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Simple Summary: Prostate cancer cells produce lipids via the activation of a specific pathway called
fatty acid synthesis, also known as De novo lipogenesis. This pathway is essential for the survival
and growth of most types of cancer cells, including prostate cancer. In our study, we showed that
prostate cancer cells activate this lipid synthesis pathway to become more aggressive and develop
resistance to commonly used therapeutic agents for advanced prostate cancer such as enzalutamide,
an effective and commonly used androgen receptor (AR) targeted agent. Interestingly, by combining
enzalutamide with a lipid synthesis pathway inhibitor, we were able to show that growth of prostate
cancer tumors was more effectively reduced than with either agent alone. We also showed that this
combination led to cell stress and death by changing the lipid content in the cell. These important
findings could lead to new therapeutic strategies combining effective AR targeted therapies with
lipid synthesis inhibitors for the treatment of advanced prostate cancer.

Abstract: De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression
of key enzymes of DNL is characteristic of both primary and advanced disease and may play an
important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate
resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells.
This observation suggests that this pathway plays an important role in the initiation of aggressive
prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that
both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate.
We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important
enzyme in DNL, and observed significantly reduced tumor growth caused by the important change
in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated
fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate
cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading
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to an important decrease of cell proliferation. These findings provide new insights into the role of
DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of
an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide
resistance and improve disease free progression.

Keywords: prostate cancer therapy; combination therapy; de novo lipogenesis; lipid desaturation;
cellular stress

1. Introduction

Prostate cancer (PC) is one of the most commonly diagnosed cancers and one of the leading causes
of cancer death in men in the world [1,2]. Active surveillance, surgery and radiation are the main
options for men diagnosed with localized PC. However, for men with advanced PC, the first line of
treatment is most often androgen deprivation therapy (ADT) [3] involving surgical or medical castration.
Most patients respond initially to ADT, but around 30% of patients relapse within 18–24 months [4].
This aggressive phase of the disease is referred to as castrate-resistant prostate cancer (CRPC) [5],
which often maintains functional androgen receptor (AR) signaling that promotes PC by developing
adaptive mechanisms including AR amplification, AR mutations, and expression of various AR splice
variants [6,7]. Recent studies suggest that estrogen receptors (ERα and ERβ) may play an important
role in PC progression and aggressiveness [8,9]. ERs appear to activate pathways implicated in the
epithelial mesenchymal transition and may be involved in PC drug resistance [8,9]. Enzalutamide (ENZ)
(Xtandi®, Astellas Pharma Canada, Markham, ON, Canada) effectively targets AR ligand binding
domain, blocking its translocation to the nucleus and subsequently the AR binding to DNA [10,11].
Unfortunately, development of resistance to ENZ is also common and the molecular mechanisms that
are involved remain unclear [12].

Cancer cells exhibit a high demand for metabolites such as glucose and lipids. In particular, lipids
play an important role as a source of energy but also contribute to membrane building and act as
secondary messengers for many molecular pathways [13]. To meet the greater demands for lipids,
PC cells acquire the ability to activate de novo lipogenesis (DNL). This pathway is now considered a
hallmark of cancer, and the overexpression of key DNL enzymes is characteristic of both primary and
advanced disease [13]. DNL involves endogenous synthesis of triglycerides from acetyl CoA provided
by glycolysis, encompassing multiple enzymatic steps. Briefly, carboxylation of acetyl CoA by acetyl
CoA carboxylase (ACC) forms malonyl CoA, which is then converted by fatty acid synthase (FASN)
into the primary fatty acid product: palmitate (C16:0). ELOVL6 elongates palmitate into stearate
(C18:0), and both are converted into palmitoleate (C16:1) and oleate (C18:1) by stearoyl CoA desaturase
1 (SCD1), the enzyme that controls the rate-limiting step in the synthesis of monounsaturated fatty
acids (MUFA). Palmitoleate and oleate are preferentially esterified into triglycerides for long term
energy storage in lipid droplets, or into phospholipids for membrane formation [14].

AR signaling in PC regulates the expression of genes involved in proliferation and metabolic
pathways, including DNL. Androgens activate lipid metabolism in PC through the induction of the
SREBP transcription factor, the master positive regulator of the lipogenic genes FASN, ACC and
SCD1 [15,16]. Alternatively, androgens can also activate lipid catabolism as confirmed by previous
studies showing a high level of palmitate oxidation in PC cell lines [4,17]. Several studies have observed
that targeting DNL results in a decrease in tumor growth and PC cell proliferation [18–20] as well as
a protection against chemotherapy [21]. Recently, Zadra et al. [19] showed that a novel irreversible
FASN inhibitor (IPI-9119) is able to change the cancer metabolome, particularly metabolites related
to lipogenesis, and induce PC cell apoptosis. More interestingly, this drug mediates inhibition of
full-length AR and AR variant expression [19]. These findings suggest that targeting DNL could be a
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promising strategy for enhancing ENZ treatment and to potentially prevent disease progression on
ADT that leads to castration resistance.

In the present study, we sought to determine the effects of combining ENZ with an inhibitor
of SCD1 in vitro as well as in an in vivo mouse model in order to prevent ENZ resistance. We also
investigated the molecular pathways implicated in the observed effects and the evolution of lipid
contents in tumors treated with this therapeutic approach.

2. Results

2.1. Lipid Synthesis Is Increased as Prostate Cancer Progresses from Hormone Sensitive to Castrate Resistant to
Enzalutamide Resistant State

To understand changes in lipid metabolism associated with prostate cancer progression, RNAseq
was performed in prostate cancer cell lines from hormone sensitive prostate cancer (HSPC) (LNCaP) to
castrate resistant prostate cancer (CRPC) (16DCRPC) and enzalutamide resistant (ENZR) (49CENZR &
49FENZR). Gene set enrichment analysis was performed to identify biological pathways that were
significantly altered. Interestingly, it was found that the majority of pathways implicated in the
synthesis of lipids (lipogenesis) were enriched in the CRPC cell line (Figure 1A) as compared to the
HSPC cell line (Figure 1B). In addition, based on normalized enrichment score, gene-sets related to
lipogenesis were more enriched in ENZR cell lines (Figure 1C,D) as compared to the HSPC cell line.
However, it was observed that genes related to lipid biosynthesis were marginally enriched in ENZR
cell lines (Figure 1C,D) compared to CRPC cell lines (Figure 1B, black arrow).

2.2. De Novo Lipogenesis Is Increased in CRPC and ENZR Cell Lines and This Modulation Affects Survival of
Prostate Cancer Cell Lines

A substantial enrichment of various pathways implicated in lipid synthesis in CRPC and ENZR
cells as compared to HSPC was noted. Notably, we found that the metabolism of lipids was the pathway
with the highest level of enrichment (Figure 1E). As DNL is an important pathway in lipid metabolism,
a closer examination of differentially expressed genes of DNL using RNAseq analysis revealed a
considerable increase in the expression of major genes in the CRPC and ENZR cell line compared to the
HSPC cell line (Figure 2A). These data were further confirmer using qRT-PCR (Figure 2B). Importantly,
the two genes highly expressed in CRPC cell lines compared to the HSPC and ENZR cell lines were
FASN and SCD1 with more than a three-fold increase. We then focused on the mRNA and protein
expression of SCD1 since it is known to play an important role in the synthesis of and equilibrium
between saturated and monounsaturated fatty acids in mammalian cells [14]. The highest expression
of SCD1 was confirmed in CRPC cell lines as compared to HSPC and ENZR cell lines (Figure 2C,D).
More interestingly, after inhibition of the activity of SCD1 using a dose dependent specific inhibitor
(A939572), it was shown that the HSPC cell line (LNCaP) (Figure 2E) and ENZR cell lines (49C and 49F)
(Figure 2G,H) were very sensitive to the inhibition of SCD1 with “IC5Os of 2.22 µM ± 0.34, 2.35 µM
± 0.21 and 2.43 µM ± 0.24, respectively compared to CRPC cell line (C4-2B) IC5O of 5.20 µM ± 0.17”
(Figure 2E). These data confirmed that SCD1 activity is important in PC survival and aggressiveness.
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Figure 1. Lipid synthesis and particularly lipid metabolism are increased as prostate cancer evolves 
from HSPC to CRPC to ENZR CRPC. Graphs of gene set enrichment analysis of pathways implicated 
in lipid synthesis in HSPC cells (LNCaP) (A), CRPC cells (16D) (B), ENZR (49C) (C) and ENZR (49C) 
(D) (= 1). Fold change of NES (normalized enrichment score) of pathways implicated in lipid synthesis 
in CRPC cells and ENZR cells relative to HSPC cells. (E) The black arrow indicates change in genes 
related to lipid biosynthesis (Reactome Metabolism of lipids). 

  

Figure 1. Lipid synthesis and particularly lipid metabolism are increased as prostate cancer evolves
from HSPC to CRPC to ENZR CRPC. Graphs of gene set enrichment analysis of pathways implicated
in lipid synthesis in HSPC cells (LNCaP) (A), CRPC cells (16D) (B), ENZR (49C) (C) and ENZR (49C)
(D) (= 1). Fold change of NES (normalized enrichment score) of pathways implicated in lipid synthesis
in CRPC cells and ENZR cells relative to HSPC cells. (E) The black arrow indicates change in genes
related to lipid biosynthesis (Reactome Metabolism of lipids).
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(LNCaP), CRPC cells (16D) and ENZR cells (49C and 49F). Proliferation rates and percentage of cell 
proliferation of HSPC cells (LNCaP) (E), CRPC cells (C4-2B) (F), ENZR cells (49C) (G) and ENZR cells 
(49F) (H) were assessed using IncuCyte over six days of dose dependent treatment with the SCD1 
inhibitor (SCD1 INH). The IC50 values of each cell line were calculated from dose–response curves 
using a GraphPad prism. Data represent the mean ± SD of three independent experiments. Data were 
analyzed using the one-way ANOVA test. * p < 0.05, ** p < 0.01, and *** p < 0.001. 
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Figure 2. DNL is highly enhanced in CRPC and seems to be important in the PC aggressiveness and
ENZ resistance. Heat map and graph showing RNA sequencing reads (RPKM) of genes implicated
in DNL in HSPC cells (LNCaP), CRPC cells (16D) and ENZR cells (49C and 49F) (A); relative mRNA
expression of genes implicated in DNL in HSPC cells (LNCaP), CRPC cells (C4-2B) and ENZR cells
(49C and 49F) (B); relative mRNA expression (C) and protein expression (D) of SCD1 in HSPC cells
(LNCaP), CRPC cells (16D) and ENZR cells (49C and 49F). Proliferation rates and percentage of cell
proliferation of HSPC cells (LNCaP) (E), CRPC cells (C4-2B) (F), ENZR cells (49C) (G) and ENZR cells
(49F) (H) were assessed using IncuCyte over six days of dose dependent treatment with the SCD1
inhibitor (SCD1 INH). The IC50 values of each cell line were calculated from dose–response curves
using a GraphPad prism. Data represent the mean ± SD of three independent experiments. Data were
analyzed using the one-way ANOVA test. * p < 0.05, ** p < 0.01, and *** p < 0.001.

2.3. In Vitro Inhibition of SCD1 Combined with Enzalutamide Significantly Attenuates Prostate Cancer
Cell Proliferation

Based on the observed increase in DNL in CRPC and ENZR cell lines, we hypothesized that
targeting combining an inhibitor of lipogenesis (SCD1 inhibitor) with Enzalutamide may provide a
good strategy in HSPC and CRPC. Our data showed a significant decrease in the proliferation of the
HSPC cell line (LNCaP) treated with ENZ or SCD1 inhibitor alone (Figure 3A, blue and red curves)
while combination therapy was far superior inducing and a drastic decrease in cell proliferation
(Figure 3A, green curve). On the other hand, this effect was not as remarkable in CRPC cells (Figure 3B,
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blue and red curves) compared to cells treated with combination therapy (Figure 3B, green curve).
Higher levels of cell death were also observed in HSPC (Figure 3C,E) and CRPC (Figure 3D,F) cell lines
treated with COMBO compared to ENZ or SCD1 INH treatment alone. This observation was confirmed
by an increase in the protein expression of cleaved PARP, a marker of apoptosis (Figure 3E,F).
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Figure 3. Inhibition of DNL combined with enzalutamide treatment has a greater impact on proliferation
and induced higher cell death in prostate cancer cells than single-agent-based treatments. Proliferation
rates and percentage of cell proliferation of PC cell lines LNCaP (A) and C4-2B (B) were assessed using
IncuCyte over six days of treatment with either 10 µM enzalutamide (ENZ), 5 µM SCD1 inhibitor
(SCD1 INH) or a combination of both (COMBO). Western blot analyses of cleaved PARP proteins from
LNCaP (C) and C4-2B cells (D) treated for six days as previously described. Dead cell counts of LNCaP
(E) and C4-2B cells (F) analyzed by flow cytometry after six days of treatment with 10 µM ENZ, 5 µM
SCD1 INH or COMBO. Data represent the mean ± SD of three independent experiments. Data were
analyzed using the one-way ANOVA test. * p < 0.05, ** p < 0.01 and *** p < 0.001.
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To confirm that the observed effects were due to the specific inhibition of SCD1, transfections were
performed using either scramble siRNA, siRNA SCD1 or pcDNA SCD1 plasmids and cells were treated
with or without ENZ (Figure S1A). Inhibition of SCD1 by siRNA in the presence of ENZ induced a
similar decrease in cell proliferation as observed with the COMBO using SCD1 INH. More importantly,
overexpression of SCD1 using specific pcDNA-SCD1 (pcSCD1) plasmid rescued both HSPC cell line
(LNCaP) (Figure S1B) and CRPC cell line (C4-2B) (Figure S1C) from inhibition of cell proliferation
induced by ENZ.

2.4. Combination Therapy Induces Significant ER Stress and Produces High Levels of Reactive Oxygen Species
Associated with PC Cell Death

Previous studies have shown that inhibition of DNL in various cells induces ER stress and high
levels of ROS production [19,22]. To confirm this, protein and mRNA expression of key markers of the
different steps of ER stress were analyzed and the level of ROS production quantified to identify a
similar phenotype in our cell lines. The COMBO treatment induced an increase in expression levels of
the RE stress proteins PERK, CHOP and IREα in the HSPC cell line (LNCaP) (Figure 4A). However, in
the CRPC (C4-2B) cells treated with COMBO, a substantial increase in PERK and CHOP expression
was observed and a slight increase in the IREα expression levels (Figure 4B) compared to cells treated
with ENZ or SCD1 INH alone. The mRNA expression of ER stress markers ATF3, ATF4, GRP78 and
CHOP increased in HSPC (LNCaP) cells treated with COMBO as compared to ENZ or SCD1 INH
alone (Figure 4C). In addition, a notable increase in ATF3, ATF4, XBP1 and CHOP was observed in
CRPC (C4-2B) cells treated with COMBO as compared to ENZ or SCD1 INH alone (Figure 4D). Finally,
compared to cells treated with ENZ or SCD1 INH alone, COMBO treatment induced a high level of
cellular ROS in both HSPC (LNCaP) and CRPC (C4-2B) cells (Figure 4E,F).
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Figure 4. COMBO treatment induces high levels of ER stress and ROS associated with a more
pronounced cell death phenotype. Expression of proteins (A,B) and mRNA (C,D) of ER stress markers
was assessed in LNCaP and C4-2B cells untreated (CTRL) and treated with ENZ (10 µM), SCD1 INH
(5 µM) or both (COMBO) for six days. Graphs represent levels of ROS production in treated LNCaP (E)
and C4-2B cells (F). Data were analyzed using the one-way ANOVA test. * p < 0.05, ** p < 0.01 and
*** p < 0.001.

2.5. Combination Therapy Induces Inhibition of the Oncogenic P13K/AKT Pathway via a Decrease in
Cellular Oleate

The PI3K/AKT pathway has a major role in PC proliferation and in the regulation of various
metabolic processes including DNL [23]. Surprisingly, an increase in the phosphorylation of AKT and
PDK1 was observed in both the HSPC (LNCaP) (Figure 5A) and CRPC (C4-2B) (Figure 5B) cells treated
with ENZ treatment alone. In contrast, SCD1 INH treatment induced a decrease in the phosphorylation
of AKT and PDK1 in HSPC (LNCaP) (Figure 5A) and CRPC (C4-2B) cells (Figure 5B). Importantly,
COMBO treatment led to a strong inhibition of both AKT and PDK1 in the two cell lines (Figure 5A,B).
This suggests that PC cells in the presence of ENZ treatment are still able to adapt via a molecular
compensation by increasing the PI3K/AKT pathway. Our study also suggested that MUFA may play
an important role in the regulation of the AKT pathway. To confirm this hypothesis, cells were treated
with the same treatments (CONTROL, ENZ, SCID1 INH, COMBO) in the absence or presence of oleate,
a major product of SCD1. Interestingly, the addition of oleate to the COMBO treatment induced a
rescue of the phosphorylation of AKT and PDK1 in HSPC (LNCaP) (Figure 5C) and CRPC (C4-2B)
cells (Figure 5D) as compared to COMBO treatment alone. More importantly, the addition of oleate to
the medium of cells treated with COMBO restored cell proliferation as compared to COMBO treatment
alone (Figure 5E,F). These results suggest that oleate may play an important role in the activation of
PI3K/AKT pathway and that cancer cells require a minimal amount of oleate to proliferate.
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Figure 5. COMBO treatment affects the PI3K/AKT pathway in prostate cancer cell lines. Western blot
analyses of phosphorylated PDK1 (pPDK1), PDK1, phosphorylated AKT (pAKT) and AKT proteins
from LNCaP (A) and C4-2B (B) cells untreated (CTRL) and treated with 10 µM ENZ, 5 µM SCD1 INH
or both (COMBO) for six days. Western blots of pAKT and AKT proteins of LNCaP (C) and C4-2B (D)
treated with 10 µM ENZ, 5 µM SCD1 INH or COMBO in the presence or absence of 30 µM oleate for 6
days. The pAKT ratio represents pAKT/AKT and pPDK1 ratio represents pPDK1/PDK1. Proliferation of
PC cells LNCaP (E) and C4-2B (F) was assessed using IncuCyte over six days of treatments with 10 µM
ENZ, 5 µM SCD1 INH or COMBO in the absence or presence of 30 µM oleate (OL). Bar graphs show cell
proliferation of treated LNCaP and C4-2B at day 6. Data represent the mean ± SD of three independent
experiments. Data were analyzed using the one-way ANOVA test. ** p < 0.01 and *** p < 0.001.
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2.6. Pharmacological Combination of Enzalutamide and SCD1 Inhibitor Targets Tumor Growth More Efficiently
than Monotherapy in Prostate Cancer Xenograft Models

To validate our cell culture observations in a preclinical setting, the effects of different treatments
were investigated in mouse models of PC. Murine xenografts were derived from C4-2B cells.
A significant decrease in tumor growth was observed in mice treated with the combination of
therapies (ENZ+SCD1 INH) as compared to untreated mice (CTRL) or mice treated with ENZ or SCD1
INH alone (Figure 6A). As observed in the cell lines, tumors of mice treated with the combination
showed a marked decrease in the expression of the cell proliferation marker Ki67 as compared to
those treated with ENZ or SCD1 INH alone (Figure 6B). The combination of therapies resulted in a
decrease of AKT and PDK1 phosphorylation in the xenografts of mice treated with this combination as
compared to those treated with ENZ and SCD1 INH alone (Figure 6C–E). This decrease is likely one of
the key elements involved in the inhibition of proliferation and tumor growth.
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Figure 6. Combination of therapies suppresses tumorigenesis and inhibits the PI3K/AKT pathway in
C4-2B prostate cancer xenografts tumors. (A) tumor ratio (growth rate: represents tumor volumes
at different times divided by initial tumor volumes at first day before treatments) at different times
during treatment for CTRL, ENZ (20 mg/kg), SCD1 INH (30 mg/kg) or the combination groups (left
panel), tumor ratio at end of treatment (middle panel) and image of representative tumors removed
from mice (n = 8–10 mice per group—right panel); (B) Ki67 expression and quantification in xenograft
tissue of different treatment groups C4-2B (5 tumors per group randomly selected); (C–E) Western blot
images (C) and expression levels of phosphorylated PDK1 (D) and phosphorylated AKT (E) in tumors
after treatment (five tumors per group randomly selected). The pAKT ratio represents pAKT/AKT
and pPDK1 ratio represents pPDK1/PDK1. NS: not significant. Data were analyzed using the one-way
ANOVA test. * p < 0.05, ** p < 0.01 and *** p < 0.001.
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2.7. Combination Therapy Induces Changes in the Monounsaturated and Saturated Fatty Acid Content in
Prostate Cancer Tumors

To investigate the lipid profile changes in xenografts from mice untreated or treated with ENZ,
SCD1 INH or with both, a lipidomic approach was used to quantify total fatty acids. As expected, ENZ
induced a decrease in MUFA content, MUFA/saturated fatty acid (SFA) ratio and an increase in SFA
(Figure 7A–C). The same results were observed in mice treated with the SCD1 INH. Importantly, a more
substantial decrease of MUFA levels was observed in the tumors of mice treated with the combination
of therapies as compared to ENZ or SCD1 INH alone (Figure 7A). However, a strong increase of SFA
content (Figure 7B) and, consequently, a decrease in the MUFAs/SFA ratio was observed (Figure 7C).
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Figure 7. Combination of therapies induces changes in the monounsaturated and saturated fatty
acids content in C4-2B xenograft models. (A) Percentage of total MUFA, (B) SFA and (C) ratio of
MUFA/SFA in tumors after 21 days of treatment for CTRL, ENZ (20 mg/kg), SCD1 INH (30 mg/kg)
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days of treatment. NS: not significant. Data were analyzed using the one-way ANOVA test. * p < 0.05,
** p < 0.01, and *** p < 0.001.
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Based on these results, the analysis of the different lipid fractions in the tumors of mice treated
with combination therapy showed that the major fatty acids affected were oleic acid (C18:1) with
a decrease of around 40% (Figure 7D) and stearic acid (C18:0) with an increase of more than 150%
(Figure 7E). The ratio of C18:1/C18:0 was also significantly decreased in tumors treated with the
combination therapy (Figure 7F). Together these results suggest that ENZ therapy in combination with
SCD1 inhibition preferentially affects the desaturation of stearic acid leading to a marked decrease
of oleate and an increase in stearic acid that may contribute to ER stress and a decrease in PC cell
proliferation via the inhibition of the PI3K/AKT pathway.

3. Discussion

DNL is considered a hallmark of cancer pathogenesis [13,14]. Previous studies have shown that
inhibition of key actors of DNL reduces PC growth and progression [18–20]. Our study is the first to
show that lipid synthesis plays an important role in PC aggressiveness and progression. We showed
that CRPC cells exhibit a significant increase in DNL as compared to HSPC and ENZR cells. Importantly,
targeting DNL, via the inhibition of SCD1, considerably reduces PC growth suggesting an important
role of this pathway in PC progression and survival. DNL appears to be important in the progression
of PC to a more aggressive and resistant phenotype. To reverse the increase of DNL and prevent ENZ
resistance, we tested the effect of the combination of SCD1 inhibitor and ENZ treatment in HSPC and
CRPC cells. We demonstrated that this combination considerably inhibits the growth of PC xenografts.
This inhibition of proliferation of PC was associated with reduced levels of cellular MUFA, in particular
oleate, and increased levels of SFA, leading to an inhibition of the PI3K/AKT pathway, an induction of
ER stress and high levels of ROS. This discovery sheds new light on the deregulation of the MUFA/SFA
ratio in the activation of the oncogenic PI3K/AKT pathway and on the regulation of cellular stress
in PC.

Enzalutamide (ENZ) is a novel efficient AR targeted therapy for advanced PC and has also been
used recently as a first line therapy for hormone sensitive PC patients [24]. However, consistent with
the majority of drugs used in PC, almost all patients will eventually develop resistance to Enzalutamide
and new strategies are needed to prevent or circumvent this resistance. In our study, we showed that
DNL may play an important role in PC progression and the development of resistance. We showed that
the combination of SCD1 INH and ENZ is more effective than either agent alone and that proliferation
decreased not only in androgen sensitive PC cell lines (LNCaP) but also in castrate-resistant cell lines
(C4-2B). Several studies have reported that DNL is initially suppressed after castration, followed by
a reactivation during the emergence of CRPC, suggesting that DNL is a key survival pathway that
can promote resistance to ADT [25,26]. Interestingly, a recent study correlated DNL activation and
the reactivation of AR signaling in cells resistant to Enzalutamide and in PC tumors from patients
that relapsed following Enzalutamide treatment [26]. One potential mechanism for the reactivation
of DNL genes is the emergence of constitutively active AR splice variants (AR-Vs), such as AR-V7.
In our study, we showed that inhibition of SCD1 in combination with enzalutamide induces changes
in the MUFA/SFA ratio. One of the potential consequences of this altered desaturation ratio is changes
in membrane fluidity [27] leading to more efficient drug uptake. It has also been shown that AR
is regulated by SREBP1, a major transcriptional regulator of DNL enzymes, via binding of SREBP1
upstream of the AR gene. This feedback loop activates the expression of DNL enzymes as well as AR
expression and function [28]. Based on the decreased level of oleate in tumors (Figure 7), previous
studies suggest that this results in the activation of SREBP1 [29], probably leading to a decrease in AR
and ARV-7 transcription.

Consistent with these observations, another study showed a similar effect using a combination
therapy using a newly synthetized inhibitor of FASN with Enzalutamide treatment in 2D and 3D PC
cell lines [19]. The authors demonstrate that the inhibition of DNL using a FASN inhibitor results in a
decrease in the transcription of both full-length AR and the splice variant AR-V7. However, FASN
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inhibition markedly affects the levels of various fatty acids in cells compared to SCD1 inhibition that
only disrupts the equilibrium between saturated and monounsaturated fatty acids [30].

To our knowledge, our study is the first to confirm that the combination of ENZ and SCD1 INH
can induce greater tumor regression of murine xenografts of PC cell lines compared to each treatment
alone. This original preclinical study provides strong evidence that DNL may play an important role
in recurrence/resistance and that inhibiting DNL in combination with commonly used AR-targeted
therapies, such as enzalutamide, could be a promising first line approach in the management of PC.
The effect of this therapy may involve the induction of more cellular ER stress and ROS production, and
greater apoptosis than single-agent treatment. Modulation of lipid metabolism and membrane lipid
composition as well as inhibition of SCD1 activity have all been reported to trigger ER stress [19,31,32],
and previous studies have linked ER stress with ROS production [33,34]. Indeed, an increase of ER
stress markers and a high level of unfolded protein response (UPR) in cells induces a higher production
of ROS, which in turn maintains the increase in ER stress markers. An increase of both ER stress and/or
ROS production has been correlated with an increase in apoptosis [22,35,36]. Together, these findings
suggest that inhibition of SCD1 activity contributes to an increase in ER stress leading to a higher
production of ROS, and that the sum of these effects leads to a much higher degree of apoptosis in cells
treated with combination therapy than with monotherapy.

Finally, we found that the combination of ENZ and SCD1 INH reduced AKT phosphorylation
levels which inhibited the activation of the PI3K/AKT pathway, an important oncogenic pathway
that regulates cell growth, proliferation and apoptosis [37,38]. This pathway has also been shown
to contribute to the development of drug resistance in PC and other cancers [39–41]. Inhibition of
this pathway was reversed by the addition of oleate, a major product of SCD1. We also showed the
same effect when we overexpressed SCD1 in cells treated with ENZ. These results suggest that this
combination induces important changes in fatty acid content that may inactivate a major oncogenic
pathway in PC. Specifically, we showed an important decrease in MUFA, particularly oleate, in tumors.
Moreover, an increase in SFA was also observed in these tumors as compared to the untreated tumors
or tumors treated with monotherapies. These findings confirm previous observations suggesting that
oleate plays an important role in the regulation of the PI3K/AKT pathway [42–44]. Cellular oleate
in cancer cells has been reported to activate the PI3K/AKT pathway and enhance tumor growth and
cell migration of cancer cells. However, blocking the activity of SCD1 (an oleate producer) in various
cancer cells induced the opposite effect characterized by a decrease in tumor proliferation, migration
and an increase in apoptosis [20,45–48]. Our observations confirm the reports that oleate may play an
important role in cancer pathogenesis and development. Furthermore, studies have shown that an
increase in SFA content in cells induces an increase in ER stress and apoptosis [49–52], which supports
our findings of increased SFA, ER stress and apoptosis induced by the combination of treatments.
Hence, inhibiting SCD1 in combination with ENZ significantly changes the lipid content in PC cells
and renders them more susceptible to cellular stress and apoptosis.

Mechanistically, we have demonstrated that the combination therapy affects the lipid content in
tumor cells by causing a decrease in MUFA that affects the activation of the PI3K/AKT pathway, a major
oncogenic pathway in PC, resulting in diminished cell proliferation. This effect is further compounded
by an increase in SFA content inducing ER stress and a high level of ROS content, resulting in greater
cell death.

4. Materials and Methods

4.1. Reagents

Enzalutamide (ENZ; Xtandi®, Astellas Pharma Canada, Markham, ON, Canada) and
4-(2-Chlorophenoxy)-zN-(3-(methylcarbamoyl-phenyl)piperidine-1-carboxamide (A939572, Biofine
International Inc., Vancouver, BC, Canada) were resuspended in 100% DMSO for cell culture use.
For mouse studies, A939572 was solubilized in simple syrup 8% sucrose (Sweeting Vehicule, Laboratoire
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Atlas, Anjou, QC, Canada) and ENZ in 0.9% sodium chloride buffer containing 10% DMSO, 0.5%
methyl cellulose, and 0.1% Tween 80.

4.2. Cell Culture and Transfection

HSPC cell line LNCaP and CRPC cell line C4-2B were purchased from American type culture
collection (ATCC). CRPC cell line (16D) and CRPC ENZR Cell lines (49C and 49F) have previously
been described [53]. Cells were cultured in RPMI-1640 (Wisent Bio products, Saint-Jean-Baptiste, QC,
Canada) supplemented with 10% fetal bovine serum (FBS) (Wisent Bio products, Saint-Jean-Baptiste,
QC), 100 U/mL penicillin-G, 100 mg/mL streptomycin (Wisent Bio products, Saint-Jean-Baptiste, Qc
) and incubated at 37 ◦C in a humidified atmosphere containing 5% CO2. For CRPC ENZR Cells,
10 µM of ENZ was added to the medium. Cells were treated with DMSO (CTRL), 10 µM ENZ, 5 µM of
the SCD1 inhibitor (SCD1 INH) A939572 or a combination of both 10 µM ENZ and 5µM SCD1 INH
(COMBO) for 6 days. In parallel, cells were transfected using either scramble siRNA (ctrl) or SCD1
siRNA (LQ-005061-00-0002, Dharmacon, Lafayette, CO, USA) for 3 days. We also transfected HSPC
(LNCaP) and CRPC (C4-2B) cells with either pcDNA control or pcDNA SCD1 plasmids (generous gift
from Dr. Mounier, Departement of Biological Sciences, University of Quebec At Montreal (UQAM)).
All transfection procedures were performed using lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol.

4.3. RNAseq

Total RNA was extracted using the PureLink RNA kit (ThermoFisher Scientific, Waltham, MA,
USA) a library was constructed using NEBnext Ultra ii Stranded RNA Library Prep Kit (New England
Biolabs Inc., Whitby, ON, Canada) and sequencing was performed on an NextSeq 500 (Illumina, San
Diego, CA, USA) (42 × 42-bp paired-end reads).

4.4. Gene Set Enrichment Analysis (GSEA)

Software from the Broad Institute, (Cambridge, MA, USA) was used for pathway analysis to
identify differentially expressed genes in the Molecular Signature database, version 7.1 run in classic
mode. Pathways enriched with a nominal p-value < 0.05 and false discovery rate < 0.25 were considered
to be significant. Single sample GSEA (ssGSEA) was carried out using the ssGSEAProjection.

4.5. IncuCyte Cell Proliferation Phase Contrast Imaging Assay

For proliferation of HSPC (LNCaP), CRPC (C4-2B) and CRPC ENZR (49C and 49F) cells,
2000 cells/well were seeded in 96-well plates. Cells were treated, or transfected as described above, and
incubated for 6 days. Plates were imaged by phase contrast using the IncuCyteTM Live Cell Imaging
System (Essen BioScience®, Ann Arbor, MI, USA). Frames were captured at 2 h-intervals for 6 days
from two separate regions/well using a 10× objective. Proliferation growth curves were constructed
using IncuCyteTM Zoom software (Essen BioScience®, Ann Arbor, MI, USA). Each experiment was
performed in triplicate and repeated three times.

4.6. Protein Extraction and Western Blot Analysis

Cells were harvested in 1% Triton lysis buffer (150 mM NaCl, 20 mM Tris HCl, 1 mM EDTA,
1 mM EGTA, 1% Triton X-100, 1% deoxycholate, at pH 7.4). All lysis buffers were supplemented
with 1% protease and phosphatase inhibitor cocktail (ThermoFisher Scientific, Waltham, MA, USA).
Protein samples were resolved on SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
onto nitrocellulose membranes. Membranes were blocked with 5% non-fat dry milk resuspended in
TBS buffer and probed with appropriate antibodies (Table S1). This was followed by incubation in
5% non-fat dry milk in TBS-Tween buffer with horseradish peroxidase (HRP)-conjugated secondary
antibodies: anti-rabbit (#7074, Cell Signaling Technology Inc., Danvers, MA, USA) diluted 1:10,000
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or anti-mouse (#7076, Cell Signaling, Danvers, MA, USA) diluted 1:10,000. All immunoblots were
visualized using Amersham ECL Western blotting detection reagent (ThermoFisher Scientific, Waltham,
MA, USA) and images taken using the ChemiDoc imaging system (Biorad, Saint-Laurent, QC, Canada).
The whole blot can be found at Figure S2.

4.7. Oxidative Stress Detection (ROS)

In order to verify whether exposure of HSPC (LNCaP) and CRPC (C4-2B) cells differed in their
response to different treatments leading to oxidative stress, intracellular reactive oxygen species (ROS)
was first detected by the ROS assay kit with 2′,7′-dichlorodihydrofluorescein diacetate (ab113851,
DCFDA Cellular ROS Detection Assay Kit, Abcam, Toronto, ON, Canada). Briefly, cells were seeded
into 96-well plates in serum-free medium without phenol red. After 6 days of treatments with ENZ,
SCD1 INH or both (COMBO) cells were incubated in the dark for 45 min at 37 ◦C with 25 µM
DCFDA diluted in serum-free adhesion medium without phenol red, according to the manufacturer’s
instructions (ab113851, DCFDA Cellular ROS Detection Assay Kit, Abcam, Toronto, ON, Canada).
End-point fluorescence from triplicate wells for each experimental condition was measured using a
fluorescence microplate reader (1420 Multilabel Counter, Perkin Elmer, Waltham, MA, USA) with
settings of 485 nm excitation and 535 nm emission.

4.8. Real-Time PCR Analysis

Total RNA was isolated from cells using Trizol reagent (ThermoFisher Scientific, Waltham, MA,
USA). One microgram of total mRNA was reverse transcribed into complementary DNA (cDNA)
using the QuantiTect reverse transcription kit (Qiagen, Montreal, QC, Canada) according to the
manufacturer’s protocol. Quantitative real-time PCR (qPCR) was performed using SYBR Select Master
Mix (Applied Biosystems, Foster City, CA, USA) to quantify the transcription levels of genes implicated
in de novo lipogenesis and endoplasmic reticulum stress (ER stress). Primer sequences are presented
in Table S2. Results are presented as arbitrary units indicating relative expression based on the
comparative Ct (∆∆Ct) method. Data were normalized using the housekeeping β-Actin gene and
expressed as fold changes relative to control samples for ER stress genes.

4.9. Analysis of Cell Death by Flow Cytometry

Cells were seeded in 6-well plates and treated 24 h after seeding as indicated above, and then
harvested 6 days after. For cell death analysis, all the cells were incubated for 30 min at room
temperature (RT) with BV421 AnnexinV (563973, BD Biosciences, Mississauga, ON, Canada) (dilution
1/10) and 5 min at RT with 0.9 nM of DRAQ7 (ab109202, Abcam Inc.). In addition, 10,000 events were
counted per condition using the Fortessa flow cytometer (BD Biosciences) and analyzed with FlowJo
software, version10.6.

4.10. Murine Xenograft Model

All animal experiments complied with relevant ethical regulations for animal testing and research
at CRCHUM. They were done with approval from our institutional committee on animal care (CIPA)
under the protocol number C18016AMMs. LNCaP and C4-2B cells in exponential growth phase
were prepared respectively at a concentration of 1 million cells and 5 million cells in 200 µL of
PBS-matrigel (v/v). NRG mice (NOD-Rag1null IL2rgnull, NOD rag gamma) were obtained from the
Jackson Laboratory (The Jackson Laboratory, Bar Harbor, ME, USA). All experiments were carried out
with male mice with an average age of 12-weeks. To initiate tumor xenografts, 0.2 mL of cell suspension
were injected into the left flank. Mice were weighed, and tumor volumes were measured twice per
week. When tumor volume reached 300–400 mm3, mice were randomized into 4 groups of 6–10 mice:
untreated, treated with ENZ, treated with SCD1 INH, or treated with combination. ENZ (20 mg/kg)
was injected intraperitoneally (100 µL per injection) daily for 3 weeks and SCD1 INH (30 mg/kg) was
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initially administered orally in Nutrigel diet (Product#S5769, Bio-Serv, Flemington, NJ, USA) for one
week then by gavage (100 µL per gavage) every day for the subsequent 2 weeks.

4.11. Tumor Lipid Content

Tumors were processed for quantitative profiling of fatty acid content by gas chromatography-mass
spectrometry using previously described methods [54–56]. Briefly, pulverized tissues (50 mg) were
incubated overnight at 4 ◦C in a solution of chloroform/methanol (2:1) containing 0.004% butylated
hydroxytoluene (BHT), filtered through gauze and dried using nitrogen gas. Lipids were eluted
on an aminopropyl column (Bond Elut LRC-NH2, 500 mg) (Agilent Technologies Inc., Santa Clara,
CA, USA). Total fatty acids were analyzed as their methyl esters after direct transesterification with
acetyl chloride/methanol on a 7890B gas chromatograph coupled to a 5977A mass selective detector
(Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a capillary column (J&W Select
FAME CP7420; 100 m × 250 µm inner diameter; Agilent Techonologies Inc., Santa Clara, CA, USA) and
operated in the PCI mode using ammonia as reagent gas. Samples were analyzed under the following
conditions: injection (3 µL) at 270 ◦C in a split mode (split ratio 50:1) using high-purity helium as the
carrier gas (constant flow rate: 0.44 mL/min) and the following temperature gradient: 190 ◦C for 25
min, increased by 1.5 ◦C/min until 236 ◦C. Fatty acids were analyzed as their [M + NH3]+ ions by
selective ion monitoring and concentrations were calculated using standard curves and isotope-labeled
internal standards.

4.12. Statistical Analysis

Data are expressed as means ± SD. To compare values obtained from three or more groups,
one-way ANOVA was performed. A p-value of <0.05 was considered significant.

5. Conclusions

In summary, we have demonstrated that de novo lipogenesis is highly enhanced in CRPC and
ENZR cells compared to HSPC. Interestingly, we showed that inhibition of de novo lipogenesis via
the inhibition of SCD1 induced cell death of PC cells. This observation led to the use of combination
therapy of SCD1 inhibitor and Enzalutamide for PC in order to improve response, delay enzalutamide
resistance and improve disease free progression. We showed that the combination therapy affects the
lipid content in tumor cells by inducing a decrease in MUFA that affects the activation of PI3K/AKT
pathway, a major oncogenic pathway in PC, resulting in diminished cell proliferation. This effect is
further compounded by an increase in SFA content inducing ER stress and a high level of ROS content,
resulting in greater cell death.

This strategy provides a strong rationale to combine an AR targeted therapy such as ENZ with an
inhibitor of SCD1 for the treatment of PC patients with advanced disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3339/s1,
Table S1: List of primary antibodies, Table S2: List of primers, Figure S1: Inhibition of SCD1 using siRNA in
combination with ENZ affects significantly the proliferation of PC cells, Figure S2: The whole blots.
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