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Abstract
OBJECTIVES: Recently, Atuegwu et al. proposed amathematical model based on ADCmean and ADCmin to calculation of
cellularity. Our purpose was to compare the calculated cellularity according to the formula with the estimated cell count
by histopathology in different tumors.METHODS: For this study,we re-analyzedour previousdata regarding associations
between ADC parameters and histopathological findings. Overall, 134 patients with different tumors were acquired for
the analysis. For all tumors, the number of tumor cells was calculated according to Atuegwu et al. 2013.We performed a
correlation analysis between the calculated and estimated cellularity. Thereby, Pearson's correlation coefficientwas used
andPb .05was taken to indicate statistical significance in all instances.RESULTS:Theestimated and calculated cellularity
correlatedwell together in HNSCC (r = 0.701,P = .016) and lymphomas (r = 0.661, P = .001), andmoderately in rectal
cancer (r = 0.510, P = .036). There were no statistically significant correlations between the estimated and calculated
cellularity in uterine cervical cancer, meningiomas, and in thyroid cancer. CONCLUSION: The proposed formula for
cellularity calculation does not apply for all tumors. Itmay be used for HNSCC, cerebral lymphomas and rectal cancer, but
not for uterine cervical cancer, meningioma, and thyroid cancer. Furthermore, its usefulness should be proved for other
tumors.
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Introduction
Magnetic resonance imaging (MRI) is used as a staging investigation
in numerous malignant diseases. Some MRI techniques, for instance,
diffusion weighted imaging (DWI), are influenced by histological
composition of investigated tissue, and, therefore, can be used as
marker of tissue architecture [1–4]. DWI measures the random
motion of water molecules in tissues [1,2]. The water diffusion can be
quantified by a parameter, defined as the apparent diffusion
coefficient (ADC) [1–4]. ADC reflects the mobility of water within
tissues and documents quantitatively restriction of water diffusion by
several barriers, such as cell membranes [1–4]. Therefore, ADC can
indirectly provide information about cell density [1].

Previously, numerous experimental and clinical studies reported
data regarding associations between DWI and histopathological
features in different tumors and tumor like lesions [3–7]. In most
publications, different ADC fractions, especially minimum ADC
(ADCmin) and mean ADC (ADCmean) showed statistically significant
inverse correlations with cell count in several tumors [5–7].

Recently, Atuegwu et al. proposed a mathematical model based on
ADCmean and ADCmin to calculation of cellularity [8]. The authors
observed a strong and significant Pearson correlation and a strong
concordance correlation between the estimated and the simulated
number of tumor cells [8]. However, the proposed formula was not
proven by histopathological examination, and, therefore, it is unclear,
if the mathematical model provides real cell count or not.

Therefore, our purpose was to compare the calculated cellularity
according to the formula with the estimated cell count by
histopathology in different tumors.

Materials and Methods

Estimated Cellularity
For this study, we re-analyzed our previous data regarding

associations between ADC parameters and histopathological findings
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Table 1. Primary Tumors, Number of Patients, and MRI Technique

Entity n Magnetic Field b values

Uterine cervical cancer 21 3 T b0 and b1000
HNSCC 3 T b0 and b800
Cerebral lymphoma 21 1.5 T b0 and b1000
Meningioma 49 1.5 T b0 and b1000
Rectal cancer 17 3 T b0 and b1000
Thyroid cancer 15 3 T b0 and b800

HNSCC, head neck squamous cell carcinoma.

Table 2. Correlations Between the Estimated and Calculated Cellularity

Entity n Correlation Coefficients

Uterine cervical cancer 21 r = −0.245,
P = .285

HNSCC 11 r = 0.701
P = .016

Cerebral lymphoma 21 r = 0.661
P = .001

Meningioma 49 r = −0.110
P = .450

Rectal cancer 17 r = 0.510
P = .036

Thyroid cancer 15 r = 0.350
P = .202

Total 134 r = 0.119
P = .190

HNSCC, head neck squamous cell carcinoma.
Significant correlations are highlighted in bold.
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[9–14]. Overall, 134 patients with different tumors were acquired for
the analysis (Table 1). In all cases, the diagnosis was confirmed by
histopathological examination. For every tumor entity, cellularity was
estimated as an average cell count per 2–5 high power fields (×400;
0.16 mm2 per field). All images were analyzed by using a research
microscope Jenalumar, with camera Diagnostic instruments 4.2 as
reported previously [6,9].
Furthermore, in all cases the tumors were investigated by DWI.

Thereby, different equipment and b values were used (Table 1).

Cell Number Calculation
For all tumors, the number of tumor cells was calculated according

to Atuegwu et al. 2013 [8]. In this study, ADC values were converted
to tumor cell number N using following equation:

N ¼ θ
ADCw−ADCmean

ADCw−ADCmin

� �
ð8Þ

Where ADCw is the ADC of free water (ADCw = 3 × 10−3 mm2/s);
ADCmin is the minimum and ADCmean the mean ADC value within the
ROI, respectively. θ is the carrying capacity which can be interpreted as
the maximum number of cells that can be contained within a given
volume [15]. Due to varied imaging voxel sizes for different entities, we
converted the given volumes to a standard volume of 1 mm3. To
calculate θ, we used the tumor cell volume of 4189 μm3 [8].

Statistical Analysis
Because the fact that the formula calculated cells in a volume and

previously reported data were based on cell count on high power
fields, we performed a correlation analysis between the calculated and
estimated cellularity. Thereby Pearson's correlation coefficient was
used and P b .05 was taken to indicate statistical significance in all
instances.

Results
Table 1 shows the results of the performed correlation analysis
between the calculated and estimated cellularity. In the total sample,
the calculated cellularity did not correlated with the estimated cell
count. The subgroup analysis showed the following. Both parameters
correlated well in HNSCC and lymphomas, and moderately in rectal
cancer (Table 2). There were no statistically significant correlations
between the estimated and calculated cellularity in uterine cervical
cancer, meningiomas, and in thyroid cancer.

Discussion
Our study provides data about calculated and estimated cellularity in
different tumors.
As seen, the estimated and calculated cellularity correlated

statistically significant in HNSCC, lymphoma and rectal cancer.
Therefore, the proposed formula for cellularity calculation [8] can be
used in clinical practice for these entities. However, there were no
significant correlations between the estimated cell count and calculated
cellularity in uterine cervical cancer, meningioma, and thyroid cancer.

It is unclear, why the formula reflects the real cell count in some
tumors, whereas in other does not. Several causes of this phenomenon
are possible. The formula is based on ADC values, namely ADCmean

and ADCmin and assumes that the ADC fractions correlate with cell
count [8]. Recently, two meta-analyses regarding associations
between ADCmean and ADCmin and cellularity were published
[16,17]. These articles identified the following: firstly, ADCmin did
not better correlate with cellularity in comparison to ADCmean [17].
Secondly, different tumors showed also different associations between
ADC and cell count [16]. In detail, it has been shown that correlation
between ADC and cellularity ranged in different tumors [16].
Overall, the identified correlation coefficients for the analyzed tumors
were as follows: glioma (ρ = −0.66), ovarian cancer (ρ = −0.64), lung
cancer, (ρ = −0.63), uterine cervical cancer (ρ = −0.57), prostatic
cancer (ρ = −0.56), renal cell carcinoma (ρ = −0.53), squamous cell
carcinoma of head and neck (ρ = −0.53), breast cancer (ρ = −0.48),
meningioma (ρ = −0.45), and lymphoma (ρ = −0.25) [16].

Another cause of our controversial results is the fact that not only
cell count can influence water diffusion and ADC. It is well known
that other histological factors, such as cell size and nucleic-cytoplasma
ratio play a role in restriction of water diffusion [1–3]. According
Matsumoto et al., increase of cell size decreased water diffusion in
vitro [18]. Furthermore, it has been shown that nucleic size also
affected water diffusion in cell culture [19].

The proposed formula does not consider the fact that several
tumors and tumor-like lesions have different cell and nucleic sizes.
Therefore, it cannot be used for all tumors. However, our study
showed that it provides results, which are concordant with the
estimated cell count for HNSCC, cerebral lymphoma and rectal
cancer. Clearly, further investigations with different tumors are
needed to proof the usefulness of the formula in other malignancies.
We hypothesize that in future, more sensitive ADC-based mathe-
matical models adjusted for every tumor entity may better reflect
cellularity than a general formula. Furthermore, these models may
include other ADC parameters than ADCmean and/or ADCmin.
Recently, some reports showed that histogram analysis of ADC maps
provided other parameters, which better correlated with tumor cell
count [19,20].
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The present study has several limitations. Firstly, it is retrospective.
Secondly, the analyzed tumor groups had small number of patients.

In conclusion, our results suggested that the proposed formula for
cellularity calculation does not apply for all tumors. It may be used for
HNSCC, cerebral lymphomas and rectal cancer, but not for uterine
cervical cancer, meningioma, and thyroid cancer. Furthermore, its
usefulness should be checked for other tumors.
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