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Abstract: Vitamin D (VD) and micronutrients, including folic acid, are able to modulate both the
innate and the adaptive immune responses. Low VD and folic acid levels appear to promote cognitive
decline as in Alzheimer’s disease (AD). A machine learning approach was applied to analyze the
impact of various compounds, drawn from the blood of AD patients, including VD and folic acid
levels, on the Mini-Mental State Exam (MMSE) in a cohort of 108 patients with AD. The first analysis
was aimed at predicting the MMSE at recruitment, whereas a second investigation sought to predict
the MMSE after a 4 year follow-up. The simultaneous presence of low levels of VD and folic acid
allow to predict MMSE, suggestive of poorer cognitive function. Such results suggest that the low
levels of VD and folic acid could be associated with more severe cases of cognitive impairment in
AD. It could be hypothesized that simultaneous supplementation of VD and folic acid could slow
down the progression of cerebral degeneration at least in a subset of AD individuals.
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1. Introduction

Vitamin D (VD) is a secosteroid hormone with two forms, D2 (ergo-calciferol) and
D3 (cholecalciferol). The active form, 1,25-hydroxyvitamin D, also known as calcitriol,
primarily regulates the homeostasis of calcium and phosphate [1,2]. According to the
scientific literature, it is now well established that VD, through VD receptor (VDR) and
micronutrients, including folic acid (FA), are able to modulate both the innate and the
adaptive immune responses [1–3]. Low VD and FA levels appear to promote cognitive
decline in several neurodegenerative conditions, as in Alzheimer’s disease (AD) [4,5].
Indeed, low levels of VD were found in several neurological and neuropsychiatric condi-
tions, including those whose onset occurs during childhood, including Autism Spectrum
Disorders (ASD) [6]. Low VD levels also occur in typical disorders of the older age, such as
neurodegenerative processes [4]. On the other hand, VD supplementation is eventually
associated with a significant cognitive function improvement in early dementias, as occurs
in the case of the Mild Cognitive Impairment (MCI) [7]. Indeed, the role of VD at brain
level is manifold. It is well known that VD is somewhat involved in the processes dealing
with synaptic plasticity, notably in long-term potentiation, pivotal in storing information
at brain level. Overall, synaptic plasticity refers to the ability to generate new synapses,
eliminate existing ones, and alter the electrophysiological, molecular, and structural prop-
erties of existing synapses in response to experience [8]. As such, synaptic plasticity is key
to learning and memory among other cognitive processes [9].
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The mechanisms for which VD deficiency is linked to cognitive detriment are not
yet fully understood. However, it was seen that a prenatal lack of VD is capable of al-
tering genes involved in synaptic plasticity, including drebrin and neuromodulin [10,11],
in turn playing a role in the pathophysiology of schizophrenia and associated cogni-
tive impairment. On the other hand, supplementation of VD was seen to upregulate
genes pivotal to synaptic plasticity. Those include synaptojanin 1, synaptotagmin 2 and
calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ), beyond reporting the same
action on receptors for neurotransmitters, such as dopamine, glutamate and serotonin, key
for usual synaptic functioning [12].

Beyond that, VD signaling is also associated to the expression of L-Voltage-gated cal-
cium channels (L-VGCCs), in turn acting in neurotransmitter release, changes in neuronal
excitability, learning, memory, and other important physiological functions [13]. These
somewhat influence long-term cognitive functions, through the modification of neuronal
connectivity [14]. In addition, L-VGCCs regulate nitric oxide (NO) levels, in turn, im-
plicated in synaptic plasticity, transmission and neuroprotection [15,16]. However, NO
production is also influenced by VD levels, further boosting the importance of VD for
cognitive processes, mainly learning and memory.

Aside from the effects VD has on the brain of living beings, folates are also interesting
compounds when it comes to dealing with neurocognitive processes. However, their
contribution in terms of cognitive improvement/preservation or, conversely, cognitive
detriment, is quite debated. In fact, some works have proven a clear association between
folate levels and cognitive decline (i.e., see [17]), whereas other articles have demonstrated
an improvement in cognitive function in those subjects under folate supplementation,
especially when displaying higher levels of homocysteine [18]. This probably occurs since
concentrations of homocysteine appear to be associated with an increased risk for dementia
in older adults. Conversely, the elimination of homocysteine from the body occurs thanks
to two different pathways, one requiring folate and Vitamin B12, and the other one Vitamin
B6 [19].

To this extent, in the present work, we analyzed a cohort of patients with AD to assess
whether the levels of several blood biomarkers, including complete blood count, thyroid
stimulating hormone (TSH), parathyroid hormone (PTH), vitamin B12, VD and folate can
be related to functional tests and can, therefore, represent predictors of the development
of AD. The analysis was performed taking advantage of the Machine Learning (ML)
approach, already demonstrated to be a useful alternative to classical statistical analysis
also in AD and similar conditions in the presence of high amounts of data [20]. Finally,
we briefly theorized the link between VD, FA, microbiome and immune system in the
etiopathogenesis of AD.

2. Materials and Methods

One hundred and eighteen (30 men and 88 women, median age 86 ± 5 years) AD
patients were recruited from 2013 to 2020 (2013 to 2015 for the enrollment, 2016 to 2020
for the follow-up). They also signed an informed consent document proposed by the San
Martino Polyclinic Hospital (which was kept in their medical records) on participation in
the study. The patients were followed up at the Alzheimer Evaluation Unit outpatient clinic
of the Geriatric Clinic of the San Martino polyclinic in Genoa. AD was confirmed through
neuro-imaging. Inclusion criteria for the study were: presence of neurodegeneration,
confirmed through TAC or brain magnetic resonance imaging (MRI), and at least two visits
at the Geriatric Clinic of the San Martino polyclinic in Genoa 6 months one to another prior
to the enrollment. Exclusion criteria for the study were age under 65 years old.

To analyze the neuro-cognitive functions of the patients examined, we used the
Mini-Mental State Exam (MMSE), a 30-question assessment of cognitive functioning that
evaluates attention, orientation, memory, registration, recall, calculation, language and
ability to draw a complex polygon [21,22]. The test consists of 11 items divided into
5 sections, its total score ranging from 0 to 30. The threshold score for “normality” is set
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at 24/30; however, this limit is influenced by age and education, for which correction
factors have been developed [21,22]. The present study took into consideration the MMSE
calculated at the first visit (MMSE1) and at the last visit (MMSE2) performed up to the
year 2020. The average elapsed time between the first and the last test is 1427 days
(equal to 3.9 years). A Machine Learning (ML) approach was employed to assess which
of the parameters (haemoglobin, Mean Corpuscular Volume, platelets, creatinine, TSH,
parathyroid hormone (PTH), vitamin B12, VD and FA) drawn from the patients were most
predictive of their cognitive involvement concerned with AD (Figure 1).

Figure 1. Overall view of the inputs and outcome of the ML algorithms.

To this extent, as mentioned above, the ML outcome evaluated was the MMSE, both
at recruitment and after follow-up. As MMSE was taken as a continuous variable, the task
demanded to the ML model was a regression task, with the evaluation of the Root Mean
Square Error (RMSE) as the metrics for comparing models’ performances. According to
that, the ML models, making use of 90% of data for training and 10% for test purposes, were
evaluated on 10-fold cross-validation, and the best results for each model were selected
as the one with the optimal trade-off between performances (in terms of minimal RMSE
for the regression task) and complexity (in terms of lower number of features included
in the model). This would have ensured enough generalizability to further unknown
data. To do so, parameters were selected as to not simply having the minimum RMSE
in absolute terms, but to have a maximum deviation of one standard error from the
minimal RMSE, thus reducing complexity of the model and avoiding overfitting. The
whole ML analysis was carried out under the open-source R language, using the software
RStudio, version 1.3.1093 for Windows, available with the GNU Affero General Public
License. Five supervised ML models (LASSO, RIDGE, Elastic Net, Classification and
Regression Trees, and Random Forest) were implemented and trained, using the R-based
caret package [23], allowing an unbiased comparison of regression performances between
them. The models are briefly outlined below.

2.1. LASSO

The Least Absolute Shrinkage and Selection Operator, namely LASSO, is a very
common ML model, relying on a regression analysis method. It carries out both variable
selection and regularization, and aims at improving the prediction accuracy and the
resulting model interpretability [24]. It is known to be particularly useful when datasets
are composed of several variables hypothesized not being useful for prediction purposes.

2.2. RIDGE

Ridge Regression is a ML technique often employed when the regression data to
be analyzed are significantly affected by multicollinearity problems. If multicollinearity
occurs, it turns out that least squares estimates are totally unbiased, with a large variance,
deviating them significantly from their true value. By adding a quota of bias to the
regression estimates, ridge regression is able to reduce the standard errors. Conversely
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to LASSO, which is quite similar in some instances, RIDGE regression shrinks all the
coefficients to a non-zero value.

2.3. Elastic Net

The Elastic Net attempts at taking the advantages of both LASSO and RIDGE, blend-
ing their optimal characteristics. Its main regularization parameter, named α, can be
continuously varied between 0 and 1, with the lower limit (being zero) making the model
equal to RIDGE and the upper limit (being one) to LASSO. A 0.5 value indicates a 50/50
blend between the two regression models.

2.4. CART

Classification and Regression Trees (CART) are popular and powerful ML models,
relying on the deconstruction of the overall sample into smaller groups, performed through
repeated, binary splits of the sample, considering one exploratory variable at a time.

Their advantages are manifold: they can be easily adapted to different data, including
cross sectional, longitudinal, survival data, the possibility to use different types of response
variables, and the fact that they do not need to make any assumptions in terms of the
normality of the data distribution. On the other hand, their main limitations include their
strong sensitivity to data changes and their somewhat limited interpretability.

2.5. Random Forest

Random Forest (RF) are learning methods that can be applied for classification and
regression purposes, operating by building up a series (forest) of decision trees at the
training. Their output is represented by the class that is the mode of the classes, for
classification, or the mean prediction, for regression, of the individual trees [25].

With respect to the classical decision trees, RF carry on several advantages. Those
include the performance of implicit on-the-run feature selection, the provision of accurate
indicators of feature importance, the absence of need for particular data preparation prior
to the application of the ML model, the opportunity for them to handle binary, categorical,
numerical features without any need for scaling, normalization or standardization. They
are also unlikely to perform overfitting, they are relatively quick to train and versatile,
although their interpretability is often cumbersome.

3. Results

Statistical data on the parameters extracted from the patients (MMSE, blood parame-
ters) are presented in Table 1.

Table 1. Values of the parameters extracted from the AD patients.

Parameter (u.m.) Value (Mean ± SD) Range (Min–Max)

MMSE, or MMSE 1 18.5 ± 6.2 5–30

MMSE follow-up, or MMSE 2 14.1 ± 7.2 4–28

Haemoglobin (g/dL) 12.6 ± 1.4 7.8–17.4

Mean Corpuscular Volume
(fL/cell) 91.1 ± 5.1 62–102

Platelets (1000/µL) 195.0 ± 43.8 72–364

Creatinine (mg/dL) 0.98 ± 0.40 0.4–3.2

Thyroid-Stimulating Hormone
(mIU/L) 2.2 ± 1.2 0.02–7.1

Parathyroid Hormone (pg/mL) 72.5 ± 41.3 14–337

Vitamin D (ng/mL) 29.3 ± 12.2 4–60

Vitamin B12 (pmol/L) 368.1 ± 110.0 67–927

Folate (nmol/L) 9.9 ± 5.0 1.5–41
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The first analysis based on ML was aimed at predicting the MMSE at recruitment.
According to the minimum RMSE calculated on the test set, the RIDGE model was selected
as having the best regression performances, with a RMSE = 5.109. The model, whose
hyperparameter lambda was optimally set at 0.15, displayed the best performances when
using two input parameters (Vitamin D and folate) as the most predictive ones. The
algorithm used little PC memory for the training and regression task (0.269 MB), although
completing the full cycle in a relatively long amount of time (549.57 s) (Table 2). Therefore,
the model is not particularly suitable in cases when a very fast response is needed to
be achieved.

Table 2. Performance of the trained classifiers on the first task (MMSE estimation).

Classifier Hyper-
Parameter(s)

Hyper-
Parameter(s)

Value(s) Range

Hyper-
Parameter(s)

Optimal Value(s)

Features
Employed RMSE

LASSO fraction 0–1 0.01 VD 5.379

RIDGE lambda 0–1 0.15 VD, folate 5.109

Elastic Net fraction,
lambda 0–1 0.05 (fraction), 0.01

(lambda) VD 5.247

CART cp 0–1 0.057 VD, MCV 5.294

Random
Forest mtry 1–9 4 VD, B12, MCV,

PTH 5.636

B12: Vitamin B12; MCV: Mean Cell Volume; PTH: Parathyroid Hormone; VD: Vitamin D.

At follow-up, overall performances of the ML models used slightly worsened, as
expected due to the higher complexity of the task caused by the amount of time elapsed
between the two MMSE evaluation points. Despite its complexity and high computational
cost (870.32 s elapsed time to complete the full cycle, with 3.45 MB of PC memory used),
the Random Forest, using 500 trees for the forest set-up, outperformed the other models.
It displayed a RMSE = 5.834 and made best use of three input parameters, being Mean
Cell Volume (MCV), VD and Platelets, selected based on their predictive value. With good
performances, as above, the biggest drawback of the algorithm is represented by the high
computational cost, possibly decreased when selecting a lower number of trees to carry out
the task demanded. To this extent, according to the simulation performed, a Random Forest
composed of 150–200 trees would guarantee similar RMSE performances in a relatively
shorter amount of time. The comparison between classifiers over the second task is shown
in Table 3.

Table 3. Performance of the trained classifiers on the second task (MMSE estimation at follow-up).

Classifier Hyper-
Parameter(s)

Hyper-
Parameter(s)

Value(s) Range

Hyper-Parameter(s)
Optimal Value(s)

Features
Employed RMSE

LASSO fraction 0–1 0.1 Hb, MCV,
VD 6.343

RIDGE lambda 0–1 0.1 Hb, MCV,
VD 6.431

Elastic Net fraction,
lambda 0–1 0.05 (fraction), 0.1

(lambda) VD 6.379

CART cp 0–1 0.08 MCV 6.807

Random
Forest Mtry 1–9 3 MCV, VD,

Platelets 5.834

Hb: Haemoglobin; MCV: Mean Cell Volume; VD: Vitamin D.

4. Discussion

According to the ML models trained and evaluated in the present work, VD appears
as the most predictive with respect to cognitive impairment and, in some ways, cognitive
decline, among the blood biomarkers taken into account in the analysis. Therefore, VD
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appears to act as a risk factor for cognitive impairment when present in the patient’s blood
in low concentrations.

VD regulates the adaptive immune system by inhibiting both differentiation of T
lymphocytes into T-helper (Th)1 and Th17, which have a pro-inflammatory action, and
of B lymphocytes into memory cells and plasma cells [26,27]. Furthermore, VD protects
lymphocytes from oxidative death. Confirming this, lymphocytes from patients with very
early AD and low VD levels are susceptible to H2O2-induced oxidative death [28], even
before deposition of β-amyloid (Aβ) [29]. However, while in patients with mild cognitive
impairment, the supplementation of VD allows, already after 6 months, to improve both
lymphocyte susceptibility to death and the Aβ1-40 plasma levels, in patients with very
early AD there are no benefits from VD supplementation. At the same time, also the
cognitive levels of MCI individuals improved together with such supplementation, unlike
observed in early AD patients. This possibly suggests efficacy of VD for the improvement
of biological and cognitive status of individuals just when applied before the neurode-
generative disease onset. This result is probably due to a more advanced stage of the
neurodegenerative disease or because of the intrinsic characteristics of the neurodegen-
erative process [28]. In addition, VD plays a role in maintaining brain integrity through
phagocytosis, clearance of Aβ and decreasing of glutamate-induced neurotoxicity [12,30].
The neuroprotective action of VD is favored by the presence of VDR in neurons and glial
cells [4,31]. An overall view of the action of VD at the central nervous system level is
displayed in Figure 2. It has been proposed that neuronal damage from multiple insults
including dyslipidemia, vascular insults, head trauma, oxidative stress, iron overload,
FA deficiency could represent the primary trigger of AD. It is also supposed to induce
activation of innate immune system and consequent activation of microglia and generation
of pro-inflammatory cytokines (IL-1β, IFN-γ, TNF-α) [32,33]. VD, FA and gut micro-
biome cooperate in neuro-immune modulation. Gut microbiome synthesizes serotonin,
dopamine, γ-aminobutyric acid (GABA), acetylcholine by enhancing their bioavailability
in the brain [32]. On the other hand, gut bacteria species can produce amyloid peptides
and lipopolysaccharides (LPS) endotoxins, capable of influencing inflammation in AD [32].
Microbiota dysbiosis increase intestinal permeability by putting the microbiota in contact
with the submucosal lymphoid tissue, promoting neuroinflammation that can, in turn,
lead to neurodegeneration [32]. The simultaneous presence of FA deficiency supports the
activation of innate immunity and the inflammatory cascade that determines the onset of
AD [34]. Notably, an association between homocysteine metabolism, oxidative stress and
immune activation has been proven [34]. Low folate levels were also found to be associated
with lower baseline MMSE scores in previous research [35,36].

In the present work, we have shown that the presence of low levels of VD, and in some
instances the simultaneous presence of low levels of VD and FA, allow to predict MMSE,
thus they are suggestive of poorer cognitive function. This is particularly true considering
the MMSE scored at the time of the first assessment, that is, also the time when blood
biomarkers were drawn. The predictability of blood biomarkers considering the 4 year
follow-up was obviously decreased with respect to that considering the basal assessment.
In addition, the usefulness of FA among the biomarkers for 4 year prediction decreased,
whereas VD, this time together with MCV and platelets, remains predictive even in this
complex task.

Indeed, as mentioned before, low VD levels promote episodic verbal memory, poorer
reaction time/attention processing speed, focused attention/concentration and greater
attention fluctuation [37–39]. In conclusion, according to our research, it is conceivable that
levels of VD mainly, but also FA, close to the lower limits can be deleterious for cognitive
functions. Thus, it is likely that the simultaneous supplementation of VD and eventually
FA could slow down the progression of cognitive impairment within AD [39,40], especially
when supplied early during the disease cycle.

The results of the present study should also consider a major limitation. Notably, due
to the paucity of male individuals for a ML purpose, a pooled analysis for all subjects,
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regardless of sex/gender, was performed. In the future, with larger datasets, independent
analysis for males and females can be carried out, to retrieve hidden correlations for either
male or female individuals.

Figure 2. VD sources and VD modulation at CNS level.

5. Conclusions and Future Directions

The present study suggests that VD and folate are possible good short- and long-
term predictors for cognitive decline in patients with AD. Under such premise, it could
be hypothesized that a supplementation of such compounds could help in blocking or
delaying the disease progression, at least at an early stage. Related investigations could
apply supplementation protocols to assess the effective response of such individuals to
properly tailored treatments.

Furthermore, taking advantage of the potentialities of ML, future studies are required
to increase the number of biomarkers to be evaluated in terms of predictability for the
cognitive decline. This would possibly include a “multi-omics” approach to be analyzed, as
well as to apply methodologies other than blood biomarkers that could be eventually easy
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to achieve, in a fast, non-obtrusive and economically viable fashion. Those might include
brain imaging, physiological signal measurements and sensory patterns, particularly
respective to those senses already demonstrated to have a significant link with neurological
disorders and neurodegeneration, like smell and taste [41–43]. This kind of analysis could
be carried out not only in patients with AD or other similar conditions, already featuring
a clinically relevant stage, but also in subjects affected by MCI or Subjective Cognitive
Impairment (SCI). The latter could be eventually advised early in terms of potential risk
factors for neurodegeneration. This might allow their treatment with VD and/or FA
supplementation in order to block or slow down the disease progression at an early stage,
as reported above. The results on such groups could then be compared with those on AD
patients to assess for eventual differences or similarities. This could ultimately increase
the treatment effectiveness and lead to a significant benefit in terms of the improvement of
the quality of life of the individuals and their family and caregivers, but also in terms of
economic impact on the national health systems.

Author Contributions: Conceptualization, G.M., S.B., A.N., F.M. and S.G.; data curation, G.M. and
S.G.; formal analysis, A.T.; investigation, G.M., S.B., A.T., A.N., F.M. and S.G.; methodology, G.M., S.B.,
A.T., A.N., F.M. and S.G.; project administration, G.M. and S.G.; resources, G.M.; supervision, G.M.
and S.G.; writing—original draft, G.M., S.B., A.N., F.M. and S.G.; writing—review and editing, G.M.,
S.B., A.N., F.M. and S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: For the Italian regulations for IRCCS institutions (IRCCS:
Institute of Recovery and Care with Scientific Purpose), retrospective, observational studies do not
require an ethical board approval, since they are included in the ordinary care activity brought by
the institution. The patients are asked to sign an informed consent at their entry where they are
asked to accept the usage of their data and the extent to which such data are used, including for
research. For the patients included in this research, informed consent was obtained, with the form
(already provided in the occasion of the above mentioned correspondence) attached again to this
e-mail (obviously in Italian language).

Informed Consent Statement: Informed consent details are provided upon request.

Data Availability Statement: Data can be provided by the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Aβ β-amyloid
AD Alzheimer’s Disease
ASD Autism Spectrum Disorders
CaMKIIδ Calcium/calmodulin-dependent protein kinase IIδ
CART Classification and Regression Trees
FA Folic Acid
GABA γ-aminobutyric acid
LASSO Least Absolute Shrinkage and Selection Operator
LPS Lipopolysaccharides
L-VGCC L-Voltage-gated calcium channels
MCI Mild Cognitive Impairment
MCV Mean Cell Volume
ML Machine Learning
MMSE Mini-Mental State Exam
NO Nitric Oxide
PTH Parathyroid Hormone
RF Random Forest
RMSE Root Mean Square Error
SCI Subjective Cognitive Impairment
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Th T-helper
TSH Thyroid Stimulating Hormone
VD Vitamin D
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