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Abstract: Complex high-dimensional datasets that are challenging to analyze are frequently produced
through ‘-omics’ profiling. Typically, these datasets contain more genomic features than samples,
limiting the use of multivariable statistical and machine learning-based approaches to analysis.
Therefore, effective alternative approaches are urgently needed to identify features-of-interest in
‘-omics’ data. In this study, we present the molecular feature selection tool, a novel, ensemble-based,
feature selection application for identifying candidate biomarkers in ‘-omics’ data. As proof-of-
principle, we applied the molecular feature selection tool to identify a small set of immune-related
genes as potential biomarkers of three prostate adenocarcinoma subtypes. Furthermore, we tested
the selected genes in a model to classify the three subtypes and compared the results to models
built using all genes and all differentially expressed genes. Genes identified with the molecular
feature selection tool performed better than the other models in this study in all comparison metrics:
accuracy, precision, recall, and F1-score using a significantly smaller set of genes. In addition, we
developed a simple graphical user interface for the molecular feature selection tool, which is available
for free download. This user-friendly interface is a valuable tool for the identification of potential
biomarkers in gene expression datasets and is an asset for biomarker discovery studies.

Keywords: biomarker; feature selection; big data analysis; RNA-Seq; prostate adenocarcinoma

1. Introduction

High-throughput molecular profiling of clinical or biological samples creates unpar-
alleled opportunities for pattern recognition and advanced data exploration. Despite
advances in machine learning methods, few are utilized in the analysis of biomedical data.
Currently, the most common approach to identify genes of interest or other molecular
features in large datasets is to perform a differential expression analysis where each feature
is assessed individually using statistical tests or curve fitting [1,2]. However, simply relying
on the p-value for identifying features can be misleading, as the p-value is confounded
by its dependence on sample size [3–5]. Thus, there is a need for more stable approach to
detect patterns and interactions in -omics datasets for biomarker discovery by utilizing the
high-dimensionality (number of features) of the data.

Feature selection is a machine learning technique for identifying features of importance
in high dimensional data. The main goal of the feature selection is to reduce the number
of features to a small set of most variable predictors required for classification. A typical
-omics dataset has a relatively low sample size compared to the number of features. This
affects classifier accuracy and increases the risk of overfitting the prediction model by
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developing an overly complex classifier with perfect classification on a training set, but
low performance and generalizability on unseen data [6–13]. Therefore, when developing
generalizable prediction models from -omics data, it is favorable to use only the most
important predictors. Feature selection is a supervised learning approach that evaluates
features either individually (univariable approach) or as a group (multivariable approach).
Feature selection algorithms are typically based on (i) filter methods that evaluate each
feature without any learning involved; (ii) wrapper methods that use machine learning
techniques for identifying features of importance; or (iii) embedded methods where the
feature selection is embedded with the classifier construction [6].

Many of the proposed applications of feature selection in -omics studies use only one
type of feature selection algorithm [14–19]. However, no algorithm is superior or inferior
overall according to the ‘no free lunch theorem’ [7]. Therefore, a feature selection that
uses only one method may work for some datasets, but not others. It is recognized that
an ensemble feature selection provides a more generalizable approach to identify features
of importance [20]. While some studies use an ensemble technique [21,22], they only use
a small set of either filter based methods (n = 5 algorithms [21]) or wrapper/embedded
methods (n = 4 algorithms [22]); others use bootstrap aggregating [7] to perform multiple it-
erations of the same feature selection algorithm on different subsets of data [16–18]. To date,
no feature selection approach for identifying biomarkers that combines multiple univari-
able and multivariable filter-, wrapper-, and embedded-type feature selection algorithms
has been proposed and tested on multiple -omics datasets.

In this manuscript, we present our Molecular Feature Selection Tool (MFeaST) that enables
the identification of candidate biomarkers in -omics data by the reduction of features to the
most valuable predictors. This novel, ensemble-type feature selection technique does not
rely just on one approach, but utilizes multiple univariable and multivariable as well as
filter-, wrapper-, and embedded-type feature selection techniques. The algorithm applies a
greedy method [23] to rank all available features based on the ensemble results of a diverse
selection of methods and families of predictors. To date, we have successfully applied
MFeaST to identify features of interest in many different -omics datasets [24–34]. Here, we
demonstrate the effectiveness of MFeaST in selecting a small set of features as potential
biomarkers in prostate adenocarcinoma mRNA profiles using immune-function related
genes. Our analysis showed that the biomarkers selected using MFeaST could also be used
to build classification models that perform better in all comparisons than the other models
built in this study using differentially expressed genes or without feature selection.

2. Materials and Methods
2.1. Feature Selection Algorithm

We developed the Molecular Feature Selection Tool (MFeaST) to rapidly identify candidate
biomarker molecules in -omics data using an ensemble feature selection approach. This
MATLAB-based application accepts a feature matrix of -omics profiles and ranks each
feature based on its ability to discriminate between two classes. Features are assessed for
classificatory ability using an ensemble of multiple univariable and multivariable filter-
, wrapper-, and embedded-type feature selection algorithms (Table 1); many of these
algorithms are implemented by default in MATLAB. Subsequently, a greedy algorithm is
applied to combine the results of the different feature selection methods and to rank each
feature based on the ensemble vote. Several choices for cross-validation including K-fold,
hold-out, leave-one-out, and resubstitution can be selected to increase the generalizability
and stability of MFeaST and avoid potential overfitting. In this paper, MFeaST was applied
to prostate adenocarcinoma mRNA profiles to select features for discrimination between
three molecular subtypes.
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Table 1. The feature selection algorithms used in MFeaST.

Feature Selection Type Univariable Multivariable

Filter Type

Mutual information score
ROC criteria

Wilcoxon criteria
ReliefF analysis

Wrapper Type

Support vector machine
K-nearest neighbors

Decision tree
Quadratic discriminant

analysis

Embedded Type Treebagger predictor
importance

Decision tree with bagging
Decision tree with gentle

adaptive boosting
Decision tree with random
undersampling boosting

2.2. Data Acquisition

mRNA expression profiles (n = 550) from frozen prostate adenocarcinoma samples
were obtained from the TCGA-PRAD dataset [35] from the Cancer Genome Atlas (TCGA).
Briefly, RNA-Seq data were aligned by the TCGA Research Network to the GRCh37 refer-
ence genome using STAR v2.30e, generating gene expression profiles with 20,502 features
each. Quartile (RSEM) normalized gene expression data were downloaded from FireBrowse
(Broad Institute, Cambridge, MA, USA) on 23 March 2019 (TCGA data version 2016_01_28).
All methods were performed in accordance with their relevant guidelines; ethics approval
was not required to access this publicly available dataset.

2.3. Data Preprocessing

Only primary tumor sample profiles (n = 497) were used. Samples that were solid
tissue normal (n = 1) or metastatic (n = 52) in the TCGA-PRAD dataset were identified and
removed. Data were preprocessed using an established methodology for data preprocessing
and the detection of outlier and batch effects [36]. No batch effects or outliers were detected
for removal.

2.4. Prostate Cancer Stratification into Molecular Subtypes with Pam50

The prostate adenocarcinoma samples were categorized according to the Pam50 pro-
tocol, an established protocol to determine molecular subtypes in prostate and breast
cancer [37,38]. The source code was downloaded from the University of North Carolina
Microarray Database [37] and was applied to assign samples to the molecular subtypes.
To ensure high accuracy of class labelling, samples with confidence scores less than 0.75
(n = 157) were removed, resulting in 72 luminal A (LumA), 166 luminal B (LumB), and
102 Basal profiles.

2.5. Immune Profile Compilation

The existence of luminal and basal subtypes across carcinomas was previously re-
ported [39], however, in our analysis, we only focused on the immune-function related
genes. Immune-function genes (n = 923, Supplementary Table S1) that were previously
identified as common immunotherapy targets [24] were extracted from the gene profiles
and compiled into immune profiles for each sample. The median overall expression across
the entire dataset was calculated and defined as the minimum expression threshold. To
reduce computing time and increase the robustness of candidate biomarkers, genes with
an expression below the minimum threshold in more than 90% of samples were considered
low expressed and removed from analysis (n = 349). Finally, the filtered data were log2
transformed. Since the log2 of zero is undefined, the zero values were replaced with a
computed low value of the same magnitude as the smallest non-zero value in the dataset.
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2.6. Feature Selection of Immune-Function Genes in Prostate Adenocarcinoma

Potential biomarkers were identified for each of the comparison groups (A) LumA
vs. Basal, (B) LumB vs. Basal, and (C) LumA vs. LumB as follows. Highly expressed
immune-function genes (n = 574) were imported into MFeaST. On the comparison tab,
one of the comparisons was selected (e.g., LumA vs. Basal). The MFeaST is an ensemble-
based algorithm that relies not on one but on multiple univariable and multivariable as
well as filter-, wrapper-, and embedded-type feature selection techniques. Therefore, for
the identification of potential biomarkers in the current dataset, all available algorithms
were selected, with 5-fold validation, optimization, and five iterations for the sequential
algorithms. The 5-fold validation reduced the chance of overfitting by performing the
feature selection five times, each time on a different subset of data. The ranking results of
the MFeaST were reviewed on the Results tab, where each original feature was assigned
and ranked based on an ensemble score between 0 and 1, with 1 indicating the perfect
ability to discriminate between conditions of interest. The univariable feature selection
methods assign a score of 0–1 to each feature. The multivariable methods search for the
best combination of features that provide the highest discrimination accuracy. In the final
selected set, each feature obtains a score of 1, and features that are not selected each obtains
a score of 0. The results were further inspected within the software using its visualization
tools to identify and select the most valuable predictors, focusing on the top-ranking 10%
of the results that provided the best clustering results.

2.7. Differential Gene Expression of Immune-Function Genes in Prostate Adenocarcinoma

The results of the biomarkers selected with MFeaST were compared to the conventional
approach using differential expression method. The differentially expressed results were
computed as follows. Preprocessed data were imported into R version 3.6.0 (“Planting of
a Tree”) for analysis with the edgeR package (version 3.25.8), as described in the user’s
guide [40]. Briefly, the data were re-normalized by the counts per million (CPM) method
for compatibility with edgeR, the dispersion of the data was estimated, and differential
expression was calculated using the exact negative binomial test with a Benjamini-Hochberg
corrected false discovery rate (FDR) [41]. All differentially expressed genes with FDR ≤ 0.05
were used in hierarchal cluster analysis and for the construction of a classifier.

2.8. Construction of an Immune-Function Gene Classifier

The selected biomarker candidates were further evaluated for their ability to classify
the conditions of interest. Three classification analyses where performed: one using MFeaST
selected genes, the second using differentially expressed genes (FDR ≤ 0.05), and the third
using all highly expressed genes. All classification algorithms in the MATLAB Classification
Learner App (n = 23) were evaluated to identify a family of classifiers that worked best for
discriminating (A) LumA from Basal, (B) LumB from Basal, and (C) LumA from LumB.
Preprocessed data were scaled to have 0 mean and unit-variance, then imported into
Jupyter Notebook with Python 3.7 to construct final classification models with 10-fold
cross-validation. For each model, the data were randomly divided into 10 disjoint sets of
equal size +/−1. The training of the SVM classifier was performed 10 times and each time
it was tested on a different set held out as a validation. The mean and standard deviation
of accuracy, precision, recall, and F1-score were computed over the 10 validation sets to
evaluate the classification model performance.

2.9. Clinical Information Analyses

Clinically relevant and prognostically important markers to prostate adenocarcinoma
from the TCGA repository were compared between patients of different pathological types
using SPSS Statistics (IBM, Armonk, NY, USA, Version 25). The Kruskal–Wallis test was
used to investigate differences between variables with ordinal or ratio data. The Chi-square
test was used for variables with categorical data. Results with a p-value ≤ 0.05 were
considered significant.
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2.10. Graphical User Interface for the Feature Selection Algorithm

A desktop application with a simple, intuitive, graphical user interface (GUI) was
developed to facilitate easy application of the MFeaST algorithm on any dataset by end-
users with different levels of computational expertise. A detailed user guide is presented in
the results. While coded in MATLAB, MFeaST is a completely standalone application that
does not require a MATLAB subscription, instead running on the freely available MATLAB
Runtime software (MathWorks, Natick, MA, USA, Version 9.9). MFeaST can be run on most
Windows or Apple desktop computers (system requirements are detailed in Supplementary
Table S2 and are available for download at https://www.renwicklab.com/molecular-feast/,
pw: rankmolecules).

3. Results
3.1. Clinical Information Analyses

The clinicopathological statistics for important prognostic markers of prostate ade-
nocarcinoma are presented in Table 2. No significant differences were found between the
three molecular subtypes for biochemical recurrence, radiation therapy, radiation follow-
up, or pN category (Chi-square test), nor were there significant differences in age or PSA
levels between groups (Kruskal–Wallis test). Statistically significant differences between
subtypes were found for grade (p = 0.020) and pathological stage (p = 0.009). Differences in
histological type could not be assessed as one or more categories had expected counts <5.
These results show that only the grade and pathological stage are the potential confounding
variables in any future statistical analysis of the molecular subtypes.

3.2. Feature Selection of Immune-Function Genes in Prostate Adenocarcinoma

After generating immune-function profiles from TCGA-PRAD datasets, the discrimi-
natory abilities of each immune-function gene were scored from 1 (best) to 0 (worst) using
the MFeaST for (A) LumA from Basal, (B) LumB from Basal, and (C) LumA from LumB
(Supplementary Table S3). The top-ranking 10% immune-function genes were clustered
using hierarchical clustering (Figure 1). This set of genes was further reduced using the
MFeaST visualization to the most valuable predictors for building the classification models,
which resulted in (A) 33 genes used to discriminate LumA from Basal, (B) 15 genes used to
discriminate LumB from Basal, and (C) 18 genes used to discriminate LumA from LumB
(Supplementary Table S3).

3.3. Differential Gene Expression of Immune-Function Genes in Prostate Adenocarcinoma

Differential gene expression was performed to create sets of genes for classifier con-
struction and comparison with the MFeaST-selected genes. After filtering for statistical
significance (FDR ≤ 0.05), differential expression analyses found (A) 136 upregulated
and 159 downregulated genes in LumA when compared to Basal, (B) 233 upregulated
and 239 downregulated genes in LumB when compared to Basal, and (C) 161 upregu-
lated and 167 downregulated genes in LumA when compared to LumB (Supplementary
Table S4). The hierarchal clustering results for differentially expressed genes are shown in
Figure 2, showing some separation, but not as distinct as in the clustering with the MFeaST
selected genes.

https://www.renwicklab.com/molecular-feast/
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Table 2. The clinicopathologic statistics of important prognostic markers in prostate adenocarcinoma.

Basal Luminal A Luminal B Total χ2 D.o.F p

Biochemical
recurrence n = 88 n = 64 n = 144 n = 296

Yes 14 (16%) 3 (5%) 24 (17%) 41 (14%)
5.77 2 0.056No 74 (84%) 61 (95%) 120 (83%) 255 (86%)

Radiation
therapy n = 61 n = 36 n = 99 n = 296

Yes 8 (13%) 6 (17%) 14 (14%) 28 (9%)
0.24 2 0.888No 53 (87%) 30 (83%) 85 (86%) 168 (57%)

Radiation
follow up n = 80 n = 64 n = 132 n = 276

Yes 9 (11%) 8 (13%) 25 (19%) 42 (15%)
2.76 2 0.252No 71 (89%) 56 (88%) 107 (81%) 234 (85%)

Histological
type n = 102 n = 72 n = 166 n = 340

Acinar 101 (99%) 72 (100%) 158 (95%) 331 (97%)
* 6.10 2 0.047Other 1 (1%) 0 (0%) 8 (5%) 9 (3%)

Grade group n = 99 n = 71 n = 164 n = 334
GG1 10 (10%) 8 (11%) 11 (7%) 29 (9%)

21.221 6 0.020
GG2 35 (35%) 28 (39%) 31 (19%) 94 (28%)
GG3 17 (17%) 14 (20%) 30 (18%) 61 (18%)

GG4 + GG5 37 (37%) 21 (30%) 92 (56%) 150 (45%)

Pathological
stage n = 100 n = 69 n = 166 n = 335

pT2 41 (41%) 35 (51%) 50 (30%) 126 (38%)
9.515 2 0.009pT3 + pT4 59 (59%) 34 (49%) 116 (70%) 209 (62%)

Nodal
involvement n = 83 n = 62 n = 151 n = 296

pN0 73 (88%) 52 (84%) 114 (75%) 239 (81%)
5.84 2 0.054pN1 10 (12%) 10 (16%) 37 (25%) 57 (19%)

Basal Luminal A Luminal B Total

med n ran med n ran med n ran med n ran H D.o.F p

Age at
diagnosis 62 102 41–77 63 72 46–75 62 166 46–78 62 340 41–78 0.17 2 0.918

PSA 0.1 90 0–37.36 0.1 68 0–13.95 0.1 143 0–39.80 0.1 301 0–39.80 1.93 2 0.381

Relevant clinicopathologic data collected by the TCGA study were compared between molecular subtypes using
the Chi-square or Kruskal–Wallis test where appropriate. Statistically significant differences between molecular
subtypes were found for grade (p = 0.020) and pathological stage (p = 0.009). Differences in histological type could
not be assessed as one or more categories had expected counts <5. Abbreviations: degrees of freedom (D.o.F),
median (med), range (ran). * denote one or more cells in the category have expected counts <5.

The MFeaST-selected and differential expression selected genes are compared in Sup-
plementary Table S5. Genes that were (1) only MFeaST-selected were listed under “Feature
selection only”; (2) selected by both MFeaST and differential expression were listed under
“intersection”; and (3) only differential expression selected were listed under “Differential
expression only”. All but one MFeaST-selected gene was among the differentially expressed
genes for all three comparisons (Supplementary Table S5).
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Figure 1. Hierarchal clustering analysis performed using top ranked MFeaST-selected genes. The
top 10% highest ranking MFeaST-selected genes were used to cluster (A) Luminal A and Basal
samples; (B) Luminal B and Basal samples; (C) Luminal A and Luminal B samples. Unsupervised
hierarchical clustering with average linkage was performed on the log2 transformed expression values.
The data were median-centered for proper visualization of the heatmap. Spearman correlation was
used as a similarity measure between samples. The top 10% highest ranking genes are listed in
Supplementary Table S3 up to the horizontal double line.
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Figure 2. Hierarchal clustering analysis performed using differentially expressed genes. All dif-
ferentially expressed genes (FDR ≤ 0.05) were used to cluster (A) Basal and Luminal A samples; (B)
Basal and Luminal B samples; (C) Luminal A and Luminal B samples. Unsupervised hierarchical
clustering with average linkage was performed on the log2 transformed expression values. The data
were median-centered for proper visualization of the heatmap. Spearman correlation was used as a
similarity measure between samples.

3.4. Immune-Function Gene Classifier

When evaluated in the MATLAB Classification Learner App, linear SVM was the
top performing classification algorithm in all A–C comparison cases. Therefore, all final
classification models for both MFeaST-selected and differentially expressed gene sets were
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constructed using linear SVM with 10-fold cross-validation. The mean ± standard deviation
of accuracy, precision, recall, and F1-score were calculated across the 10 validation folds
(Table 3). Using a very small set of 15–33 features selected with MFeaST allowed us
to construct high performing classifiers with an accuracy ranging from 81 to 95%. The
precision, which is a ratio of correctly identified positive observations to the total number of
positive observations (true positives + false positives) was between 80 and 97%. The recall,
which measures the ratio of true positives to the total actual positives (true positives + false
negatives), was between 83 and 97%. Finally, the F1-score, which is a harmonic mean of
precision and recall and accounts for both false positives and false negatives, was between
79–97% for predicting the LumA, LumB, and Basal subtypes (Table 3). Comparatively,
using between 295 and 472 features selected by differential gene expression resulted in
less accurate classifiers with accuracy ranging from 79 to 93%, precision 78–93%, recall
78–96%, and F1-score 76–94% (Table 3). Although the contrast in these results between
the differential gene expression results and MFeaST results was small, the later used a
significantly smaller number of genes. For completeness, we performed the classification
of the three subtypes using all 574 highly expressed immune-function genes (i.e., without
feature selection or differential expression). The classification accuracy ranged from 77 to
94%, precision 74–94%, recall 75–97%, and F1-score 73–95%. This demonstrates that the
MFeaST approach is useful for the identification of a small list of potential biomarkers,
which is very important in biomarker discovery studies.

Table 3. The classification results for the models built using the MFeaST-selected and differentially
expressed genes.

MFeaST Differential
Expression All Features

(A) Basal|Luminal A

Number of genes 33 295 574
Accuracy 81.08 ± 11.71 78.82 ± 9.77 77.12 ± 8.96
Precision 79.59 ± 19.84 78.03 ± 17.63 73.95 ± 12.80

Recall 82.86 ± 16.22 77.68 ± 13.81 75.00 ± 14.31
F1-score 78.86 ± 11.35 75.58 ± 8.80 73.09 ± 9.15

(B) Basal|Luminal B

Number of genes 18 472 574
Accuracy 94.80 ± 2.58 92.91 ± 6.18 94.02 ± 6.61
Precision 96.56 ± 3.88 93.46 ± 7.36 93.53 ± 7.37

Recall 95.22 ± 3.75 95.74 ± 4.17 97.50 ± 4.37
F1-score 95.79 ± 2.07 94.42 ± 4.68 95.33 ± 5.03

(C) Luminal A|Luminal B

Number of genes 15 328 574
Accuracy 95.36 ± 3.69 91.59 ± 5.20 92.45 ± 6.45
Precision 96.65 ± 5.18 93.35 ± 5.84 94.50 ± 6.36

Recall 96.99 ± 3.18 95.22 ± 6.09 95.26 ± 6.08
F1-score 96.70 ± 2.56 94.05 ± 3.68 94.66 ± 4.36

3.5. MFeaST Graphical User Interface

To allow all scientists, with and without computational training, the ability to select
features using MFeaST, a simple GUI was developed. Our MFeaST GUI comprises six
tabs that guide end-users through feature selection analysis (Figure 3). Upon opening the
application, the user is presented with the “Input Data” tab (Figure 3A). Here, the user
can import their data file and view a summary of the information including the filename
and path, number of comparison types, number of features, number of samples, and the
actual data. If there are multiple comparison types, the user can specify which binary
comparisons to use in the “Comparisons Selection” table.
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Figure 3. MFeaST application. The MFeaST GUI comprises of several tabs that guide end-users
through feature selection analysis. (A) Input data: The data can be imported and viewed. (B) Feature
selection: The feature selection and cross validation algorithms, and number of iterations for sequen-
tial algorithm can be selected. (C) Results: A ranking of the features and a colored scatter plot based
on two selected features are presented and can be downloaded. A final list of selected features can
be created by selecting all, top percentage, or a custom list of features. (D) Clustering: The selected
features can be visualized using t-SNE and hierarchical clustering analysis.

Next, the user can either select all or specific feature selection algorithms for analysis
in the “Feature Selection” tab (Figure 3B). For small datasets, we recommend using all
algorithms, as it allows for the utilization of the power of the ensemble vote; however, as
computation increases proportionally with the number of features, users may consider
excluding all sequential type algorithms when analyzing datasets with more than ten
thousand features. As part of the biomarker discovery process, we advise removing
features with low expression values or that do not vary across conditions of interest prior
to the feature selection analysis. This will reduce the number of potential features and
enable a more thorough analysis using the MFeaST approach. Additional options including
the choice of cross-validation, parallel computing, and number of iterations for sequential
feature selection are also provided (Figure 3B).

Once feature selection is finished, the user is presented with the “Results” tab (Fig-
ure 3C). Included in the results is a table with the option to show (1) the input data in
ranked order or (2) the ranked scores for each feature, a colored scatter plot based on two
selected features, and a list of final selected features (Figure 3C). The user has the option to
choose all, a top percentage, or a custom list of final selected features. All ranking result
tables can be exported to the Excel, CSV, or MATLAB format and the selected feature lists
can be copied as plain text. Sample grouping can be visualized using the finalized list of
selected features with a multidimensional visualization t-SNE technique [42]. The interface
also allows users to perform hierarchical clustering analysis and generate a variety of heat
maps in the “Clustering” tab using different settings (Figure 3D). Finally, the “About” tab
provides information on the application.
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4. Discussion

In biomarker discovery studies, it is often desired to identify a small set of molecular
features from large -omics datasets that can be used to detect conditions of interest. How-
ever, conventional univariable approaches to identify molecular features using differential
expression, do not consider the interaction between features. These approaches are con-
founded by the sample size, leading to the poor and sometimes misleading selection of
potential biomarkers. Moreover, the final list of differentially expressed molecular features
is often long, making it often difficult to select the best biomarker candidates.

In contrast, machine learning driven feature selection can be used to detect patterns
and interactions in -omics datasets and lend insights into the mechanisms of the conditions
studied [43]. In this manuscript, we present the Molecular Feature Selection Tool (MFeaST), an
ensemble feature selection desktop application that can be utilized to identify biomarkers
of disease or other clinical conditions by exploring the high dimensionality of the data.
To demonstrate its effectiveness, we applied MFeaST to prostate adenocarcinoma mRNA
profiles. Using only immune-related genes, we identified a small set of features that can
effectively predict three different molecular subtypes. The classification models that were
built using MFeaST-selected genes outperformed other models built in this study using
differentially expressed genes and all genes, but more importantly, used a very small set
of genes.

MFeaST has several advantages over conventional differential expression analysis and
existing feature selection methods. First, MFeaST is an ensemble-type method that combines
multiple univariable and multivariable as well as filter-, wrapper-, and embedded-type
feature selection techniques. This novel combination of algorithms makes MFeaST more
generalizable and reliable for identifying features of importance [20]. Second, MFeaST
utilizes the power of machine learning algorithms to rank molecular features. These algo-
rithms characteristically rely on mathematical functions or branching logic that determine
the class boundary rather than hypothesis testing, and are therefore less dependent on
sample size. Using MFeaST allows one to select a small set of features as potential biomark-
ers, enabling a more effective way for biomarker discovery. From a machine learning
perspective, using a small set of features can potentially avoid issues with overfitting,
which is especially important for datasets with a small number of available samples. Third,
we developed an intuitive, GUI that allows users, irrespective of computational exper-
tise, to apply MFeaST on any dataset. Additionally, we successfully applied MFeaST to
find biomarkers in many different omics datasets including messenger RNA-Seq [24–26],
RT-qPCR [27,28], microRNA-Seq [29–32], NanoString profiles [33], and protein mass spec-
trometry [34]. These datasets were often characterized by a large number of features versus
a relatively small number of samples, and usually with a lot of sparse data.

The MFeaST allows one to identify potential biomarkers based on a binary comparison.
However, it can be extended to multiclass problems where the dataset has more than two
conditions of interest. In our previous studies, we successfully applied the method in
the one-vs.-all approach [24,34], where molecular features are selected by comparing one
condition to all of the other conditions of interest. In addition, we utilized the MFeaST in a
multi-layer classifier by assembling binary decision-layer models according to a predefined
hierarchy [29–32]. Here, at each decision layer, the MFeaST was used to identify features
of interests to address a binary problem. This divide and conquer approach allows one
to reduce a complex problem into smaller, manageable tasks. Following this approach, a
hierarchical classification of LumA, LumB, and Basal subtypes can be implemented. First
the LumA vs. LumB classifier is applied on an unknown sample. If a sample is classified
as LumA, then the LumA vs. Basal classifier is applied as a final prediction. On the other
hand, if a sample is classified as a LumB subtype, then the LumB vs. Basal classifier is
applied as a final prediction.

Using prostate adenocarcinoma mRNA data, we demonstrated how MFeaST allows for
the selection of a small set of features for further analyses or to build classification models.
Not only did the features selected with MFeaST result in a better classification of the three
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molecular subtypes than the other models in this study, but it also used a significantly
smaller set of genes than in the differential expression approach. Since MFeaST ranks all
available features—as opposed to compressing or filtering them—the final selection can be
further enhanced and interpreted by a domain expert by observing each feature ranking
score, assessing it visually or experimentally. Reducing a high-dimensional feature space
to a small set of highly informative predictors is valuable for biomarker development and
for building generalizable prediction models.

The proof-of-principle example presented here was limited by the use of the Pam50
gene set, rather than a gold-standard pathological diagnosis, to label the samples by their
molecular subtype. Nevertheless, while some samples were excluded from the study
due to labelling uncertainty, MFeaST was still able to identify a small set of features that
reliably discriminated between the molecular subtypes. In addition, we did not further
investigate the selected immune-related genes, highlighting the critical role that domain
experts need to play in biomarker development. It is important to note that the prediction
of the LumA vs. Basal subtype was relatively lower and less stable (large std) than for other
comparisons across all models. This indicates that it was difficult to achieve a good and
stable discrimination between the LumA and Basal samples based on the immune-function
genes. Therefore, other molecular markers should be examined, and further validation of
the classifier on other prostate adenocarcinoma datasets should be explored.

Here, we introduce MFeaST as an effective approach to identify molecular features
of importance as potential biomarkers in high-dimensional -omics data. In our analy-
ses, we focused on immune-function-related genes and investigated their potential as
biomarkers using machine learning approaches. In general, MFeaST selected features can
be further examined by domain experts through pathway analysis, literature search, and
experimentation. We are continuously working on adding more functionalities to MFeaST
and future updates may include support for multiclass feature selection and the use of
unsupervised feature selection methods. We expect MFeaST, through its effectiveness and
easy-to-use GUI, to have a large impact on existing and future -omics based biomarker
discovery studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
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differential expression results.
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