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Abstract: Automatic identification of human facial expressions has many potential applications
in today’s connected world, from mental health monitoring to feedback for onscreen content or
shop windows and sign-language prosodic identification. In this work we use visual information
as input, namely, a dataset of face points delivered by a Kinect device. The most recent work on
facial expression recognition uses Machine Learning techniques, to use a modular data-driven path
of development instead of using human-invented ad hoc rules. In this paper, we present a Machine-
Learning based method for automatic facial expression recognition that leverages information fusion
architecture techniques from our previous work and soft voting. Our approach shows an average
prediction performance clearly above the best state-of-the-art results for the dataset considered. These
results provide further evidence of the usefulness of information fusion architectures rather than
adopting the default ML approach of features aggregation.

Keywords: machine learning; information fusion; facial expressions

1. Introduction

The use of the human face as a biometric means of identification—commonly called
“face recognition” [1]—is currently widely used at the commercial scale, in devices ranging
from cellphones to residential gateways [2], to the point that its use without people’s
awareness has been called a threat to personal privacy [3]. Another potentially very helpful
sub-area of face analysis is emotion recognition using facial expressions [4,5]. Of course, fa-
cial expressions are not direct indicators of subjective emotions for several reasons, starting
with faked smiles or other expressions; current pre-trained facial expression recognition
systems are unreliable when exposed to different individuals. The latter is why attributing
emotions to specific individuals has been signaled as an unethical use of AI in the work-
place [6]. Though many emotion recognition works have explored several cues beyond
visual ones (such as speech [7], body gestures [8] and others), visual-related facial emotion
recognition will remain one of the primary emotion recognition approaches for a long
time. Facial expression recognition through visual analysis is certainly poised to make
significant strides in the following years, mainly because of its great potential in real-world
applications, even when used anonymously, from stores’ shop windows seeing customer
reactions to engagement assessment in public events; the area’s financial value is expected
to grow to over 40 billion dollars in the next five years.

This paper addresses the problem of automatic facial expression recognition and pro-
poses a method based on information fusion and ML techniques. Our work builds on the
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previous work of Freitas et al. [9], which used a variant of visual expression recognition,
namely, a set of facial points delivered by a Microsoft Kinect device [10]. We obtained even
better results by applying the information fusion methods described below. The specific
application of the dataset we used [9] was the recognition of facial expressions as a comple-
ment to hand and body gestures in sign language—specifically, the “Libra” Brazilian sign
language. We will describe below in detail the specific settings and methods of this work to
promote reproducibility.

Our proposed method consists of using subsets of the feature vectors mentioned above
as independent feature vectors (which we call “perspectives”), from which several instances
(one for each subset) of some classifier can learn to predict a facial expression (in terms of class
probabilities). The predictions of such cases are processed by using soft voting [11] for the final
decision. This approach has not been proposed previously for facial expression classification.
As far as we know, the feature vector elements (coming from the same source) have not been
treated as independent feature vectors (as if they came from different sources).

Like many other recent works on facial expression recognition [12–14], we leverage ma-
chine learning (ML) methods [15]. Instead of relying on human-defined rules, ML systems
are entirely data-driven and can adjust their behavior mainly by training with a different
dataset. Nevertheless, most ML works use dataset features as a flat vector (we call this
approach “aggregation”), which could be sub-optimal for classification performance. In our
previous works [16,17], we have explored the use of structured information combination
architectures, such as separating the features (columns of the dataset) into groups and
then applying hard or soft voting [11] and other methods for combining the predictions of
instances of ML classifiers, one for each feature group. Though it could not be intuitively
evident, the use of fusion, as mentioned earlier, gives in some cases substantially better
results, in terms of accuracy and other quality indicators, than simple aggregation.

The contributions of this work are twofold: (1) a novel and efficient approach based
on information fusion architectures and soft voting for the visual recognition of facial
expressions, and (2) this approach improves the indicators of critical performance, such as
accuracy and F1-score, compared to other state-of-the-art works, which studied the same
dataset as us, as a result of exploiting information fusion architectures and soft voting with
subsets of features.

This document is organized as follows: After this introduction, Section 2 establishes some
definitions, and Section 3 reviews the main related works; then, Section 4 shows the proposed
method; then, Section 5 presents the experimental methodology, and Section 6 discusses
the results. Finally, Section 7, draws conclusions and suggests possible future work.

2. Background

This work lies in the intersection of two areas: one is the application area, which is
facial expression recognition, and the other one is information fusion architectures for
machine learning, which refers to the way input information is structured to get classifi-
cation performance that is as high as possible. As far as the latter is concerned, we have
previously done some work applying fusion architectures to domains such as activity
recognition [17]. However, we were interested in testing our methods in a domain radically
different from the activity recognition one, so facial expression recognition was a good
candidate. Then, as we mentioned in the introduction, for the facial expression recogni-
tion task, we restricted our attention to facial expressions used intended to complement
the gestures in sign languages, giving a prosodic component to the sentences [18,19]; this is
why they have been called “grammatical facial expressions” (GFE). In recent years, GFE
has gained importance in automated recognition tasks for sign languages, as they help
eliminate confusion among signs [20]. GFE help with the construction of the meaning and
cohesion of what is signed [9]; for example, they help to construct different types of phrases:
questions, relative, affirmative, negative, and conditional.

GFE has been used in data-driven machine learning approaches for various sign
languages, such as American (ASL) [21–23], German [24], Czech [25], and Turkish [26],
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among others. In the literature, it has been proposed that a classifier should learn to
recognize syntactic-type GFE in “Libras” sign language (Brazilian sign language) using
a vector of features composed of distance, angles and deep points, extracted from the points
of the contour of the face (which were captured by a deep camera) [9]. In this paper, we are
using the dataset proposed in Freitas’ work.

In addition, GFE has begun to be processed by taking advantage of data fusion tech-
niques [27], such as, in the context of GFE recognition, combining the outputs of Hidden
Markov Models (HMM) [28] (the probabilities of movements of facial features and move-
ments head) and using them as input to a Support Vector Machine (SVM) [29], proposed
by [30]. Kumar et al. [31], for their part, followed a similar approach to the previous
one, where they used two HMMs as temporal classifiers to combine their decisions (facial
gesture and hand gesture) through the Independent Bayesian Classification Combination
(IBCC) method [32]. In addition, da Silva et al. [33] presented a model composed of a con-
volutional neural network [34] (to obtain the static features of two regions of the face
image) and two long-short term memory networks [35] (to add the temporal features to
the features of each face region), which ultimately merge their outputs for a final decision.
Additionally, Neidle [36] described a majority voting strategy [11] that combines the SVM
classifier trained with the eye and eyebrow region features and the angle of 100 inclination
of the head. However, although these fusion techniques have shown promising results
in GFE recognition, the use of information fusion techniques has been ad hoc and not
systematic. We found no works that use such techniques in the particular case of Libras
GFE recognition. In the context of GFE recognition, although the knowledge acquired
in one sign language can be considered in others, it is necessary to study each of them
separately, as they have their particularities [9]. The GFE facial expression set is specific for
each signal language.

The GFEs we are considering in this paper aim to identify different types of sen-
tences [37], which are the nine following ones used in the sign language of Libra [37–39]:

WH question—phrases (such as who, when, why, how, and where) expressed by
a slight elevation of the head, accompanied by lines drawn on the forehead.
Yes/No question—interrogative sentences (in which there is a Yes or No answer)
expressed with the head down and the eyebrows raised.
Doubt question—sentences (showing distrust) expressed by compressing the lips,
closing the eyes more, drawing lines on the forehead, and tilting the shoulders to one
side or back.
Negation—sentences (constructed with elements no, nothing, never) are drawn by
lowering the corners of the mouth, accompanied by lowering of the eyebrows and
lowering of the head, or a side-to-side movement of the head.
Affirmative—phrases (that transmit ideas or affirmative actions) are expressed by
moving the head up and down.
Conditional—clauses (indicating that a condition must be met to do something)
characterized by tilting the head and raising the eyebrows, followed by a set of
markers that can express a negative or affirmative GFE.
Relative—clauses (that add phrases either to explain something, add information,
or insert another relative, interrogative sentence) are presented by raising eyebrows.
Topics—serve to structure speech differently, such as moving an element (topic) of
the sentence to the beginning. One way to express these sentences is by raising
the eyebrows, moving the head down and to the side, and keeping the eyes wide open.
Focus—Sentences that insert new information into speech, such as contrasting ideas,
giving information about something, or highlighting something. These sentences are
expressed in the same way as a topic sentence.

2.1. Data Fusion Architectures

The fusion of data from various sources (sensors) emerges from the observation that
one data source can compensate for other data sources’ weaknesses, so with the combi-
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nation of several sensors, it is possible to achieve better reliability, accuracy, flexibility,
or combinations of the above; that is why the fusion of information from several sensors is
currently used in many systems spanning many domains [40].

There are many ways to implement the general idea of data fusion. First of all, three
different “levels” of fusion have been distinguished [41,42]:

• Fusion at the “data level” consists of gathering compatible data from sensors that could
be different, but the incoming data are of the same type so they can be put together; this
form of fusion is aimed at coverage, redundancy reliability, and increasing the amount
of data.

• In the fusion at the “feature level”, the characteristics (“features”) extracted from
different data sources, and usually of various types, are used to complement the other
available ones, generally aiming at improving the accuracy or similar prediction
quality metrics.

• At the “decision level” fusion, several independent predictions are obtained using
some of the data or features, and then the partial decisions are combined by an algo-
rithm like voting.

In practical systems, two or all of these fusion levels are often used, being combined
in structures called “fusion architectures.” Aguileta [16] compared, in tasks such as activity
recognition, the performance of several fusion architectures, including the following ones:

• Raw feature aggregation, which is a kind of baseline with almost no structure: It is sim-
ply concatenating the columns of several datasets with compatible rows (there could
be some issues to sort out, such as if the clocks of sensors in a time series are not
perfectly aligned, if there are missing data from one of the sensors, etc.). Raw feature
aggregation is one of the simplest, “no structure” options.

• Voting with groups of features by sensor and homogeneous classifier. This architecture
takes the features from each sensor and uses them to train a respective ML classifier
(in this case, the classifiers are the same, such as random forest, for all sensors); then,
we combine the classifier predictions using voting.

• Stacking with shuffled features: We shuffle the features randomly, and then we parti-
tion them into equal parts, which group the columns of the dataset, and then we train
independent (usually similar) classifiers with each group. Then the predictions of each
classifier become a feature in a new dataset, for which we train a classifier that we use
to make the actual prediction.

The last two architectures are just examples from our previous work [16]. However,
it should be clear that the number of possible architectures is staggering because they are
combinations of structural elements, such how we group the features, which classifier
are we going to use for each one (and whether or not it should be the same one), how to
combine the classifiers’ decisions, and so on.

In this paper, we do not explore the problem of choosing the best architecture for
a given dataset, which has been done elsewhere [16]. However, we do establish that
the result, using a non-trivial architecture in the domain we are considering, is better than
simple aggregation in terms of performance measures to a statistically significant extent.

2.2. Soft Voting

In the previous subsection, we have mentioned voting inside of fusion architectures,
but we must further distinguish between two voting variants: hard and soft voting.

Hard voting, also called simply “voting” or “plurality voting”, is what we usually
call “voting”: the choice receiving more votes is the one chosen. However, in “soft voting”
there are weights for each vote that are taken into account. A weighted linear average is
calculated and compared to a predefined threshold, giving the final result [43].

In the case of ML systems, the weights usually are taken from the certainty given
as a percentage by the classifier about a given decision. Though roughly the certainty is



Sensors 2022, 22, 4206 5 of 16

supposed to correspond to a probability, most of the implemented methods in commonly
used software packages are not strictly probabilities, so they should be used cautiously.

Section 4 will explain how we use soft voting to achieve better performance than with
hard voting.

3. State of the Art

In works addressing GFE recognition related to Libra sign language (using a dataset
for Brazilian sign language [37]), Bhuvan et al. [44] explored various machine learning
algorithms (such as the multi-Layer perceptron (MLP) [15], the random forest classi-
fier (RFC) [45], and AdaBoost [46], among others) to recognize nine GFEs. They per-
formed experiments (with the 100 coordinates (x, y, z) corresponding to facial points stored
in the aforementioned dataset) under the user-dependent model (when training and pre-
diction of a classifier are performed with the same subjects) to choose the best algorithm
for each GFE. The primary metrics on which they based these choices were the area under
the curve (AUC) of the receiver operating characteristic (ROC) [47] and the F1 score [48].

Acevedo [49] applied morphological associative memories (MAMS) [50] to recognize
nine GFE. They performed experiments with the 100 coordinates (x, y, z) corresponding
to the facial points stored in the aforementioned dataset for both subjects (one and two).
MAMS performance was measured with the % error and its complement (% recognition).

Gafar [51] proposed a framework to recognize nine GFE. It relies on two algorithms to
reduce features and the fuzzy rough nearest neighbor (FRNN) [52,53] algorithm (which is
based on the k-nearest neighbor [54] algorithm) for the classification task. These two algo-
rithms (called FRFS-ACO [55,56], when used together) are the fuzzy rough feature selection
(FRFS) [57,58] algorithm and the ant colony optimization (ACO) [59,60] algorithm. He per-
formed experiments with the 100 coordinates (x, y, z) corresponding to the facial points stored
in the previous dataset for subject one. The framework’s performance, which was compared
with others (such as FRFS-ACO with MLP, FRFS-ACO with C4.5 [61], and FRFS-ACO with
fuzzy nearest neighbor (FNN) [62]), was measured with the accuracy metric [15].

Uddin [20] presented an approach based on two methods (AdaBoost and RFC) to
recognize nine GFE. The AdaBoost feature selection algorithm was used to reduce features
and RFC for the classification task. He performed experiments with the 100 coordinates
(x, y, z) corresponding to the facial points stored in the previous dataset for subject one and
subject two. The approach performance was measured with the AUC-ROC metric.

Freitas et al. [9] used MLP to recognize nine GFEs. They performed experiments with
the 100 coordinates (x, y, z) corresponding to the facial points stored in the previous dataset
for both subjects (one and two). These experiments mainly involved creating a feature vector
(composed of the distances, angles, and coordinates, extracted from said points), different
sliding window [63] sizes to add the time feature to said feature vector, and various training
and testing strategies. Based on the user-dependent model and the user-independent model
(when training and predictions of a classifier are carried out with the different subjects), some
examples of these strategies are (1) training and validation with subject one or two and testing
with subject one or two, and (2) training and validation with subjects one and two and testing
with the same two subjects. MLP was measured with the F1 score.

Cardoso et al. [64] classified six GFEs using MLP. They used eight points (xi, yi) of
the face, which together with the distances between them, formed the characteristics of
the GFE. For the experiment, they used the user-dependent model and the user-independent
mode. The results of the experiments were presented as accuracy.

Our work differs from previous work, as we consider different subsets of the feature
vector (extracted from the Libra sign dataset) as independent feature vectors to take ad-
vantage of fusion techniques (such as soft voting). As we have shown, such a strategy
has not been explored in previous works. Additionally, in user-dependent experiments
(see Section 5), we used the same sliding window size for all GFE studied here, unlike
previous works.
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4. Method and Materials

The approach we propose is illustrated in Figure 1. It takes advantage of the data
fusion strategy in a context where a sequence of data over time maintains a meaning for
a given period, such as GFE. This approach consists of four steps that we describe below:

Figure 1. Overview of the method that predicts GFEs.

In step 1, we extract from the raw data (for example, the X, Y, and Z coordinates that
represent the human face in each unit of time, for a given period of time) three features
(such as distances, angles, and Zs, which have been used with good results in this task [37]).
Formally, let FE = (p1, . . . , pn) be a set of n points that represent a facial expression with
pi = (Xi, Yi, Zi) ∈ R3 for i = 1, . . . , n. Then, taking the X and Y of some FE points,
we define a set of pairs of points (from which we calculate the Euclidean distances) as
PP = {pp1, . . . , ppl} for a given l, where ppk = {(X(k∗2)−1, Y(k∗2)−1), (Xk∗2, Yk∗2)} for
k = 1, . . . , l. Therefore, the Euclidean distance feature is defined as the set DF = (d1, . . . , dl)
where the Euclidian distance dk = ED(ppk) (see Equation (1)).

ED(ppk) =
√
|X(k∗2)−1 − Xi∗2|2 + |Y(k∗2)−1 −Yi∗2|2 (1)

Additionally, taking the X and Y of the FE points, we define a set, whose elements are
formed by three points, from which we calculate angles. This set is PPP = {ppp1, . . . , pppm} for
m < n, where pppj = {(X(j∗3)−2, Y(j∗3)−2), (X(j∗3)−1, Y(j∗3)−1), (Xj∗3, Yi∗3)} for j = 1, . . . , m.
Therefore, the angle feature is defined as the set AF = (a1, . . . , am), where aj = AN(pppj)
(see Equation (2)).

AN(pppj) = tan−1


Y(j∗3)−2−Y(j∗3)−1
X(j∗3)−2−X(j∗3)−1

− Y(j∗3)−1−Yi∗3
X(j∗3)−1−Xj∗3

1 +
Y(j∗3)−1−Yi∗3
X(j∗3)−1−Xj∗3

− Y(j∗3)−2−Y(j∗3)−1
X(j∗3)−2−X(j∗3)−1

 (2)
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Taking as reference the non-repeated PP points, we take their corresponding Zs located
in the FE set and define the set ZF = (Z1, . . . , Zll), which corresponds to the third feature,
where ll 6 l.

In step 2, by adding the temporal characteristic to the features we defined above,
we create three sets of features or “perspectives” (as we call them). The temporal character-
istic is added to these features by observing a series of consecutive facial expressions in time,
which slide one expression at a time (“sliding window” procedure [37]), where a GFE is
supposed to occur. Formally, let sw be the size of the window of the facial expressions (the
number consecutive facial expressions included in a window) and s f e the number of facial
expressions. Then, the first “perpective” is defined by

P1 = {VF11, . . . , VF1s f e−sw}

with the set VF1 defined in Equation (3),

VF1t = (DFt, AFt, ZFt, DFt+1, AFt+1, ZFt+1,

. . . , DF
sw
3 −1+t, AF

sw
3 −1+t, ZF

sw
3 −1+t)

(3)

The second “perspective” is defined by

P2 = {VF21, . . . , VF2s f e−sw}

with the set VF2 defined in Equation (4),

VF2t = (DF
sw
3 +t, AF

sw
3 +t, ZF

sw
3 +t, DF

sw
3 +t+1,

AF
sw
3 +t+1, ZF

sw
3 +t+1, . . . , DF

2∗sw
3 −1+t,

AF
2∗sw

3 −1+t, ZF
2∗sw

3 −1+t)

(4)

The third “perspective” is defined by

P3 = {VF31, . . . , VF3s f e−sw}

with the set VF3 defined in Equation (5),

VF3t = (DF
2∗sw

3 +t, AF
2∗sw

3 +t, ZF
2∗sw

3 +t,

DF
2∗sw

3 +t+1, AF
2∗sw

3 +t+1, ZF
2∗sw

3 +t+1,

. . . , DFsw−1+t, AFsw−1+t, ZFsw−1+t)

(5)

In the VF1t set , VF2t set, and VF3t set, the set DFt = (dt
1, . . . , dt

l) is the set DF calcu-
lated with the points ppk extracted from FE in the time t = 1, . . . , s f e− sw. Additionally,
the set AFt = (at

1, . . . , at
m) is the set AF calculated with the points pppj extracted from FE

in the time t = 1, . . . , s f e− sw. The set ZFt = (Zt
1, . . . , Zl lt) is the set ZF referenced by

the points ppk extracted from FE in the time t = 1, . . . , s f e− sw.
In step 3, we learn to predict a GFE from three classifiers (such as RFC), one for

each “perspective” (P1, P2, and P3). Here, the P1 set, together with its corresponding
labels L1 = (l1, . . . , ls f e−sw), are the input for a RFC instance, which predicts the proba-
bility of a GFE label. Similarly, the P2 and P3 sets, and their corresponding set of labels
L2 = (l1, . . . , ls f e−sw) and L3 = (l1, . . . , ls f e−sw), respectively, are the inputs of independent
RFC instances, which predict the probability of the tag of the same previous expression.
Here, pij is the probability of the class i = 1, 2 (for a binary classification) predicted by
the classifier j = 1, 2, 3 (for the three classifiers).
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Finally, in step 4, the final decision, ŷ, is taken by soft voting of the predictions of
the classifiers of the previous step using Equation (6) [11]:

ŷ = arg max
i

3

∑
j=1

wj pij, (6)

where wj is the weight of the jth RFC instance. In this case the weights are taken uniformly
because we use the same classification algorithm (RFC) instances.

5. Experimental Setup

Here, we conducted four types of experiments following a similar procedure as the one
proposed by [37]: (1) The first experiment consisted of training and testing our model with
data from subject one only; (2) In the second experiment, training and testing were done
using data from subject two only; (3) For the third experiment, training and testing were
done with data from both subjects. These three experiments were subject-dependent,
and for evaluation of the trained models, k-fold cross-validation was used, with k = 10;
(4) The fourth and last experiment followed a subject-independent strategy; here the entire
dataset from subject one was used for training, and the total dataset from subject two was
used for testing. The accuracy metric was used to compare results with other approaches
described in the literature, in the experiments of the first type, and the F1-score and
the AUC-ROC in all four experiments.

5.1. Datasets

The data with which our proposed method was tested corresponds to the Grammatical
Facial Expressions set [37]. A complete description is available at the UCI machine learning
repository [65]. This set consists of 18 videos of facial expressions from two subjects. Each
subject performed five sentences in the Brazilian sign language that require a facial expres-
sion. The data were acquired through a Microsoft Kinect sensor that produced 100 spatial
data points (xi, yi, zi), numbered from 1 to 100, from different face parts—the eye, mouth,
nose, etc. Each frame has a binary class labeled by an expert, corresponding to positive (P)
for the case where the expression is present, or negative (N) for no expression. Nine differ-
ent facial expressions were mapped: affirmative, conditional, interrogative doubt, emphasis,
negative, relative, topic, interrogative questions, and interrogative yes/no questions.

5.2. Feature Extraction and Perspective Construction

From the dataset proposed by [37], we took different coordinate points of the face for
our experiments. In user-dependent experiments, the face landmarks we used were points
from the left eyebrow (18, 22, and 24), right eyebrow (31 and 34), left eye (3 and 6), nose (39,
42, and 44), and mouth (49, 56, 59, 60, 62, 63, 64, and 66). In user-independent experiments,
the face points we used were the left eyebrow (17, 22, and 24), right eyebrow (27, 31, 32,
and 34), left eye (0, 2, and 6), right eye (8, 9, 10, 14, and 15), nose (89), and mouth (60, 61, 62,
63, 64, 66, and 67).

From these coordinate points, we extracted three types of features: distances (see
Equation (1)), angles (see Equation (2)), and a temporal parameter to build a perspective of
expression over time, which corresponds to features of a range of frames within a window.
These were then concatenated with all the corresponding features from the following frames
within a window (see Section 4). For user-dependent experiments, we used a 10-frame
window in each GFE. For the subject-independent experiment, the number of windows
was different for each expression: affirmative: 4; conditional: 10; doubts: 5; emphasis: 10;
relative: 10; topic: 10; wh-questions: 2; negative: 6; and yes/no questions: 10. In all cases,
windows overlap by one frame.

For the doubt expression case, we found that the distance and angle features presented
small changes between cases where labels were positive or negative, mainly due to the type
of expression which is characterized by a slight contraction of the eyes and mouth; thus,
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we included two extra features for the left eyebrow (90, 91, 92, 93, 94, 21, 22, 23, 24, 25),
mouth (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59), and left eye (0, 1, 2, 3, 4, 5, 6, 7), which are
the enclosed area [66] and the principal axes ratio or eccentricity [67], which allowed us
to better identify the characteristic patterns of this expression. Additionally, for the doubt
expression case, we did not concatenate the features that belong to each frame in a window.
Instead, we statistically described the features in that window. Therefore, for each feature
(distances, angles, areas, and principal axis ratio) extracted from a frame and observed
in a window, we calculated the following statistical descriptors: mean, standard deviation,
maximum value, minimum value, median, 25th percentile, and 75th percentile, all of which
we concatenated. In all cases, the features were normalized.

Since the number of observations for each expression is different, classes were balanced
to prevent classification issues and bias in the direction of the larger class [68]. For this,
the larger class was subsampled by random elimination of observations to equal that of
the minor class.

Finally, we divided the features described above into three parts. Each of these parts
was introduced in one of the RFC instances to use its results in the weighted voting of
the final decision.

6. Results and Discussion

This section presents and discusses the results achieved by our proposed method
when trained and tested with different subjects, in terms of three metrics: the F1-score,
the accuracy, and the ROC-AUC. We also compare these results with the results obtained by
the methods presented in the state-of-the-art section, which used the dataset studied here.

6.1. Results of Training and Testing with Subject One

In Table 1, we can see that our model reached an average F1-score of 0.99 for the GFE
prediction of the Brazilian sign language (Libras) signs performed by subject one when our
model was trained with these same types of expression made by the same subject (user-
dependent approach). Additionally, we note that our method reached an average F1-score of
1 for 6 of the 9 GFEs from subject one. Additionally, in Table 1, we can see that our proposal
outperformed the approaches proposed in the literature and studied here, from the perspective
of the F1-score metric, for all grammatical facial expressions performed by subject one.

Table 1. F1 scores achieved by our proposed model and other state-of-art approaches using the
dataset that stored grammatical facial expressions of the Brazilian sign language (Libras) made by
subject one. Best results are in bold.

GFE Freitas Bhuvan Our Proposal

Wh question 0.8942 0.945338 0.98
Y/N question 0.9412 0.940299 0.99

Doubt question 0.9607 0.898678 1.00
Negative 0.9582 0.910506 1.00

Affirmative 0.8773 0.890052 0.98
Conditional 0.9534 0.94964 1.00

Relative 0.9680 0.954064 1.00
Topic 0.9544 0.902439 1.00
Focus 0.9836 0.975 1.00

Average 0.9434 0.9296 0.99

In Table 2, we can see that our model’s average accuracy exceeded 99 percent for GFE
prediction. Besides, from the perspective of the accuracy metric, we note that our proposal
bettered the approaches from the state-of-art studied here, in all the GFEs cases.
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Table 2. Accuracy achieved by our proposed model and other state-of-art approaches using a dataset
storing grammatical facial expressions of the Brazilian sign language (Libras) made by subject one.
Best results are in bold.

GFE Gafar (FRFS-ACO and MLP) Gafar (FRFS-ACO and FRNN) Ours

Wh question 0.9237 0.9447 0.9850
Y/N question 0.9467 0.9438 0.9875

Doubt question 0.9329 0.9077 0.9990
Negative 0.9119 0.919 0.9961

Affirmative 0.8635 0.8983 0.9777
Conditional 0.9622 0.9701 0.9991

Relative 0.9665 0.9656 0.9976
Topic 0.9649 0.9532 0.9986
Focus 0.9593 0.933 1.0000

Average 0.936 0.9373 0.9934

Table 3 also shows very good performance from our model, with an average ROC-AUC
of 0.9997. In Table 3, we observe that our proposal bettered the approach of Bhuvan et al.,
from the perspective of the ROC-AUC metric, for all GFEs reviewed here and performed
by subject one.

Table 3. ROC-AUC scores achieved by our proposed model and other state-of-art approaches using a
dataset that stores grammatical facial expressions of the Brazilian sign language (Libras) made by
subject one. Best results are in bold.

GFE Bhuvan et al. Our Proposal

Wh question 0.9768 0.9993
Y/N question 0.9925 0.9997

Doubt question 0.9713 1.0000
Negative 0.9695 1.0000

Affirmative 0.9763 0.9988
Conditional 0.9915 1.0000

Relative 0.9946 0.9999
Topic 0.9863 1.0000
Focus 0.9948 1.0000

Average 0.9837 0.9997

Tables 1–3 indicate that our method has great potential for the user-dependent ap-
proach, at least for subject one of the GFE dataset studied here. Additionally, These tables
suggest that our process learns better GFEs under the user-dependent approach to subject
one than the state-of-art models reviewed here.

6.2. Results of Training and Testing with Subject Two

In Table 4, we can see the good performance of our model, with an average F1-score
of 0.99, for the prediction of GFEs under the user-dependent approach for subject two.
Our proposal bettered the state-of-art techniques studied here, from the perspective of
the F1-score metric, for all GFEs.

Table 5 also shows the good performance from our model for GFE prediction, with an
average ROC-AUC of 0.9997, under the user-dependent approach for subject two. Addi-
tionally, we note that our proposal outperformed the method of Bhuvan et al., from the
perspective of the ROC-AUC metric, for all GFEs.

Tables 4 and 5 show that our method has great potential for the user-dependent
approach for subject two of the GFE dataset studied here. Furthermore, these tables suggest
that our method recognizes GFEs from subject two better than the state-of-the-art models
reviewed here.
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Table 4. F1 scores achieved by our proposed model and other state-of-art approaches using a dataset
storing grammatical facial expressions of the Brazilian sign language (Libras) made by subject two.
Best results are in bold.

GFE Freitas Bhuvan Ours

Wh question 0.8988 0.938776 0.99
Y/N question 0.9129 0.90566 0.99

Doubt question 0.9700 0.911765 1.00
Negative 0.7269 0.905556 0.99

Affirmative 0.8641 0.854772 0.99
Conditional 0.8814 0.867384 0.98

Relative 0.9759 0.935252 0.99
Topic 0.9322 0.853448 0.99
Focus 0.9213 0.934959 1.00

Average 0.8982 0.9008 0.99

Table 5. ROC-AUC scores achieved by our proposed model and other state-of-art approaches using
a dataset storing grammatical facial expressions of the Brazilian sign language (Libras) made by
subject two. Best results are in bold.

GFE Bhuvan et al. Our Proposal

Wh question 0.9872 0.9999
Y/N question 0.9754 0.9998

Doubt question 0.9697 0.9999
Negative 0.9749 0.9993

Affirmative 0.9485 0.9996
Conditional 0.9691 0.9988

Relative 0.9856 0.9999
Topic 0.9732 0.9999
Focus 0.9811 1.0000

Average 0.9739 0.9997

6.3. Results of Training and Testing with Subject One and Subject Two

In Table 6, we can see that our model reached an average F1-score of 0.99 for the GFE
prediction of the Brazilian sign language (Libras) expressions made by subject one and
subject two when our model trained with these same types of expression performed with
the same two subjects (user-dependent approach).

From the perspective of the F1-score metric, Table 6 shows that our proposal bettered
the approaches proposed in the literature (considered here) for all grammatical facial
expressions performed by subject one and subject two.

Table 6. F1 scores achieved by our proposed model and other state-of-art approaches using a dataset
storing grammatical facial expressions of the Brazilian sign language (Libras) made by subject one
and subject two. Best results are in bold.

GFE Freitas Bhuvan Ours

Wh question 0.8599 0.925125 0.99
Y/N question 0.8860 0.922591 0.99

Doubt question 0.9452 0.928896 1.00
Negative 0.7830 0.909091 1.00

Affirmative 0.8209 0.898734 0.98
Conditional 0.8776 0.927176 0.99

Relative 0.8973 0.946087 0.99
Topic 0.9164 0.874109 0.99
Focus 0.9321 0.932462 0.99

Average 0.8798 0.9183 0.99
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In Table 7, we can see that our model reached an average ROC-AUC of 0.9996 for
predicting GFEs under the user-dependent approach for subject one and subject two.
Further, we note that our proposal is better or equal to the state-of-art methods analyzed
here, from the perspective of the ROC-AUC metric, when GFEs are analyzed separately.
On the other hand, when GFEs were analyzed together, our method bettered cutting-edge
approaches with an average ROC-AUC of 0.9996.

Table 7. ROC-AUC scores achieved by our proposed model and other state-of-art approaches using a
dataset storing grammatical facial expressions of the Brazilian sign language (Libras) made by subject
one and subject two. Best results are in bold.

GFE Uddin Bhuvan Acevedo Ours

Wh question 0.9853 0.9785 1.0000 0.9995
Y/N question 1.0000 0.9818 0.9594 0.9985

Doubt question 0.9833 0.9839 0.9500 1.0000
Negative 1.0000 0.9759 1.0000 0.9999

Affirmative 1.0000 0.9629 1.0000 0.9989
Conditional 0.9866 0.9835 0.9915 0.9999

Relative 0.9918 0.9935 1.0000 0.9999
Topic 0.9770 0.9728 1.0000 0.9999
Focus 0.9867 0.9874 1.0000 0.9999

Average 0.9901 0.9800 0.9890 0.9996

The results in Tables 6 and 7 suggest that our method performs well in the user-dependent
approach for subject one and two of the GFE dataset studied here. Furthermore, these results
indicate that our method better identifies GFE under the user-dependent approach for the two
subjects jointly studied here than the approaches proposed in the literature.

6.4. Results of Training with Subject One and Testting with Subject Two

In Table 8, we observe that under the user-independent approach, we achieved an av-
erage F1-score of 0.8420. These results suggest that our model can generalize well in this
user-independent case.

Table 8. F1 scores achieved by our proposed model and other state-of-art approaches that train a RFC
with the Libras GFEs made by the subject one and test with the Libras GFEs of the subject two. Best
results are in bold.

GFE Freitas Our Proposal

Wh question 0.8743 0.8409
Y/N question 0.8365 0.8346

Doubt question 0.9052 0.9127
Negative 0.6760 0.6667

Affirmative 0.7478 0.7891
Conditional 0.7704 0.8014

Relative 0.8653 0.8694
Topic 0.8953 0.9168
Focus 0.9022 0.9463

Average 0.8303 0.8420

Furthermore, in Table 8, we can observe that our model achieved, on average, better
results than the state-of-the-art. We emphasize that, in six expressions (doubt question,
affirmative, conditional, relative, topic, and focus), our model beat the results of state-of-
the-art methods. We also noted that our approach performed slightly less than the state-of-
the-art for the Y/N question expression. Additionally, we observed that our approach was
not as good as the state-of-the-art in two expressions. These results suggest that, for the
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user-independent approach, our method generalizes better in six out of nine GFE than
the methods proposed in the literature for the dataset studied here. However, overall,
the results suggest that our method is better than the methods proposed in the literature.

Finally, based on the above results, our method can predict nine GFEs of the Brazilian
Sign Language (Libras) very well under the user-dependent approach and six of these nine
GFEs from good to reasonably well under the user-independent approach. The results
above support our claim that our method predicts these nine GFEs more accurately than
the state-of-the-art approaches studied here, from the perspective of three metrics (for
the user-dependent case): F1-score, accuracy, and ROC-AUC. Furthermore, our method
achieved superior results for these six GFEs, in terms of the F1-score, for the case of the user-
independent approach, compared to the results of the methods proposed in the literature.

7. Conclusions

This paper proposed an improved method for recognizing facial expressions, among a
collection of nine GFEs of the Brazilian sign language (Libras), from the visual face in-
formation composed of points delivered by a Kinect sensor. Our method is based on
an information fusion approach which groups in a multi-view fashion the features (ex-
tracted from diverse points of the face) and then applies a decision-making architecture
based on soft-voting to the outputs of various RFC instances. Thus, each view (one subset
of the feature set) is used to train a classifier instance, and the prediction outputs of several
instances are voted for the final decision of the GFE.

The results we presented in this paper show that our method is efficient and has better
performance (considering three metrics: F1-score, accuracy, and ROC-AUC) than other
state-of-the-art methods for the dataset considered.

Based on the results of the user-independent experiments and the user-dependent
experiments’ results, we can make the claim of superior performance and hence an advance
in recognizing facial expressions, at least for the dataset we considered (using Libras sign
language), by using the multi-view architecture that we have also used in other domains,
in combination with soft voting. We view this as an original contribution.

Our future work will address a more general problem of emotion recognition from
the recognition of facial expressions, which of course, would have a greater commercial and
social impact than the case of sign language, and some privacy implications that are better to
consider from the initial design of the technology rather than making them an afterthought.
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