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ABSTRACT Xylaria grammica is an ascomycetous decomposer of dead hardwood.
The X. grammica strain IHIA82 was recovered from the Kakamega Forest in Kenya.
The whole genome of this strain was sequenced with a total size of 47.0Mbp, a
G1C content of 48.1%, and 12,126 predicted genes.

X ylaria grammica (Mont.) Mont. 1855 belongs to the ascomycete family Xylariaceae
and is related to Xylaria hypoxylon (1, 2). The fungus is predominantly found in

tropical Africa, America, Asia, and Australia, where it grows on deciduous wood.
Besides its interesting spectrum of secondary metabolites (e.g., grammicin, a nemati-
cide [3, 4]), X. grammica causes soft-rot type II and is therefore a suitable candidate to
examine for extracellular enzymes with promising biotechnological potential. The spe-
cies sequenced here was collected in tropical Africa; thus, this research contributes to a
better understanding of the so-far-underexplored fungal biodiversity of this continent.

Xylaria grammica IHIA82 (ribosomal cistron, GenBank accession number MK408621;
proteins RPB2, b-tubulin, and Tef1a, RWA13214, RWA14836, and RWA10218, respec-
tively) was collected from rotting plant debris in the Kakamega Forest National Reserve
(Kenya; lat 0.33431, long 34.87814). Mycelium was grown in agitated liquid culture
(2.5% malt medium), and genomic DNA was extracted using a standard cetyltrimethy-
lammonium bromide (CTAB)-based protocol. The purified DNA was sheared into 200-
bp fragments using a Covaris S2 sonicator (Woodingdean, Brighton, UK). A 200-bp frag-
ment library (Ion Xpress Plus fragment library kit) was subsequently generated and
sequenced using the Ion Torrent Personal Genome Machine (PGM) platform (Ion PGM
sequencing 200 kit v2, 318v2 chip, Thermo Fisher, Darmstadt, Germany). Altogether,
5.5 million quality-filtered sequence reads were trimmed using Geneious Prime
v2019.2 (length, .180 bp; error probability limit, 0.05; trim 39 end) (5). De novo assem-
bly was performed using MIRA v4.0 (minimum reads per contig, 100 [6]), and in a sec-
ond step, a Geneious assembler (highest sensitivity [5]) was used to join the contig
ends and to filter for duplicate contigs. Assembly resulted in 1,053 contigs (969 chro-
mosomal and 84 mitochondrial contigs) with a total size of 47.0Mbp and a G1C con-
tent of 48.1%; the largest contig comprised 494,172 bp. Assembly quality (coverage,
29.6�) was assessed using QUAST v4.5 (7) and resulted in N50 and L50 values of
82,670 bp and 172, respectively. Single-copy ortholog analysis performed with BUSCO
v3 (predictor, Aspergillus nidulans; fungal data set, Ascomycota_odb9) (8) reported a ge-
nome completeness of 93.7%. Gene prediction was performed using the AUGUSTUS
v3.2.2 Web server (predictor, A. nidulans) (9) and resulted in 12,126 protein-coding
genes. Genes were annotated using Blast2GO v5.2.5 (BioBam, Valencia, Spain) and
dbCAN (HMMdb v7; E value,,1e215; coverage, .0.35�) (10). Altogether, 753 carbohy-
drate-active enzymes (CAZys; among them, 295 glycoside hydrolases and 165 enzymes
with auxiliary activities) and related binding modules were identified. Oxidative
enzymes involved in lignocellulose decomposition and the conversion of aromatics
such as lytic polysaccharide monooxygenases, cellobiose dehydrogenases, dye-
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decolorizing peroxidases, and heme-thiolate peroxidases were identified by BLAST
searches and annotated manually and are available under the GenPept accession num-
bers listed in Table 1. Secondary metabolite (SM) biosynthetic gene clusters (BGCs)
were predicted using antiSMASH v4.1.0 (11). We identified 47 BGCs, including BGCs for
the synthesis of 31 type 1 polyketides, 11 nonribosomal peptides, and 10 terpenes. A
more detailed analysis of SM anchor genes, e.g., polyketide synthase (PKS), nonriboso-
mal peptide synthetase (NRPS), and dimethylallyl tryptophan synthases (DMATS), was
performed using Secondary Metabolites by InterProScan (SMIPS v3 [12]) and is sum-
marized in Table 1.

Data availability. This whole-genome shotgun sequencing project was deposited
at DDBJ/ENA/GenBank under accession number RYZI00000000. The version described
here is the first version, RYZI01000000. The Sequence Read Archive (SRA) accession
number is SRR8352207. All referenced genes are cited within BioProject number
PRJNA510724.

TABLE 1 CAZy classes, SMIPS, and antiSMASH identification for (anchor) genes, secondary
metabolite types, and clusters in the genome sequence of X. grammica IHIA82

Particle group and typea No. of proteins GenPept accession no.
CAZy classes
Glycoside hydrolase 295
Glycosyltransferase 97
Polysaccharide lyase 18
Carbohydrate esterase 117
Auxiliary activities 165

Associated modules
Carbohydrate-binding module 61
Cellulose-binding domain CBM1 12

Oxidoreductases
Unspecific peroxygenase 5 RWA12854.1, RWA12535.1, RWA09762.1,

RWA08467.1, RWA07285.1
Dye-decolorizing peroxidase 3 RWA14623.1, RWA13170.1, RWA05922.1
Lytic polysaccharide
monooxygenase

23 RWA05857.1, RWA07035.1, RWA14554.1,
RWA09097.1, RWA12945.1, RWA08580.1,
RWA14079.1, RWA13280.1, RWA10304.1,
RWA10363.1, RWA05537.1, RWA09241.1,
RWA04958.1, RWA13290.1, RWA11494.1,
RWA11080.1, RWA14855.1, RWA10346.1,
RWA12163.1, RWA12842.1, RWA12711.1,
RWA03274.1, RWA06405.1

Cellobiose dehydrogenase 2 RWA13597.1, RWA11079.1

Secondary metabolites
NRPS genes 62
DMATS 13
NRPS 11
NRPS-PKS hybrid 7
PKS 31

NRPS- and PKS-like genesb 10/23c

NRPS-like 0/18c

PKS-like 10/5c

Single-domain genes 25
AT 20
KS 5

Cluster genes 11
Terpene synthase 10
Fungal-RiPP 1

aNRPS, nonribosomal peptide synthetase; DMATS, dimethylallyl tryptophan synthase; PKS, polyketide synthase;
AT, acyl transferase; KS, beta-ketoacyl synthase; RiPP, ribosomally synthesized and post-translationally modified
peptide.

b Incomplete anchor genes, one KS and/or C domain.
c Incomplete anchor genes, with two typical PKS and/or NRPS domains.
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