0.061 0.074) 0.067 (0.081) 0.064 (0.077) 0.076 0.006*
T, 0.440 (0.213) 0.271 0.213) 0.259 (0.209) 0.253 (0.209) 0.037 0.500

w 0.450 (0.283) 0.229 0.231) 0.223 (0.219) 0.223 (0.217) 0.029 0.794
0.01 Mo, 0.144 (0.147) 0.065 0.074) 0.068 (0.078) 0.066 (0.077) 0.085 0.001*

T, 0.456 (0.237) 0.292 0.209) 0.277 (0.223) 0.268 (0.213) 0.035 0.576

® 0.439 (0.27) 0.235 0.229) 0.228 (0.225) 0.230 (0.225) 0.027 0.862
0.1 Mo, 0.140 (0.133) 0.068 0.077) 0.069 (0.078) 0.068 (0.078) 0.093 <0.001*

0o, 0.467 (0.275) 0.315 0.233) 0.298 (0.24) 0.288 (0.234) 0.020 0.991

w 0.431 (0.264) 0.232 0.22) 0.226 (0.219) 0.227 (0.222) 0.039 0.423

I1b.loc 0.001 Mo, 0.184 (0.183) 0.070 0.081) 0.070 (0.083) 0.071 (0.082) 0.059 0.062
T, 0.449 (0.215) 0.263 0.234) 0.254 (0.219) 0.256 (0.218) 0.034 0.610

® 0.484 (0.281) 0.246 0.253) 0.232 (0.218) 0.240 (0.233) 0.034 0.610
0.01 Mo, 0.176 (0.18) 0.072 0.081) 0.070 (0.083) 0.070 (0.082) 0.071 0.012*

0o, 0.450 (0.218) 0.268 0.25) 0.263 (0.23) 0.257 (0.221) 0.033 0.651

® 0.466 (0.279) 0.255 0.265) 0.234 (0.22) 0.241 (0.234) 0.029 0.791
0.1 Mo, 0.175 (0.181) 0.076 0.092) 0.072 (0.084) 0.071 (0.085) 0.107 <0.001*

T, 0.504 (0.276) 0.277 0.234) 0.291 (0.251) 0.261 (0.227) 0.045 0.257

® 0.444 (0.267) 0.238 0.236) 0.237 (0.227) 0.231 (0.225) 0.032 0.694

12b.loc 0.001 Mo, 0.180 0.18) 0.071 0.08) 0.074 (0.084) 0.070 (0.081) 0.043 0.314
T, 0.436 (0.207) 0.249 0.222) 0.251 (0.215) 0.253 (0.213) 0.030 0.759

%) 0.479 (0.275) 0.257 0.261) 0.233 (0.226) 0.244 (0.235) 0.037 0.500

0.01 Mo 0.172 (0.173) 0.075 0.085) 0.077 (0.087) 0.076 (0.087) 0.056 0.084

T, 0.444 0.211) 0.258 0.246) 0.264 (0.225) 0.257 (0.215) 0.033 0.651

w 0.459 (0.276) 0.256 0.276) 0.234 (0.228) 0.244 (0.236) 0.036 0.532
0.1 M, 0.168 (0.169) 0.077 0.091) 0.076 (0.09) 0.077 (0.091) 0.128 <0.001*

T, 0.496 (0.266) 0.277 0.235) 0.289 (0.241) 0.264 (0.23) 0.044 0.284

® 0.446 (0.271) 0.239 0.242) 0.237 (0.23) 0.236 (0.233) 0.035 0.579

Details are as in Table 2 (cf. Figure S9).

that motivate the approach by Leuenberger and Wegmann
(2010) do not apply in our case. Point estimates and 95%
highest posterior density (HPD) intervals obtained with
[2b.loc are given in Table 4. Recall that u, and oy, are
hyperparameters of the distribution of 6an.; across loci:
10g16(0anct) ~ N(ug,,., 05, ) (cf. Table 1). Inserting the es-
timates from Table 4, we obtained logiy(fancs) ~
N(0.110, 0.1632), which implies a mean fanc across loci
of 1.288. The limits of the interval defined by f, =
26y, translate into (0.607, 2.735) on the scale of 6,,.. Re-
member that 0,,. = 4N u; it measures the total genetic di-
versity present in the ancestral deme at time t; = 1906
(Figure 2), i.e., at the start of the reintroduction phase.
Although we were able to estimate 6,,. with relatively high
precision, that does not immediately tell us about N, or u
without knowing one of the two. However, given some
rough, independent estimates of N, and u, we may assess
whether our estimate 6, ~ 1.288 is plausible. On the one
hand, historical records of the census size of the ancestral
Gran Paradiso deme are available. In combination with an
estimate of the ratio of effective to census size, we may

therefore obtain a rough estimate of N.. Specifically, the
census size of the Gran Paradiso deme (Figure 1) was es-
timated as <100 for the early 19th century (Stuwe and
Nievergelt 1991; Scribner and Stuwe 1994), as 3000 for
the early 20th century (Stuwe and Scribner 1989), and as
4000 for the year 1913 (Maudet et al. 2002). In addition,
Scribner and Stuwe (1994) estimated for eight ibex demes
in the Swiss Alps the effective population size from census
estimates of the numbers of adult males and females. Their
estimates of N, were about one-third of the respective total
census estimates. Together, these numbers suggest that a re-
alistic range for the ancestral effective size N, might be be-
tween 30 and 1300. On the other hand, estimates of the
mutation rate u for microsatellites range from 104 to
1072 per locus and generation (Di Rienzo et al. 1998;
Estoup and Angers 1998). Combining these two ranges results
in O, ranging from 1.2 x 1072 ~ 1072 to 5.2 x 10 ~ 102
suggesting that our estimate 8,5 ~ 1.288 is plausible. Per-
haps more interestingly, we may ask about the range across
loci of u that is compatible with the range of Oane cOTTE-
sponding to f, =~ * 24y, (0.607, 2.735). The underlying
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Figure 4 Standardized accuracy of different methods for choosing summary statistics as a function of the acceptance rate (¢). Standaridized! means
that, before averaging across test sets, we divided the measures of accuracy for the respective method by the measure of accuracy obtained with all
candidate summary statistics (this may change the relative order of methods compared to Figure 3, as the average of a ratio is generally not the same as
the ratio of two averages). (A) Root mean integrated squared error (RMISE), relative to the RMISE obtained with all summary statistics. (B) Absolute error
of the posterior median, relative to the one obtained with all summary statistics. Further details are as in Figure 3.

assumption is that N, is roughly the same for all loci, so that
variation in O is exclusively due to variation of u across
loci. Taking the geometric mean of the extremes from above,
Ne = (30 x 1300)1/2 ~ 197, as a typical value, the corre-
sponding interval for it across lociis (7.7 x 1074, 3.5 x 1073).
In other words, most of the variation in u across loci spans
less than one order of magnitude.

The estimates for log;¢(w) from Table 4 imply a propor-
tion of males obtaining access to matings of @ ~ 0.208 or
~21%. The 95% HPD interval for w is (0.047, 0.934). An
observational study in a free-ranging ibex deme suggested
that ~10% of males reproduced (Aeschbacher 1978). More
recently, Willisch et al. (2012) conducted a behavioral and
genetic study and reported paternity scores for males of
different age classes. The weighted mean across age classes
from this study is ~14% successful males. Given the many
factors that influence such estimates, our result of 21%
seems in good agreement with these values, and our 95%
HPD interval includes them. Two points are worth noting.
First, our 95% HPD interval for w seems large, which reflects
the uncertainty involved in this parameter. Second, when esti-
mating w, we are essentially estimating the ratio of recent ef-
fective population size to census population size, N /N, where
Nél) is the effective size of a derived deme d;. This ratio may be
smaller than one for many reasons—not just male mating ac-
cess. Thus, we have strictly speaking estimated the strength of
genetic drift due to deviations in reproduction from that in an
idealized population. Nevertheless, the good agreement with
the independent estimates of male mating access is striking.

In Figure 6, we report pairwise joint posterior distribu-
tions for [2b.loc and ¢ = 0.01. The pairwise joint modes are
close to the marginal point estimates in Table 4. Moreover,
Figure 6 suggests no strong correlation among parameters.

Discussion

We have suggested three variants of boosting for the choice
of summary statistics in ABC and compared them to each
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other, to PLS regression, and to ABC with all candidate
summary statistics. Moreover, we proposed to choose
summary statistics locally, in the putative neighborhood of
the observed data. Overall, the mean of the ancestral
mutation rate u, Wwas more precisely estimated than its
standard deviation oy, and the male mating access rate
w. In our context, ABC with summary statistics chosen lo-
cally via boosting with componentwise linear regression as
a base procedure and the L,-loss performed best in terms of
accuracy (measured by RARMISE and RAEegian) and uni-
formity of posterior probabilities together. However, the dif-
ference between the methods was moderate and the ranking
depended to some degree on our choice of criteria to assess
performance. If the main interest had been in a small error
of point estimates (low RAEedian), Dut less in good overall
posterior properties (low RARMISE and uniform posterior
probabilities of the true value) at the same time, boosting
with the negative binomial log-likelihood loss and, some-
what surprisingly, ABC with all candidate statistics, would
have been preferable to boosting with the L;- and L,-loss.
Under this criterion (low RAEedian), the performance of the
PLS method was intermediate when estimating w, but in-
ferior to that of any boosting approach when estimating u,,__
and oy, . In general, choosing summary statistics locally
slightly improved the accuracy compared to the global
choice, but it led to worse posterior coverage for u, . The
local version of L,Boosting with acceptance rate ¢ = 0.01
coped best with this trade-off.

Applying that method to Alpine ibex data, we estimated
the mean across loci of the scaled ancestral mutation rate as
Oane &~ 1.288. The estimates for 0p,,. implied that most of
the variation across loci of the mutation rate u was between
7.7 x 10~* and 3.5 x 1073. The proportion of males obtain-
ing access to matings per breeding season was estimated as
® =~ 0.21, which is in good agreement with recent indepen-
dent estimates. This result suggests that the strong domi-
nance hierarchy in Alpine ibex is reflected in overall genetic
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Figure 5 Marginal posterior distributions inferred from the Alpine ibex data. Posteriors obtained with tolerance ¢ = 0.01 and various methods for
choosing summary statistics are compared. The dot-dashed red line corresponds to the method that performed best in the simulation study (/2b./oc;
Tables 2 and 3 and Figures 3 and 4). Thin blue lines give the prior distribution (cf. Table 1). For pairwise joint posterior distributions, see Figure 6. Point

estimates and 95% HPD intervals are given in Table 4.

diversity and should therefore be considered an important
factor in determining the strength of genetic drift.

It should be noted that the results we reported here about
the choice of summary statistics are specific to the model, to
the data, and, in particular, to the choice of criteria used to
assess performance. Another method may perform better
under a different setting, and this is most likely a general
feature of inference with ABC (cf. Blum et al. 2012). For the
various points where some choice must be made—summary
statistics, metric, algorithm, and postrejection adjustment—
by nature, no single strategy is best in every case. Rather, the
focus should be on choosing the best strategy for a specific
problem. In practice, this implies comparing alternatives and
assessing performance in a simulation study. Along these
lines, there is still scope for new ideas concerning the vari-
ous choices in ABC (see Beaumont et al. 2010). In particular,
the choice of the metric makes ABC a scale-dependent
method. This applies both to the ABC algorithm in general
and to our suggestion of choosing summary statistics in the
putative neighborhood of the truth. One could, for instance,
use the Mahalanobis instead of the Euclidean distance, but
even this is based on an assumption that is not necessarily
appropriate (multivariate normal distribution of variables).
In a specific application, one metric may do better than
another, but it may not be obvious why. Overall, this poses
an open problem and motivates future research (Wilkinson
2008).

As more data become available and more complex models
are justifiable, it will be necessary that methods of inference
keep pace. In principle, ABC is scalable and able to face this
challenge. The problems arise in practice, and the com-
bination of approaches devised to tackle them is itself
becoming intricate. Researchers may be interested in a single
program that implements these approaches and allows for
inference with limited effort needed for tuning, simulation,
and cross-validation. However, such software runs the risk of
being treated as a black box. This problem is not unique to
ABC, but equally applies to other sophisticated approaches

of inference, such as coalescent-based genealogy samplers
(Kuhner 2009). In the context of ABC, rather than having
a single piece of software, we find it more promising to
combine separate pieces of software that each implement
a specific step. The appropriate combination must be chosen
specifically for any application. It will always be necessary
to evaluate the performance of any ABC method through
simulation-based studies. Such a modular approach has recently
been fostered by the developers of ABCtoolbox (Wegmann et al.
2010) or the abc package for R (Csilléry et al. 2011). Here, we
contribute to this by providing a flexible simulation program
that readily integrates into any ABC procedure.

Recently, two interesting alternative approaches have
been proposed for choosing summary statistics with a focus
on the putative location of the true parameter value, rather
than the whole prior range. Nunes and Balding (2010) sug-
gest a two-step procedure. Starting with a set of candidate
summary statistics, at a first stage, standard ABC is carried
out for (possibly) all subsets of these statistics, and the sub-
set resulting in the posterior distribution with the minimum
entropy is chosen. This subset of statistics is used to deter-
mine the n’ simulations with the smallest Euclidean distance
to the observation. At the second stage, the n’ data sets close
to the putative truth are used as a training set to choose,
again, among (possibly) all subsets of the original candidate
statistics. Here, Nunes and Balding (2010) propose as an
optimization criterion the average square root of the sum
of squared errors, averaged over the training data sets.

Fearnhead and Prangle (2012) follow the idea of opti-
mizing the choice of summary statistics with respect to the
accuracy of certain estimates of the parameters (e.g., a point
estimate), rather than the full posterior distribution. For
instance, if the goal is to minimize the quadratic loss be-
tween the point estimate and the true value, the authors
prove that the posterior mean is the optimal summary sta-
tistic. Since the posterior mean is not available in advance,
they propose to first conduct a pilot ABC study to determine
the region of high posterior mass. For this region, they then
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Table 4 Posterior estimates for Alpine ibex data from ABC with
summary statistics chosen locally via L,Boosting and acceptance
rate ¢ = 0.01

Parameter Mode Mean Median  95% HPD? interval
Mo, 0.1089 0.1081 0.1101  (—0.0391, 0.2545)
logio(ds,.) —0.6453 —0.8928 —0.7867 (—1.7615, —0.2613)
l0g1o(w) —-0.6159 —-0.6933 —0.6824 (—1.33, —0.0294)

? Highest posterior density.

draw parameters and simulate data to obtain training data
sets. These are used in a third step to fit a linear regression
with the parameters as responses and a vector-valued func-
tion of the original summary statistics as explanatory varia-
bles (allowing for nonlinear transformations of the original
statistics). The linear fits are used as new summary statistics
for the corresponding parameter. A final ABC run is then
performed, with a prior restricted to the range established
in the first step, and summary statistics chosen in the third
step. Fearnhead and Prangle (2012) refer to this as semi-
automatic and independent of the choice of statistics. How-
ever, as the authors note, it does depend on the initial choice
of candidate statistics and on the choice of the vector-valued
function. Moreover, if the (transposed) candidate statistics
are uncorrelated, we suspect that their method would be
equivalent to using the first component in a univariate PLS
regression.

The approaches by Nunes and Balding (2010) and
Fearnhead and Prangle (2012) and our local boosting pro-
cedures all consist of several steps, at least one being de-
voted to establishing the vicinity of the putative truth. While
the method by Nunes and Balding (2010) and LogitBoost
aim at choosing the “best subset” from a set of candidate
statistics (without transforming them), the method by
Fearnhead and Prangle (2012), PLS, and L;- and L,Boosting
“construct” new summary statistics as functions of the orig-
inal ones. The former has the advantage that the summary
statistics conserve their interpretation, while the latter has
the potential of better extracting and combining information

contained partly in the various candidate statistics. The
method by Nunes and Balding (2010) suffers from the fact
that all subsets of candidate statistics must be explored,
which is prohibitive in the case of large numbers of statistics.
Here, boosting offers a potential advantage, because the
functional gradient descent is a “greedy” algorithm (see Ap-
pendix). It does not explore all possible combinations of
statistics, but in any iteration selects only one candidate
statistic that improves an optimization criterion, given the
current stage of the algorithm.

A direct comparison of all the recently proposed methods
for the choice of statistics in ABC (e.g., Joyce and Marjoram
2008; Wegmann et al. 2009; Nunes and Balding 2010;
Jung and Marjoram 2011; Fearnhead and Prangle 2012)
seems due. Nunes and Balding (2010) and Blum et al.
(2012) compare a subset of these methods for a simple
toy model with mutation and recombination in a panmictic
population (c¢f. Joyce and Marjoram 2008). Blum et al.
(2012) also include two examples from epidemiological
modeling and material science. Their main conclusion is
that the best method depends on the model. Crucial
aspects seem to be the number of parameters, the number
of candidate summary statistics, and the degree of col-
linearity of the statistics. Importantly, the PLS method
(Wegmann et al. 2009)—although widely used in recent
ABC applications—has been shown not to be very efficient
and our results are consistent with this. However, a compari-
son for a range of relevant population genetic models, includ-
ing some with larger numbers of parameters, is currently
missing.

The boosting approach proposed here should also be
suitable for constructing summary statistics to perform
model comparison with ABC (e.g., Fagundes et al. 2007,
Blum and Jakobsson 2011). Despite recent criticism (Robert
et al. 2011; but see Didelot et al. 2011), ABC-type model
comparison remains an interesting option. By treating the
model index as the single response, the algorithm proposed
here might be used in this context.
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Figure 6 Pairwise joint posterior distributions given data observed in Alpine ibex, obtained with tolerance ¢ = 0.01 and summary statistics chosen locally
via L,Boosting (I2b.loc). Red triangles denote parameter values corresponding to the pairwise joint modes. Each time, the third parameter has been

marginalized over.
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Appendix
Modular Inference for High-Dimensional Problems Using ABC

Here, we explore how ABC can be applied to complex situations, where a modular structure of the inferential problem can be
exploited. For this purpose, we assume that the parameter vector ¢ relevant to the problem can be split into two subvectors
« and m and that we have two corresponding vectors of summary statistics S, and Sy, such that S, contains most of the
information on «, whereas S; contains most of the information on m. It turns out that the modular structure can be
exploited in such a situation, to split a high-dimensional problem into subproblems involving only lower-dimensional
summary statistics.

To make this precise, we adapt the concepts of approximate sufficiency (e.g., Le Cam 1964) and approximate ancillarity
(Ghosh et al. 2010 and references therein). In the context of ABC, Joyce and Marjoram (2008) proposed an approach for
choosing summary statistics based on approximate sufficiency.

In particular, we call S, to be e-sufficient for a with respect to Sy, if

supln 7 (S |Se, M, ) — infln 7(Sp|Sa, M, @) =& (AD)
o «
for all m. We further define S, to be §-ancillary with respect to m, if

supIn 7 (Se|m, &) — infIn 7(Sq|m, &) <6 (A2)
T m

m

for all «. Analogously, we define ¢-sufficiency and §-ancillarity for S; (note that ¢ and 6 do not have the same meaning here
as in the main text).
We first assume that S, is e-sufficient for « relative to Sy and §-ancillary with respect to m. Then,

m(a|S) = [7(m, a|S)dm

[ 7 (Sas Sﬁl‘ﬁl, )7 ()7 (m)dm

) ﬁﬂ(saa Srh|ﬁ17 (X)W(a)ﬂ(ﬁl)dﬁl do

7 (Sa|m, o) m(a) 7 (S| S, M, o) 7 (1h)dm (A3)

0 7(Sa |, @) 7(0)7(Sin| S, 1, @) 7 (1) dia dx

7(Sa |a)77(a)e§ | supg7 (S |Se, T, &) 77 () dm

e [ 7(Sale)m(a)de [ info7(Ss|Se, M, @) 77 (M) di
=7 (t|Sq ) e e,
A lower bound can be obtained in an analogous way, and we get
m(e|Sa)e P 7€ = 7(a|S) = 7(t|Sa )e?TE. (A4)

If § and ¢ are both small, a good approximation to the ABC-posterior 7(a|S) can therefore be obtained by using only S,.
Next, we look at the ABC posterior for m given «, 7r(rh|a, Sm), and start with Equation 4,

#(.0(S) = 7(Ja. S (o). (»s)
and Equation 5,

(afS) = Jﬂ'(ﬁl, ofS)dh, (A6)
from the main text, replacing the full data D by the summary statistics S.

From (A6) it follows that a sample from the marginal posterior of « can be obtained by taking the «-components of
a sample from the joint posterior of m and «.
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As shown above, 7(«|S) can be replaced without much loss by (e |S,), if S is not informative for & and S,, is not
informative for . We show that 77(m|a, S) = 7(m|a, S¢, Sm) ~ 7(1h|a, Si), given that Sy, is e-sufficient for m:

a,m, Sy
W(av S(!v Sﬁ‘l)

’7T<(¥, Sua Sﬁl)
(o, M, Sy (A7)
7 (Salt, S ) (et S

7T(rﬁ|a, S(x,Sﬁl) = W(Su\a,ﬁl, Sﬁ,)

= 687T(S(X|0£, Sm)

= CEW(SQ‘(X, Srh)

Together with an analogously obtained lower bound, we have that
e ‘m(m|a, Sp) = 7(Mh|e, S, S ) = e (|, S (A8)

and again S, can be omitted without much loss, if S, does not provide much further information about m given Sy,

To summarize, breaking up ABC into lower-dimensional modules with separate summary statistics can be shown to lead
to good approximations, if S, and Sy are e-sufficient with respect to each other for their respective parameters. Also, S,
should be §-ancillary for m.

Functional Gradient Descent Boosting Algorithm

The general FGD algorithm for boosting, as given by Friedman (2001) and modified by Bithlmann and Hothorn (2007), is as
follows.

FGD algorithm

1. Initialize l:"[o](-) =arg mincn 1> L(Y;,c), set m = 0.

2. Increase m by 1. Compute the negative gradient and evaluate at F 1]

(Xi):

0
Ui = = 5-L(Yi,F)|

m-1

F= X))

3. Fit the negative gradient vector (U, ..., U,) to (Xi,...,X,) by the base procedure:

(X, Uiy —~ ™.
4. Update F m ()=F [m_l](~) + g™ (.), where v is a step-length factor.
5. Iterate steps 2—4 until m = mgqp.

Here, v and mgp are tuning parameters discussed in the main text. The result of this algorithm is a linear combination F ()
of base procedure estimates, as shown in Equation 7 of the main text. In any specific version of boosting, the form of the
initial function F [O](~) in step 1 and the negative gradient U; in step 2 may be expressed explicitly according to the loss
function L(-, -) (see File S1).

Base Procedure: Componentwise Linear Regression

We write the jth component of a vector v as v?). The following base procedure performs simple componentwise linear
regression,
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%) =A9x@),
W0 XLxVu
s (xl?") ) > (A9)

n N AN\ 2
{=argminj<j<p . (Ui_)lU)XEJ)> ,
i=1

where g(-), X, and U; are as in the FGD algorithm above. This base procedure selects the best variable in a simple linear
model in the sense of ordinary least-squares fitting (Bithlmann and Hothorn 2007). To see this, note that A% in (A9) is the
ordinary least-squares solution of a linear regression U; = XEJ))\U), in matrix form A = (XEJ)TXEJ))_IX?)TUi. The choice of the
loss functions enters indirectly via U; (see File S1).
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SI Supporting Information: Additional Tables

Table S1 Deme names, deme numbers and sampling sizes in the Alpine ibex data set

Genetic sample size€

Deme name Deme number? Short name Internal number? Males Females Total
Adula Vial 1 AdulaVial 100 21 16 37
Albris 2 Albris 101 28 33 61
Alpstein 3 Alpstein 102 12 18 30
Bire-Oeschinen 4 BireOesch 103 16 2 18
Brienzer Rothorn 5 BrRothorn 104 21 18 39
Calanda 6 Calanda 105 15 16 31
Churfirsten 7 Churfirsten 106 11 13 24
Crap da Flem 8 CrapFlem 107 16 11 27
Fluebrig 9 Fluebrig 108 17 15 32
FlGela 10 FlGela 109 37 38 75
Foostock 11 Foostock 110 9 18 27
Gastern 12 Gastern 111 5 6 11
Graue Horner 13 GrHorner 112 21 26 47
Gross Lohner 14 GrLohner 113 15 7 22
Hochwang 15 Hochwang 114 14 14 28
Julier Nord 16 Julier N 115 12 11 23
Julier Sud 17 Julier S 116 12 11 23
Justistal 18 Justistal 117 15 4 19
Macun 19 Macun 118 12 10 22
Oberalp-Frisal 20 Oberalp 134 25 19 44
Oberbauenstock 21 Oberbauen 119 18 12 30
Pilatus 22 Pilatus 120 15 2 17
Mont Pleureur 23 Pleureur 121 22 7 29
Safien-Rheinwald 24 Rheinwald 122 22 13 35
Rothorn-Weissfluh 25 RothWeissfl 123 16 13 29
Schwarzménch 26 SchwMonch 124 15 17 32
Umbrail 27 Umbrail 125 15 14 29
Val Bever 28 ValBever 126 20 12 32
Wetterhorn 29 Wetterhorn 127 9 10 19
Wittenberg 30 Wittenberg 128 15 6 21
Pierreuse-Gummfluh 31 Pierreuse 133 20 21 41
Wildpark Dahlholzli 32 WPDH 129 0 0 0
Wildpark Interlaken 33 WPIH 130 0 0 0
Wildpark St. Gallen 34 WPPP 131 0 0 0
Wildpark Seiler 35 WPSE 132 0 0 0
9As used in main text and Figure 1.
b As used in scripts and Supporting Files S2 and S3.
“The number of individuals from which genetic samples were taken, both in reality and in the simulations.
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SI Supporting Information: Additional Figures

Figure S1 (facing page) Genealogy and demography of Alpine ibex demes analyzed in this study. Time goes from top to
bottom, starting in the year 1900 and ending in 2007. Horizontal gray bars represent the known census sizes (Supporting
File S2 census sizes) and arrows show the founder events by which demes were established. The numbers of males and
females transferred are given close to the arrow head (males:females; for Foostock, the sex of the founders is unknown and
only the total number of founders is given). Most demes received further individuals after the initial founder event, but
these numbers are not shown here (see Supporting File S3 transfers). The deme ancestral to all other demes, GranParadiso,
is shown as a vertical dashed line; its deme size is not known. See also Table S1 for the full deme names and Figure 1 for
the geographical location of demes.
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Figure S7 (facing page) Posterior distributions inferred for six random test data sets with acceptance rate ¢ = 0.01.
Methods are as described in the main text. True values are given by a dashed vertical line, prior distributions in blue (cf.
Table 1).
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Figure S8 (facing page) Coverage property of posterior distributions inferred with different choices of summary statistics
on a global scale. Histograms show the distribution across 500 independent test estimations of the posterior probabilities
of the true parameter values. The distribution is expected to be uniform (Wegmann et al. 2009). Left-skewed or right-
skewed distributions indicate that the parameter is on average over- or underestimated, respectively. Peaked or U-shaped
distributions result from posterior distributions that are too wide or too narrow, respectively. Non-uniform distributions
are shaded in gray (p-values from a Kolmogorov-Smirnov test on top are without correction for multiple testing; see main

text).
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Figure S9 (facing page) Coverage property of posterior distributions inferred with different choices of summary statistics
on a local scale. Non-uniform distributions of posterior probabilities are shaded in gray (p-values from a Kolmogorov-
Smirnov test on top). Note that the first row here corresponds to the first row in Figure S8. Further details as in Figure S8.
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Figure S10 (facing page) Pairwise prior predictive distribution of summary statistics on original scale. Only summary
statistics chosen with the Igb.glob method are shown. Gray points represent N = 1000 simulations with parameter values
drawn from the prior. The true value from the ibex data set is shown as a blue cross; aol, average over loci; sd, standard

deviation over loci.
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responds to the observation for Alpine ibex. Blue points give the n” = 1000 simulations closest to the observation, where

‘closeness’ was defined as described in the main text (cf. Figure S2).

S. Aeschbacher, M. A. Beaumont, and A. Futschik

26 Sl



= _
:| §_
o 9
S _
>
_I's
o S 7
© b
O mcarcmmenesacn cmes emes oo
T T T T T
-2.0 -1.0 0.0
1091004,
-
]
N
N
I|
°
I
o |
© 7 T T T T
-2.0 -1.0 0.0
1091004,
n
- 4
- o
]
= o
MR
0 o
s
_l w
S S -
® O
o
(3_ -
o T T T T T
-2.0 -1.0 0.0
1091006,
o
o
8 -
o <
ST
N o
n 8
I 87
o N
® _
O —mces o e e o €0 v i
T T T T T
-2.0 -1.0 0.0
1091004,
o
[¢6)
-
Ql 8
2]
Q. o |
= <
“
ElN G
o eradind i
T T T T T
-2.0 -1.0 0.0
1091004,

sd_v.al.sz_tot

sd_H2_tot

sd_Fst_tot

sd_S2_tot

ps_tot

sd_alt

o
o
S |
o
<
o
o
S |
o
N
o
T T T T T
-2.0 -1.0 0.0
1091004,
o
™ 4
=} M
o
N
=}
o
—
o
o
o 4
o T T T T T
-2.0 -1.0 0.0
1091004,
n
—
o
o
—
=
n
o
o
o
o 4
o T T T T T
-2.0 -1.0 0.0
1091006,
o
o
S |
o
[¢e]
o
o
S |
o
<
o
T T T T T
-2.0 -1.0 0.0
1091004,
o |
N
[To
-
o |
—
n - poigta
o Ivisssma et -
T T T T T
-2.0 -1.0 0.0
1091004,

aol_S1 tot aol_Fis_tot aol H1 tot

aol _Rst tot

0.0 02 04 06 0.8

0.00

20000

0 40000 -0.10

0.1 0.2

-0.1

T
-1.0
1091006,

T P e A% :".'.:;'._

-2.0 -1.0 0.0
1091004,
T T T T T
-2.0 -1.0 0.0
109100,

Pap
L T S 3 * e

T T
-2.0

T
-1.0 0.0

1091006,

sd_H1_tot

sd_Fis_tot

sd_S1 tot

sd_Rst_tot

0.10

0.00 0.05 0.10 0.15

0.00 0.10 0.20 0.30

0.30

0.20

0.00

40000 80000

0

T T
-1.0
1091004,

-1.0 0.0
1091004,
— T
-1.0 0.0
1091006,

T T
-1.0
1091004,

Figure $12 Relation between log;, 0  _and the candidate summary statistics. Details as in Figure S11.

S. Aeschbacher, M. A. Beaumont, and A. Futschik

27 Sl



o o H o o
o o o I o o
i
| LR T -
i
R R T D T 9 T
S g S | S S
B ses T ir o
o loive o i © sl o
- N 1 - N il gl N} =1 [N)
T T T I T T T T | T T T T T | T T T T T T T |
0€0 0c0 O0T0 000 GT'0 O0T'0 S00 000 00008 0000% 0 0€0 0c0 O0T0 000
10} TH ps 101 si4” ps 101 TS ps 101718y ps
L 2 L 2 = <9 <
o ra o o o
Tg T8 g T8
‘ - e - : - -
- I - - |
i ! %
N iz o 1| © i o
- N 1 - N il N} *l N
T T I T T T T | T T T T T | T T T T |
80 90 ¥0 <20 00 000 0T'0- 0000% 00002 0 20 TO T0-
101 TH |oe 101 si4 |oe 101 TS |oe 10118y |oe
T o o o T o
e} T o K=} [} o
- o L | . 4
° wm o M o wm ° wm ...“.
T2 T2 T2 T 9 #
3 - - - ] - Te
i i i ! ol
i © o o il © "
il gl ) - N = N 1 N e
T T T T T I T T T | T T T | T T T T T | T T T T T
0000% 0000¢ 0 0€0 020 O0T0 o000 GT0 O0T0 &S00 o000 00008 0000% 0 0 ST 0T § O
101 zS'[e'A pS 101 ZH ps 101 1S4 ps 101 2S ps 101 sdye ps
o o o o
e e M _...n.. =) o uw
t ol 8
- o e 2 | ¢
A 3 3 ?
R = g T 9 T 9 .
4 - ‘ - 20l - H - *ls
L L : L
! e t .
§[ © o i o i 4
- - N * = N | (3] s
T T T T T I T | T T T T | T T T T T | T T T T
000ST 000S O 00 GT'0 O0T0 SO0 000 00007  0000C 0 08 09 oOoF O0c¢ 0
101 zs'[e'A|oe 10} ¢H |oe 101 14" |oe 10y ¢S’ |oe 101 sdye” |oe

-1.0 0.0

-2.0

-1.0 0.0

logiow

-2.0

logiow

Figure S13  Relation between log, , w and the candidate summary statistics. Details as in Figure S11.

S. Aeschbacher, M. A. Beaumont, and A. Futschik

28 Sl



anc

-1
-2
-2

Linear predictor for w
Linear predictor for w

T T T T T T T T T T T T
-2 -1 0 1 2 3 -2 -1 0 1 2 3 -1 0 1 2 3

Linear predictor for gg

Linear predictor for M, Linear predictor for Mg, Linear predictor for O,

anc

300
|

Linear predictor for w

Linear predictor for w

-4
-4

o - X
T T T T T T T T T T T T T T T T T T

-50 -30 -10 0 10 -50 -30 -10 0 10 0 100 200 300 400

Linear predictor for oy

Linear predictor for ug_ Linear predictor for pig_ Linear predictor for gy

Figure S14 Effect of local choice on scale of summary statistics. Summary statistics were chosen with L,Boosting as
explained in the main text. For each parameter, one linear combination of the original statistics is used as the new summary
statistic. These linear combinations are plotted against each other. (A) Global choice of summary statistics. (B) Local choice
of summary statistics. Gray points represent N = 1000 simulations and the blue cross marks the value observed for Alpine
ibex. The local choice of statistics leads to a rescaling compared to the global choice.

S. Aeschbacher, M. A. Beaumont, and A. Futschik 29 SI



SI Supporting Information: Additional Methods

SI.1 Demography and life cycle in simulations

In the following, we give additional details of the demographic model and the ibex-specific settings used in the simulations.
All of this is implemented in the program SPoCS (Simulate Populations under Complex Scenarios) written in Java and

available on the website http://pub.ist.ac.at/~saeschbacher/phd_ e-sources/.

SI.1.1 Life cycle

Alpine ibex is a long-lived, middle-sized ungulate species (Toigo et al. 2002; 2007). We divide the life cycle into years and
a year into discrete events, some of which are further described below. We set the maximum age of females and males
to 22 and 17 years, respectively (Nievergelt 1966, Toigo et al. 2007). Females and males reach sexual maturity at an age
of 3 years (Nievergelt 1966, Stuwe and Grodinsky 1987, Toigo et al. 2002), and the expected age of first reproduction for
females and males is 4 and 9 years, respectively (Loison et al. 2002, Toigo et al. 2002). In our simulations, females and

males stop reproducing when older than 20 and 15 years, respectively.

SI.1.2 Founder/admixture events

A new deme is established by founder individuals taken from previously existing demes. The minimum and maximum age
of a founderis 1 and 7 years, respectively, independently of sex. Existing demes may receive further individuals from other
demes at later points in time (as specified in Supporting File S3 transfers). The range of ages allowed for these admixing
individuals is the same as for founders. Founder/admixture events take place at the beginning of the year, before the

regulating deaths (see below).

SI.1.3 Reproduction

Females reproduce according to a baseline fertility parameter f. It gives the probability that, for a given year, a particular
female will reproduce. If the female reproduces, she mates with a male randomly chosen from the set of males with
access to matings in that year (see below). Given a particular female reproduces, it may have one or two offspring. This is
controlled by the twin rate parameter z := Pr[twins | female reproduces]. We set f = 0.4 (Nievergelt 1966, Stuwe and
Grodinsky 1987) and z = 0.08 (Toigo et al. 2002).

Males can get access to matings if they reached the expected age of first reproduction (9 years) and are then counted as
potentially reproducing. If, in a deme, no males older than 9 years are available, all males older than the age of sexual
maturity (3 years) are considered potentially reproducing. The proportion of these potentially reproducing males that

actually get access to matings is defined as w (see main text). It is one of the parameters to be estimated in this study.
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SI.1.4 Deme size control

If the number of offspring required to reach the deme size of the next year cannot be produced by the female baseline
fertility f (see above), additional females are allowed to reproduce: Rather than allowing only females to reproduce who
reached the expected age of first reproduction (4 years), all females who reached the age of sexual maturity (3 years) may
reproduce in this case. If, on the other hand, baseline reproduction results in more individuals than needed to reach the
census size of the next year, surplus individuals are removed. These regulating deaths are irrespective of age and sex, and
additional to the natural deaths of senescence. In any case, we limit the proportion by which the reproductive need may

be overshot per year to 0.2.

SI.1.5 Migration

We simulate migration after the regulating deaths, but before reproduction. Females and males must have reached the
age of 3 years before they emigrate (they are then ‘potential emigrants’). For a given source deme, the total of individuals
to be sent to all connected demes (see main text) are put into an emigrant pool. Emigrants are then randomly distributed

to the receiver demes in proportions corresponding to the emigration rates.

SI.2  Explicit forms of minimum expected loss and negative gradient in boosting

The FGD algorithm given in the APPENDIX of the main text is generic. Itis instructive to study the explicit form of expressions
in step 1 and 2 of this algorithm for the specific loss functions used here. To this purpose, we follow Friedman et al. (2000),

Friedman (2001) and Biihimann and Hothorn (2007).

SI.2.1 Population minimizer of expected loss

We first give explicit forms of the population minimizer (6) for the three loss functions in equations (9), (10) and (12). These
are obtained by minimizing the expectation of the joint distribution of X and Y, Ex y[L(Y, F)], where L(-,-) is the generic

loss function and F = F(X). In our context, it is enough to take the expectation conditional on X = x, Ey[L(Y, F) | x].

For the L;-loss in (9), F*(-) from (6) is obtained as the F(-) that minimizes IEy[|Y — F| | x]. By the definition of the

median, the population minimizer is (Friedman 2001, Biihimann and Hothorn 2007)

F*(x) = median(Y | x). (23)

For the L,-loss in (10), the expected loss is Ey[(Y — F)?/2 | x], and F*(-) is obtained by setting the derivative with respect
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to F to zero:

d

1o o ] 19Ey[Y?[x] JEy[YF|x] 19JBy[F*|x]
ﬁEY[z‘Y i "] =3 oF OF T2 OF 0a)
=0-Ey[Y|x]+F(x)=0,
from which the familiar result
F'(x) =Ey[Y[x] (25)

follows (Friedman 2001, Bihlmann and Hothorn 2007).

Friedman et al. (2000) show how to derive the population minimizer of the negative binomial log-likelihood in equation
(12). For notational convenience, we encode the response by Y = 2Y—1 € {~1,1}. The likelihood in (12) can then be written
as

L(Y,F)=log(1+¢'F). (26)
In analogy to our previous definition, we set p(x) := Pr[Y = 1 | X = x], and hence 1 —p(x) := Pr[Y = -1 | X = x]. Dropping

the arguments, we have

Eg[L|x] = Ey[log(1+e"F)|x]

(27)
=plog(1 +e*F)+(1 —-p)log(1l +eb).
The partial derivative with respect to F is
-F F

i YEy ] = —p € A 28
IEY[log(1+e )|x]_ p1+e‘F+(1 p)l+eF' (28)

Setting to zero and solving for F, we obtain the population minimizer

. p(x)
F'(x)=1o [ ] (29)

Sl T-p()

Notice that Friedman et al. (2000) and Bihlmann and Hothorn (2007) use a slightly different parameterization, namely
setting F equal to one half of the logit-transform, such as to have the population minimizer equal to the one for the ex-
ponential loss criterion. The population minimizers in (23), (25) and (29) imply that the initial function estimates in step
1 of the FGD algorithm (APPENDIX) must be set to F*(-) = median(Y) for the L;-loss, to F*(-) = ¥ for the L,-loss, and to

F*(-) = log[p/(1 — p)] for the negative binomial log-likelihood loss.

SI.2.2 Negative gradient

To calculate the negative gradient vector (U, ..., U,,) in step 2 of the FGD algorithm (APPENDIX), we need the partial

derivative of the loss function with respect to the target function F. Any element U; is obtained as this partial derivative
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evaluated at the previous function estimate £["~11(x;). Formally,

0
U; = —=L(Y;,F .
1 aF ( 1 ) F:ﬁ[mfl](xi)
For the L;-loss in (9), we have
J Y,-F
- ——|Y;-F|| = & = Y, - F),

which implies the negative gradient component
Ui =sgn [Yi - P"[’”‘”(Xl)]

in step 2 of the FGD algorithm (cf. Friedman 2001).

For the L,-loss in (10),

a1 2]
_ﬁ[E(Yi_F) ]—YZ—F,

which amounts to

U; = Y; - Fmtx;)

in step 2 of the FGD algorithm (cf. Friedman 2001, Biihimann and Hothorn 2007).

Last, for the negative binomial log-likelihood we againuse Y =2Y -1 ¢ {-1,1} and find

d o . 9 ypy Ve lF
_ﬁL(YI’F)__ﬁIOg(I_'_e )—m—_“

This leads to the negative gradient component

¥ e Vi)
1+ e Gy

in step 2 of the FGD algorithm.
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SI Supporting Information: URLs to Supporting Files

File S2
Census population sizes of Alpine ibex demes in the Swiss Alps

File S2 is available for download as a PDF file at http://pub.ist.ac.at/~saeschbacher/phd_ e-sources/[to be found in

subsection ‘Chapter 3’].

File S3
Numbers of Alpine ibex transferred between demes by humans

File S3 is available for download as a PDF file at http://pub.ist.ac.at/~saeschbacher/phd_ e-sources/[to be found in

subsection ‘Chapter 3’].
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SI Supporting Information: Additional Tables

Table S1 Deme names, deme numbers and sampling sizes in the Alpine ibex data set

Genetic sample size€

Deme name Deme number? Short name Internal number? Males Females Total
Adula Vial 1 AdulaVial 100 21 16 37
Albris 2 Albris 101 28 33 61
Alpstein 3 Alpstein 102 12 18 30
Bire-Oeschinen 4 BireOesch 103 16 2 18
Brienzer Rothorn 5 BrRothorn 104 21 18 39
Calanda 6 Calanda 105 15 16 31
Churfirsten 7 Churfirsten 106 11 13 24
Crap da Flem 8 CrapFlem 107 16 11 27
Fluebrig 9 Fluebrig 108 17 15 32
FlGela 10 FlGela 109 37 38 75
Foostock 11 Foostock 110 9 18 27
Gastern 12 Gastern 111 5 6 11
Graue Horner 13 GrHorner 112 21 26 47
Gross Lohner 14 GrLohner 113 15 7 22
Hochwang 15 Hochwang 114 14 14 28
Julier Nord 16 Julier N 115 12 11 23
Julier Sud 17 Julier S 116 12 11 23
Justistal 18 Justistal 117 15 4 19
Macun 19 Macun 118 12 10 22
Oberalp-Frisal 20 Oberalp 134 25 19 44
Oberbauenstock 21 Oberbauen 119 18 12 30
Pilatus 22 Pilatus 120 15 2 17
Mont Pleureur 23 Pleureur 121 22 7 29
Safien-Rheinwald 24 Rheinwald 122 22 13 35
Rothorn-Weissfluh 25 RothWeissfl 123 16 13 29
Schwarzménch 26 SchwMonch 124 15 17 32
Umbrail 27 Umbrail 125 15 14 29
Val Bever 28 ValBever 126 20 12 32
Wetterhorn 29 Wetterhorn 127 9 10 19
Wittenberg 30 Wittenberg 128 15 6 21
Pierreuse-Gummfluh 31 Pierreuse 133 20 21 41
Wildpark Dahlholzli 32 WPDH 129 0 0 0
Wildpark Interlaken 33 WPIH 130 0 0 0
Wildpark St. Gallen 34 WPPP 131 0 0 0
Wildpark Seiler 35 WPSE 132 0 0 0
9As used in main text and Figure 1.
b As used in scripts and Supporting Files S2 and S3.
“The number of individuals from which genetic samples were taken, both in reality and in the simulations.
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SI Supporting Information: Additional Figures

Figure S1 (facing page) Genealogy and demography of Alpine ibex demes analyzed in this study. Time goes from top to
bottom, starting in the year 1900 and ending in 2007. Horizontal gray bars represent the known census sizes (Supporting
File S2 census sizes) and arrows show the founder events by which demes were established. The numbers of males and
females transferred are given close to the arrow head (males:females; for Foostock, the sex of the founders is unknown and
only the total number of founders is given). Most demes received further individuals after the initial founder event, but
these numbers are not shown here (see Supporting File S3 transfers). The deme ancestral to all other demes, GranParadiso,
is shown as a vertical dashed line; its deme size is not known. See also Table S1 for the full deme names and Figure 1 for
the geographical location of demes.
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Figure S7 (facing page) Posterior distributions inferred for six random test data sets with acceptance rate ¢ = 0.01.
Methods are as described in the main text. True values are given by a dashed vertical line, prior distributions in blue (cf.
Table 1).
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Figure S8 (facing page) Coverage property of posterior distributions inferred with different choices of summary statistics
on a global scale. Histograms show the distribution across 500 independent test estimations of the posterior probabilities
of the true parameter values. The distribution is expected to be uniform (Wegmann et al. 2009). Left-skewed or right-
skewed distributions indicate that the parameter is on average over- or underestimated, respectively. Peaked or U-shaped
distributions result from posterior distributions that are too wide or too narrow, respectively. Non-uniform distributions
are shaded in gray (p-values from a Kolmogorov-Smirnov test on top are without correction for multiple testing; see main

text).
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Figure S9 (facing page) Coverage property of posterior distributions inferred with different choices of summary statistics
on a local scale. Non-uniform distributions of posterior probabilities are shaded in gray (p-values from a Kolmogorov-
Smirnov test on top). Note that the first row here corresponds to the first row in Figure S8. Further details as in Figure S8.
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Figure S10 (facing page) Pairwise prior predictive distribution of summary statistics on original scale. Only summary
statistics chosen with the Igb.glob method are shown. Gray points represent N = 1000 simulations with parameter values
drawn from the prior. The true value from the ibex data set is shown as a blue cross; aol, average over loci; sd, standard

deviation over loci.
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Figure $12 Relation between log;, 0  _and the candidate summary statistics. Details as in Figure S11.
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SI Supporting Information: Additional Methods

SI.1 Demography and life cycle in simulations

In the following, we give additional details of the demographic model and the ibex-specific settings used in the simulations.
All of this is implemented in the program SPoCS (Simulate Populations under Complex Scenarios) written in Java and

available on the website http://pub.ist.ac.at/~saeschbacher/phd_ e-sources/.

SI.1.1 Life cycle

Alpine ibex is a long-lived, middle-sized ungulate species (Toigo et al. 2002; 2007). We divide the life cycle into years and
a year into discrete events, some of which are further described below. We set the maximum age of females and males
to 22 and 17 years, respectively (Nievergelt 1966, Toigo et al. 2007). Females and males reach sexual maturity at an age
of 3 years (Nievergelt 1966, Stuwe and Grodinsky 1987, Toigo et al. 2002), and the expected age of first reproduction for
females and males is 4 and 9 years, respectively (Loison et al. 2002, Toigo et al. 2002). In our simulations, females and

males stop reproducing when older than 20 and 15 years, respectively.

SI.1.2 Founder/admixture events

A new deme is established by founder individuals taken from previously existing demes. The minimum and maximum age
of a founderis 1 and 7 years, respectively, independently of sex. Existing demes may receive further individuals from other
demes at later points in time (as specified in Supporting File S3 transfers). The range of ages allowed for these admixing
individuals is the same as for founders. Founder/admixture events take place at the beginning of the year, before the

regulating deaths (see below).

SI.1.3 Reproduction

Females reproduce according to a baseline fertility parameter f. It gives the probability that, for a given year, a particular
female will reproduce. If the female reproduces, she mates with a male randomly chosen from the set of males with
access to matings in that year (see below). Given a particular female reproduces, it may have one or two offspring. This is
controlled by the twin rate parameter z := Pr[twins | female reproduces]. We set f = 0.4 (Nievergelt 1966, Stuwe and
Grodinsky 1987) and z = 0.08 (Toigo et al. 2002).

Males can get access to matings if they reached the expected age of first reproduction (9 years) and are then counted as
potentially reproducing. If, in a deme, no males older than 9 years are available, all males older than the age of sexual
maturity (3 years) are considered potentially reproducing. The proportion of these potentially reproducing males that

actually get access to matings is defined as w (see main text). It is one of the parameters to be estimated in this study.
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SI.1.4 Deme size control

If the number of offspring required to reach the deme size of the next year cannot be produced by the female baseline
fertility f (see above), additional females are allowed to reproduce: Rather than allowing only females to reproduce who
reached the expected age of first reproduction (4 years), all females who reached the age of sexual maturity (3 years) may
reproduce in this case. If, on the other hand, baseline reproduction results in more individuals than needed to reach the
census size of the next year, surplus individuals are removed. These regulating deaths are irrespective of age and sex, and
additional to the natural deaths of senescence. In any case, we limit the proportion by which the reproductive need may

be overshot per year to 0.2.

SI.1.5 Migration

We simulate migration after the regulating deaths, but before reproduction. Females and males must have reached the
age of 3 years before they emigrate (they are then ‘potential emigrants’). For a given source deme, the total of individuals
to be sent to all connected demes (see main text) are put into an emigrant pool. Emigrants are then randomly distributed

to the receiver demes in proportions corresponding to the emigration rates.

SI.2  Explicit forms of minimum expected loss and negative gradient in boosting

The FGD algorithm given in the APPENDIX of the main text is generic. Itis instructive to study the explicit form of expressions
in step 1 and 2 of this algorithm for the specific loss functions used here. To this purpose, we follow Friedman et al. (2000),

Friedman (2001) and Biihimann and Hothorn (2007).

SI.2.1 Population minimizer of expected loss

We first give explicit forms of the population minimizer (6) for the three loss functions in equations (9), (10) and (12). These
are obtained by minimizing the expectation of the joint distribution of X and Y, Ex y[L(Y, F)], where L(-,-) is the generic

loss function and F = F(X). In our context, it is enough to take the expectation conditional on X = x, Ey[L(Y, F) | x].

For the L;-loss in (9), F*(-) from (6) is obtained as the F(-) that minimizes IEy[|Y — F| | x]. By the definition of the

median, the population minimizer is (Friedman 2001, Biihimann and Hothorn 2007)

F*(x) = median(Y | x). (23)

For the L,-loss in (10), the expected loss is Ey[(Y — F)?/2 | x], and F*(-) is obtained by setting the derivative with respect
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to F to zero:

d

1o o ] 19Ey[Y?[x] JEy[YF|x] 19JBy[F*|x]
ﬁEY[z‘Y i "] =3 oF OF T2 OF 0a)
=0-Ey[Y|x]+F(x)=0,
from which the familiar result
F'(x) =Ey[Y[x] (25)

follows (Friedman 2001, Bihlmann and Hothorn 2007).

Friedman et al. (2000) show how to derive the population minimizer of the negative binomial log-likelihood in equation
(12). For notational convenience, we encode the response by Y = 2Y—1 € {~1,1}. The likelihood in (12) can then be written
as

L(Y,F)=log(1+¢'F). (26)
In analogy to our previous definition, we set p(x) := Pr[Y = 1 | X = x], and hence 1 —p(x) := Pr[Y = -1 | X = x]. Dropping

the arguments, we have

Eg[L|x] = Ey[log(1+e"F)|x]

(27)
=plog(1 +e*F)+(1 —-p)log(1l +eb).
The partial derivative with respect to F is
-F F

i YEy ] = —p € A 28
IEY[log(1+e )|x]_ p1+e‘F+(1 p)l+eF' (28)

Setting to zero and solving for F, we obtain the population minimizer

. p(x)
F'(x)=1o [ ] (29)

Sl T-p()

Notice that Friedman et al. (2000) and Bihlmann and Hothorn (2007) use a slightly different parameterization, namely
setting F equal to one half of the logit-transform, such as to have the population minimizer equal to the one for the ex-
ponential loss criterion. The population minimizers in (23), (25) and (29) imply that the initial function estimates in step
1 of the FGD algorithm (APPENDIX) must be set to F*(-) = median(Y) for the L;-loss, to F*(-) = ¥ for the L,-loss, and to

F*(-) = log[p/(1 — p)] for the negative binomial log-likelihood loss.

SI.2.2 Negative gradient

To calculate the negative gradient vector (U, ..., U,,) in step 2 of the FGD algorithm (APPENDIX), we need the partial

derivative of the loss function with respect to the target function F. Any element U; is obtained as this partial derivative
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evaluated at the previous function estimate £["~11(x;). Formally,

0
U; = —=L(Y;,F .
1 aF ( 1 ) F:ﬁ[mfl](xi)
For the L;-loss in (9), we have
J Y,-F
- ——|Y;-F|| = & = Y, - F),

which implies the negative gradient component
Ui =sgn [Yi - P"[’”‘”(Xl)]

in step 2 of the FGD algorithm (cf. Friedman 2001).

For the L,-loss in (10),

a1 2]
_ﬁ[E(Yi_F) ]—YZ—F,

which amounts to

U; = Y; - Fmtx;)

in step 2 of the FGD algorithm (cf. Friedman 2001, Biihimann and Hothorn 2007).

Last, for the negative binomial log-likelihood we againuse Y =2Y -1 ¢ {-1,1} and find

d o . 9 ypy Ve lF
_ﬁL(YI’F)__ﬁIOg(I_'_e )—m—_“

This leads to the negative gradient component

¥ e Vi)
1+ e Gy

in step 2 of the FGD algorithm.
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SI Supporting Information: URLs to Supporting Files

File S2
Census population sizes of Alpine ibex demes in the Swiss Alps

File S2 is available for download as a PDF file at http://pub.ist.ac.at/~saeschbacher/phd_ e-sources/[to be found in

subsection ‘Chapter 3’].

File S3
Numbers of Alpine ibex transferred between demes by humans

File S3 is available for download as a PDF file at http://pub.ist.ac.at/~saeschbacher/phd_ e-sources/[to be found in

subsection ‘Chapter 3’].
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