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Abstract

Background: In this era of data science-driven bioinformatics, machine learning
research has focused on feature selection as users want more interpretation and
post-hoc analyses for biomarker detection. However, when there are more features
(i.e., transcripts) than samples (i.e., mice or human samples) in a study, it poses major
statistical challenges in biomarker detection tasks as traditional statistical techniques
are underpowered in high dimension. Second and third order interactions of these
features pose a substantial combinatoric dimensional challenge. In computational
biology, random forest (RF) classifiers are widely used due to their flexibility, powerful
performance, their ability to rank features, and their robustness to the “P > > N” high-
dimensional limitation that many matrix regression algorithms face. We propose
binomialRF, a feature selection technique in RFs that provides an alternative
interpretation for features using a correlated binomial distribution and scales
efficiently to analyze multiway interactions.

Results: In both simulations and validation studies using datasets from the TCGA
and UCI repositories, binomialRF showed computational gains (up to 5 to 300 times
faster) while maintaining competitive variable precision and recall in identifying
biomarkers’ main effects and interactions. In two clinical studies, the binomialRF
algorithm prioritizes previously-published relevant pathological molecular
mechanisms (features) with high classification precision and recall using features
alone, as well as with their statistical interactions alone.

Conclusion: binomialRF extends upon previous methods for identifying
interpretable features in RFs and brings them together under a correlated binomial
distribution to create an efficient hypothesis testing algorithm that identifies
biomarkers’ main effects and interactions. Preliminary results in simulations
demonstrate computational gains while retaining competitive model selection and
classification accuracies. Future work will extend this framework to incorporate
ontologies that provide pathway-level feature selection from gene expression input
data.
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Background
Recent advances in machine learning and data science tools have led to a revamped

effort for improving clinical decision-making anchored in genomic data analysis and

biomarker detection. However, despite these novel advances, random forests (RFs) [1]

remain a widely popular machine learning algorithm choice in genomics given their

ability to i) accurately predict phenotypes using genomic data and ii) identify relevant

genes and gene products used for predicting the phenotype. Literature over the past 20

years has demonstrated [2–9] their broad success in being able to robustly handle the

“P > > N” high-dimensional statistical limitation (i.e., when there are more predictors or

features “P” (i.e., genes) than there are human subjects “N”) while maintaining competi-

tive predictive and gene selection abilities. However, the translational utility of random

forests has not been fully understood as they are often viewed as “black box” algorithms

by physicians and geneticists. Therefore, a substantial effort over the past decade has

focused around “feature selection” in random forests (RF) [5, 6, 10–14] to better pro-

vide explanatory power of these models and to identify important genes and gene prod-

ucts in classification models. Table 1 describes methods of existing feature selection

commonly used in random forests as either permutation-type measures of importance,

heuristic rankings without formal decision boundaries (i.e., no p-values) or a combi-

nation of both.

Table 1 Random forest feature selection methods and their permutation requirements

Permute Method P-
value

Brief description

No binomialRF
[15]

Yes Optimal splitting features’ p-values obtained via one-sided correlated
binomial tests

EFS [16] No Calculates a global score for each feature using 8 different metrics to measure
importance and selects features whose score exceeds the median global
score

AUC-RF [17] No Iteratively trains a random forest algorithm and removes predictors in a
stepwise fashion to maximize an AUC increase

RFE, dRFE [18] No Iteratively trains a random forest (RF) model and drops uninformative features
based on a user-defined criterion

RF-ACE [19] No Creates phony variables called “Artificial Contrasts with Ensembles”, and
compares how often these sham variables are used over the real ones

R2VIM [12] No Calculates variable importance (VI) and divides by minimum VI to create
relative VI, and choose important features based on a pre-selected cutoff

VarSelRF,
geneSrF [5]

No Iteratively removes worst .20 (or x-percentage) of all features; retrains RF; se-
lects smallest feature set within one set of best models

Yes Vita [20] Yes P-values are calculated based on empirical null distribution of non-positive
importance scores that accelerate null distribution estimates

Perm [20] Yes Permutes outcomes (Y) and determines importance based on which features
retained a larger importance in Yoriginal vs. Ypermuted

PIMP [14] Yes Permutes outcome and determines features’ priority based on increases in
mutual information or Gini errors. A feature’s p-values is produced by an
importance measure fitted to a distribution

VSURF [17] No Two-step FS algorithm: 1) uses predictor permutations to identify features
robust to noise, and 2) refines model by conducting step-forward inclusion of
features until error convergence

Boruta [13] No Creates phony predictors by permuting the values of the shadow vars. Runs
RF to identify features’ Z-scores. Eliminates features whose Z-score are less
than a threshold. Repeats until convergence

Absence of permutations generally decreases substantially computing time. P-values provide explicit ranking of features,
which enables objective feature thresholding
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While the bioinformatics community have been widely using the above-mentioned

approaches to feature selection approaches in multi-analyte biomarker discovery [5],

two problems have been hampering their impact in biomedicine. First, random-forests

implementations are generally computationally expansive and memory intensive, par-

ticularly for identifying molecular interactions. In addition, conventional fully-specified

RF classifiers remain opaque to human interpretation, yet there is an increasing con-

sensus among clinicians and machine learning experts that ethical and safe translation

of machine learned algorithms for high stake clinical decisions should be interpretable

and explainable [21–24].

We hypothesized that a binomial probabilistic framework for feature selection could

both improve the computational efficiency of RF classifiers and unveil their otherwise

hidden variables for increasing their review and usability by domain experts. We

propose the binomialRF feature selection algorithm, a wrapper feature selection algo-

rithm that identifies significant genes and gene sets in a memory-efficient, scalable fash-

ion, with explicit features for biologists and clinicians. Building upon the “inclusion

frequency” [25] feature ranking, binomialRF formalizes this concept into a binomial

probabilistic framework to measure feature importance and extends to identify K-way

nonlinear interactions among gene sets. The results and evaluation of the simulation,

numerical and clinical studies are presented in Section 2. The Discussion and conclu-

sion and presented in Sections 3 and 4, respectively, and the proposed method is for-

mulated in Section 5.

Results
The simulation and numerical studies used to evaluate the techniques are listed and

reviewed in this section. The results and analyses are organized by memory and com-

putational efficiency (Section 2.1), followed by feature selection accuracy and false dis-

covery rates (Section 2.2–2.3) in the simulations and proceeds to detail the numerical

studies using the Madelon benchmark (Section 2.4) and the clinical validations from

the TCGA repository (Section 2.5) examining breast and kidney cancers.

Memory efficiency and runtime analysis

To measure memory gains and computational efficiency, two different analyses were

conducted in these simulation studies. The first was a theoretical analyses of memory

requirements for interaction detection in simulated genomes with 100, 1000, and 10,

000 genes. These are clearly smaller than the human genome but serve to illustrate the

drastic combinatoric efficiency gained in small dimensional settings. In Table 2, the

analyses show the memory efficiency attained by binomialRF to detect 2-way and 3-

way interactions. As shown, it can require as much as 170,000 times less memory to

calculate 3-way interactions with binomialRF as compared to a classical RF in a moder-

ately large dataset with 1000 variables, potentially impacting memory requirements of

grid computers. Note that in linear models, efficient solution paths for �XK
i¼1 only exist

for K ∈ {1, 2} (LASSO [26] for K =1 and RAMP [27] for K =2). For K > 2, to our know-

ledge, no algorithm guarantees computational efficiency. In RF-based feature selection

techniques, the majority of the techniques requires one to explicitly multiply interac-

tions in order to detect them.
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To compare each algorithm’s runtime, we strictly measure the time for the algorithm

to produce its feature ranking and omit other portions using the base system.time R

function. This runtime is measured in seconds. The boxplot in Fig. 1 displays the range

of runtimes (measured in seconds) and graphs them in incremental powers of 10 (i.e.,

101, 102, 103, …) to illustrate the difference in magnitudes. As shown in the rightmost

panel (10,000 genes) of Fig. 1, the binomialRF algorithm takes, on average, 16.6 s to

run, while Boruta averages 779 s, resulting in a 47-fold increase for conducting the

same analysis. The techniques omitted from Fig. 1 all resulted in runtimes larger than

Boruta (i.e., at least 20X slower than binomialRF), and several of them were unable to

process datasets with 10,000 to 20,000 features.

Table 2 BinomialRF improves the memory requirements

Features
dimension

Interaction
order

Memory requirements for interactions Memory
efficiencybinomialF Other methods of Table 1

10 2 N × 10 N × 55 ~ 5

3 N × 175 ~ 17

100 2 N × 100 N × 5050 ~ 50

3 N × 166,750 ~ 1700

1000 2 N × 1000 N × 500,500 ~ 500

3 N × 166,667,500 ~ 170,000

The improvement is on the orders of magnitude in 2-way and 3-way interactions when compared to other methods of
Table 1. One advantage of the binomialRF algorithm is that it can screen for sets of gene interactions in a memory
efficient manner by only requiring a constant-sized matrix whereas the current state of the art requires the predictor
matrix to increase in size in a combinatoric fashion to screen for interactions. Memory efficiency is defined by
Dim ð�XK

i¼1Þ
.
DimðXÞ , and interaction memory requirements are defined by the number of columns required to map

all k-way interactions

Fig. 1 BinomialRF showing substantially improved computational time. The simulation runtimes are
measured in seconds and are plotted in powers of ten to show the difference in magnitudes of
computation time. The simulation scenarios are detailed in Section 2.1, where the length of the coefficient
vector, β varies from 10 to 100 and 1000 features. All simulations were conducted on a 2017 MacBook Pro
with 3.1 GHz Intel Core i5 and 16 GB of RAM. All simulations resulted in the binomialRF being the fastest
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Feature selection accuracy in simulations

To measure scalability in the predictor space, 500 random forest objects are grown with

500 trees, using simulated genomes sizes 100, 1000, and 10,000 (Fig. 1). Table 3a illus-

trates and summarizes the results for the main effects analysis across 32 simulation

studies including up to 2000 features. Boruta, EFS, VSURF, and binomialRF all attain

high precision, while PERM and AUCRF attain the largest recall, and EFS the lowest

test error. To mimic a human genome (≈ 20–25,000 genes), a limited simulation sce-

nario generated a synthetic genome with 10,000 genes. However, several techniques

other than binomialRF faced rate-limiting computational and memory challenges, pre-

venting us from conducting a full evaluation. Table 3b summarizes the simulation re-

sults for p = 10,000 where a total of 100 genes were seeded. In this scenario, Boruta and

binomialRF again obtained the highest precision values on average, PERM attained the

highest recall. However, PERM labeled nearly half the genome as significant, resulting

in a precision value near 0. AUCRF and binomialRF produced the most accurate classi-

fiers, though most techniques operated within a similar accuracy range.

Table 3 Simulation results of biomarkers

Model Precision Recall Test error Model size

3A. Results: 100–2000 features

AUCRF 0.54 (0.25) 0.74 (0.26) 0.27 (0.1) 8.74 (0.13)

binomialRF 0.91 (0.13) 0.37 (0.36) 0.33 (0.13) 81.72 (0.08)

Boruta 0.89 (0.15) 0.41 (0.37) 0.32 (0.13) 63.38 (0.1)

EFS 0.83 (0.16) 0.69 (0.27) 0.25 (0.1) 8.66 (0.13)

Perm 0.33 (0.33) 0.82 (0.18) 0.30 (0.09) 59.42 (0.1)

PIMPa 0.18 (0.36) 0.00 (0.01) 0.35 (0.1) 1.47 (0.11)

RFE 0.49 (0.35) 0.61 (0.23) 0.3 (0.08) 250.29 (0.09)

VarSelRF 0.67 (0.24) 0.65 (0.29) 0.27 (0.1) 12.31 (0.12)

Vita 0.46 (0.28) 0.66 (0.29) 0.28 (0.1) 35.44 (0.1)

VSURF 0.86 (0.15) 0.44 (0.36) 0.31 (0.12) 40.95 (0.1)

3B. Results: 10,000 features

AUCRF 0.17 (0.05) 0.33 (0.05) 0.41 (0.05) 215.68 (0.01)

binomialRF 0.51 (0.12) 0.14 (0.12) 0.41 (0.03) 28.6 (0.03)

Boruta 0.72 (0.18) 0.03 (0.18) 0.47 (0.01) 4.68 (0.02)

Perm 0.02 (0) 0.82 (0) 0.46 (0.03) 4958.26 (0.03)

RFE 0.03 (0) 0.66 (0) 0.44 (0.04) 1950.11 (0.02)

Vita 0.03 (0) 0.52 (0) 0.45 (0.05) 1954.32 (0.02)

The binomialRF and the algorithms in Table 1 were tested across a range of simulation scenarios (Table 6). Mean
(standard deviation) results are shown and ranked according to decreasing F1-score. In 3A, the results for all techniques
are shown up to 2000 features. In 3B, the results are shown for a limited simulation scenario with 10,000 features and
100 seeded genes. Only a subset of methods are presented in 3B as the remaining were either unable to process 10,000
features (i.e., induced memory errors) or introduced rate-limiting computational challenges (see Fig. 1). Across both
tables, Boruta and binomialRF attain the highest precisions, while PERM the highest recall. More studies are required in
high dimensional scenarios to better understand each technique’s behavior. Top accuracies are bolded
aAcross many runs – the PIMP algorithm resulted in no gene predictions, despite running them using their default
parameters, resulting in these low precision and recall values. We varied the parameters with no additional success – so
we report these results with an asterisk to note they warrant further investigation
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Pure noise selection rate

To complement the variable precision and recall analyses (and thus FDR), and to better

understand how often the binomialRF’s detects random noise in the absence of signal,

we ran additional simulations in which none of features were informative (i.e., genes

seeded β =0). Therefore, with an outcome fully independent from the predictors, any

selection is based on noise, thus measuring the algorithm’s pure noise selection rate.

We ran these analyses using 100, 500, 1000, and 2000 features, and the binomialRF

produced – on average – a type I error ranging between 0.5–2%. Future simulations

will explore artificial datasets with main effects in absence of interactions to quantify

these type I errors.

UCI ML benchmark data repository

The results for the Madelon dataset show the performance attained by all techniques in

a benchmark dataset used to evaluate machine learning algorithms. The results in

Table 4 indicate that all techniques attain a similar precision and recall, however, with

varying model sizes and run times. PIMP, Boruta, and VSURF all result with the smal-

lest models, while PERM results in the largest model. With regards to runtime, similar

to the simulations (see Fig. 1), the binomialRF algorithm runs about 4 times as fast the

2nd fastest algorithm, and about 200 times as fast as the slowest.

TCGA clinical validations in breast and kidney cancers

Table 5 shows the results for the breast and kidney cancer TCGA validation studies.

The same algorithms from Fig. 1 were included as they were the best suited to analyze

high-dimensional datasets. Of note, AUCRF generated memory errors when analyzing

the TCGA data and was thus not able to produce results. As demonstrated by prior

studies [28], some TCGA datasets are relatively easy classification tasks, as the matched

samples are separable, allowing reasonable algorithms to accurately split the samples

across the class labels. Therefore, one aspect of value-added in bioinformatics feature

selection algorithms is to develop an accurate classifier with a minimal set of genes. In

Table 5, Boruta and binomialRF both develop strong classifiers with a small set of

Table 4 UCI ML madelon dataset validation

Model Model size Run time Precision Recall

VarSelRF 23 (13) 129 (21) 0.56 (0.01) 0.56 (0.02)

VSURF 3.5 (1.4) 321 (267) 0.56 (0.02) 0.56 (0.03)

binomialRF 17.1 (3.9) 5.6 (2.2) 0.55 (0.02) 0.55 (0.01)

Vita 13 (5.68) 1007 (1220) 0.55 (0.02) 0.55 (0.02)

Boruta 2 (2) 139 (45) 0.54 (0.03) 0.56 (0.04)

Perm 240 (13) 269. (329) 0.56 (0.08) 0.54 (0.01)

AUCRF 31 (30) 33 (7.5) 0.55 (0.04) 0.54 (0.02)

RFE 81 (4.2) 20 (1.4) 0.54 (0.06) 0.54 (0.01)

EFS 20 (8.3) 2617 (2126) 0.53 (0.02) 0.54 (0.02)

PIMP 1.7 (1.3) 482 (128) 0.50 (0.04) 0.50 (0.01)

The algorithms in Table 1 were tested and compared using the Madelon benchmark dataset from UCI (described in
Methods). Mean (standard deviation) results are shown and ranked according to decreasing harmonic mean of precision
and recall of variables. Top accuracies are bolded
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genes, however binomialRF provides a more interpretable test statistic, runs about 20X

faster, and – as shown in Fig. 2 – extends to detect interactions at no additional cost.

Figure 2 illustrates how the binomialRF classifiers, with only 51 genes in breast can-

cer and 16 in kidney cancer, respectively, obtained comparable performances to that of

the highly-accurate black-box classifier with > 19,000 genes results (i.e., precision and

recall > 0.98). Furthermore, after identifying key statistical interactions (39 in breast, 11

Table 5 TCGA dataset validation

Model Time Test error Model size

5A. Breast cancer

binomialRF 83 (11) 0 (0) 27 (4)

RFE 100 (13) 0 (0) 692 (23)

Perm 112 (16) 0 (0) 1092 (39)

Vita 493 (88) 0 (0) 19,933 (10)

Boruta 1667 (617) 0 (0) 92 (3)

5B. Kidney cancer

binomialRF 51 (10) 0 (0) 48 (3)

RFE 67 (10) 0 (0) 592 (55)

Perm 73 (12) 0 (0) 867 (55)

Vita 315 (72) 0 (0) 19,760 (41)

Boruta 987 (363) 0 (0) 24 (2)

The algorithms in Table 1 were tested and compared using the TCGA breast cancer and kidney datasets, reporting the
mean (and standard deviation in parentheses). Half of the methods were not included as they encountered computation
or memory limitations in running the TCGA datasets

Fig. 2 Biomarker accuracies of the TCGA validation study. The TCGA validation study was conducted using
breast and kidney cancer datasets, accessed via the R package TCGA2STAT. The matched-sample datasets
were utilized to determine whether binomialRF could produce an accurate classifier via main effects and
interactions. Left, the two binomialRF classifiers (51 identified gene main effects; 39 identified gene-gene
interactions) and obtained a classifier as accurate as the original black-box RF model with all ~ 20,000
genes. Right, the two binomialRF classifiers (16 identified gene main effects; 11 identified gene-gene
interactions) obtained a classifier as accurate as the original black-box RF model with all ~ 20,000 genes
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in kidney), we validated their signal by building a classifier exclusively from them with

comparable accuracy.

To validate the identified interactions across both TCGA studies, we constructed net-

works of their pairwise statistical interactions and assessed whether the log-ratio of the

gene expression were distributed differently across tumor and normal samples. Figure 3

provides the statistical interaction networks, as well as exemplar cases of gene-gene in-

teractions in each study. For breast cancer, we present an interaction between SPRY2

and C0L10A1 and for kidney one between TFAP2A and SGPP1. In each study, the two

individual genes in isolation are expressed differently across normal-tumor samples in-

dicative of their discrimination power. Further, the log-ratios of both genes show an

additional level of statistical signal that is captured from the interaction, suggesting the

possibility of biological interaction.

Discussion
Numerical studies, RF-based feature selection techniques, efficiency gains, and

interactions

The averaged results across all simulation designs are presented in Table 3, with the

best values of each category bolded, separated into simulations with up to 2000 features

(Table 3A) and a set of analyses with 10,000 features (Table 3B) to account for rate-

limiting computational and memory challenges introduced by a number of techniques.

In low-dimensional numerical studies, techniques such as AUCRF and EFS result in

the smallest prediction error, showcasing their strength in the prediction task. The per-

mutation resampling strategy attains the highest recall, which provides users a tool to

identify gene products that are potentially relevant for a disease. Boruta, VSURF, and

binomialRF algorithms attain the highest precisions (positive predictive value) with rea-

sonable recall. The results in Table 3B illustrate the need to further develop techniques

to better operate in high-dimensional scenarios. Attaining a high recall while labeling

half the genome as significant is not ideal; on the other hand, attaining a high precision

in labeling only a handful of genes might miss some of the biology at play. The tech-

niques in Table 1 do not have a complete grasp of the signal in high-dimensional set-

tings suggesting to a.) continue developing and refining them, and b.) to enrich the

analyses at the pathway-level as previous studies have shown that this may facilitate sig-

nal detection [29] and introduce a biologically-meaningful dimension-reduction step.

Boruta and binomialRF have very similar performances despite sharing no structural

similarities (Boruta builds its selection based on creating phony variables to threshold

important ones, while binomialRF models splits via correlated Bernoulli trials). This is

likely since both impose a rigid cutoff for selection, resulting in small but highly precise

feature sets. However, due to these structural differences, binomialRF runs orders of

magnitude faster (see Fig. 1 and Table 4) and can explicitly identify statistical interac-

tions, resulting in computational and statistical advantages. The PIMP algorithm with

the default parameters resulted in many runs with no feature predictions, demonstrat-

ing poor performances. In various additional runs, we modified their function parame-

ters with similar results. binomialRF distinguishes itself with the most optimal memory

utilization and runtimes. However, it is worth noting that since the algorithm concen-

trates its search space in the root of the tree, this strategy of feature selection likely
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Fig. 3 Statistical interactions prioritized by binomialRF in TCGA cancers recapitulate known cancer driver
genes. The statistical interaction gene networks (Top) indicate the pairwise biomarker interactions identified
by the binomialRF algorithm for the breast (Left) and kidney (Right) cancer datasets. Key features are
involved in multiple interactors (super-interactors; e.g., SPRY2; COL10A1). Features names (gene products)
found in the literature as associated to cancer pathophysiology are shown in black; those also documented
as driving cancer genes in COSMIC are shown in green (Methods); the remainder are grey. Two exemplar
statistical interactions (one per dataset) are circled and the log expression of their gene products and of
their ratios are shown in the bottom panels. The distribution separation across tumor (green) and normal
(orange) cases indicates a potential interaction between these two genes across the cohorts
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results in attaining higher precision as the algorithm tries to find the features with the

largest impact in the decision tree. This trade-off translates to our algorithm missing

features with smaller impact that appear further down the tree, resulting in a lower re-

call, as seen in the simulation studies.

Strobl and Zeileis [30] demonstrate that i) the Gini importance (measure of en-

tropy) is biased towards predictors with many categories, and ii) that growing

more trees inflates anticonservative power estimates. To address (i), we recom-

mend the user evaluates sets of genes according to their baseline expression

levels [31]. For the latter (ii), the binomialRF uses ntree parameter (number of

trees; Table 6) to calculate a conservative cumulative distribution function (cdf)

rather than calculating an anticonservative Fj (Eq. 1), which mitigates the possi-

bility of overtraining. Our simulations were ran using 500 and 1000 trees with no

visible differences across results. We ran five additional simulations (seeding 5/

100 genes) using 100, 200, 500, 1000, and 2000 trees to determine the effect of

growing more trees. The median results indicate that as the number of trees in-

creases, the metrics tend to converge (data not shown), indicating a stability in

the number of trees. For the sampled features parameter, the percentage of fea-

tures tested in our analyses ranged from 20 to 60%. In addition, for the number

of features at each split, we recommend tuning this hyper-parameter via cross-

validation. The cross-validated binomialRF function (implemented in our R pack-

age) runs a grid-search of equally spaced proportions between 0 and 1 based on

the number of folds, and then returns the optimal proportion of features selected

for each split.

There are other complementary efforts to improve the efficiency of random forests.

Studies [32–35] focus on subspace sampling methods, reducing the search, and ensur-

ing diversity among the features or cases sampled to make the node-splitting process

more efficient, rather than biomarker discoveries. Other sets of techniques such as [36]

gain efficiency by modifying the learning process. These methods are independent of

feature selection and could be combined with any method from Table 1 to further im-

prove RF efficiencies.

binomialRF proposes an automated combinatoric memory reduction in the original

predictor matrix (Table 2), while other methods from Table 1 generally require rate-

limiting and memory consuming user-defined explicit interactions by multiplying the ð
P
kÞ interactions. One limitation of assessing memory computation is the inability to con-

duct a purely theoretical analysis of memory requirements. Further, it is difficult to as-

sess true memory load across different algorithms as some algorithms are serialized

while others offer distributed computing across cores. For example, some memory pro-

filing functions in R simply do not function properly in parallel, making such calcula-

tions unfeasible. We will continue looking into this in future studies.

Using trees to identify interactions dates back to [37] and partial dependence plots to

examine candidate feature interactions. Some algorithms identify sets of conditional or

sequential splits, while other strategies (i.e., [37]) measure their effect in prediction

error. More recently, works such as [31, 38] look at the frequency of sequence of splits

or “decision paths” as a way to determine whether two features interact in the tree-

splitting process. For example, iterative random forests (iRF) [38] identify decision
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paths along random forests and captures their prevalence, therefore benefitting from a

combinatoric feature space reduction in the interaction search. Similarly, BART conducts

interaction screening by looking at inclusion frequencies of pairs of predictors [31]. Both

of these techniques (one in a frequentist and the other in a Bayesian setting) use inclusion

frequencies to determine interaction importance and then provide additional tools to pro-

vide cutoffs. We extend on these by modeling decision paths (i.e., pairs of splits) as ex-

changeable but correlated Bernoulli random variables from which we can conduct

hypothesis tests. We construct our algorithm on the same principle of using sequence of

splits (i.e., decision paths) to identify interactions and extend them by introducing our

modeling framework. binomialRF automatically models these sequential split frequencies

into a hypothesis testing framework using a generalization of the binomial distribution

that adjusts for tree-to-tree data co-dependency. This contribution provides an alternative

p-value-based strategy to explicitly rank feature interactions in any order with the bino-

mialRF, using a simple modification of a user-determined parameter, k. In future studies,

we will focus our experiments and numerical analyses to compare techniques that are ex-

plicitly designed to identify interactions (i.e., binomialRF and iRF). Future work will also

aim to refine and polish interaction detection within the binomialRF framework and ex-

tend the preliminary results and techniques.

In future studies, we will extend these analyses beyond random forest classifiers and

compare binomialRF against variable selection techniques across other algorithms. For

main effects, a future study should consider comparing binomialRF to the L-norm fam-

ily of penalties in logistic regression (i.e., LASSO and elastic net), as well as importance

metrics in tree boosting models and neural networks, and variables selected in SVM al-

gorithms. To assess the efficacy of interactions and biological networks, one possibility

is to implement network-based and graph-based family of penalties in logistic regres-

sion. These simulation comparisons across other machine and statistical learning algo-

rithms must be carefully designed to not simulate data that would introduce biases nor

favor one set of methods over another, which is beyond the scope of the current study.

For example, in our simulation studies, the data were generated following a logistic dis-

tribution that would biasedly favor a logistic regression over binomialRF. Therefore, a

more comprehensive simulation with various generative models is required to ad-

equately compare binomialRF (and tree-based methods) to feature selection in general-

ized linear models, neural networks, and support vector machines.

Finally, datasets from the UCI and TCGA repositories were used to externally validate

the simulations. While the UCI datasets are not novel, they provide reliable benchmarks

for the machine learning community to measure against as well as confirmatory power to

the results of the simulations. In addition, validations with TCGA labels served as accur-

acy measurements (Table 5) in a high-dimensional setting (datasets had approximately 20

thousand features). As shown in Table 5, several of the algorithms listed in Table 1 were

unable to provide adequate analyses either due to computational or memory limitations,

limiting their usability in certain high-dimensional bioinformatics tasks.

Moving towards interpretable, white-box algorithms

In recent years, there have been substantial efforts to develop more human-

interpretable machine learning tools in response to the ethical and safety concerns of
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using ‘blackbox’ algorithms in medicine [21] or in high stake decisions [22]. A perspec-

tive on Nature Machine Intelligence [22], the Explainable Machine Learning Challenge

in 2018 [39], and other initiatives serve as reminders of the ethical advantages of using

interpretable white-box models over blackbox ones. Novel software packages and

methods (i.e., [40, 41]) bring elements of ensemble learning and RFs into the linear

model space to combine the high accuracy of ensemble learners with interpretability of

generalized linear models. Other initiatives such as the iml R package [41] provide

post-hoc interpretability tools for blackbox algorithms or provide model-agnostic strat-

egies “to trust and act on predictions” [42]. These white-box efforts are converging to-

wards producing more explanatory power that improves ethical and safe decision

making. Feature selection methods also improve the transparency of machine learning

methods. Further, there is a need to develop algorithms that can better illustrate how

they identify and rank features. Among feature selection techniques, binomialRF pro-

vides more explicit features and their interactions than conventional RF as well as a

prioritization statistic. This differs from the majority of other feature selection methods

that have been developed for RF, as they do not provide a prioritization among features

(Table 1; p-value = no). For those that provide p-values, they require memory intensive

and time-consuming permutation tests.

The feature selection algorithms in Table 1 are designed to take a high-dimensional

set of features (i.e., genes in a genome) and recommend or prioritize a small but im-

portant subset of them. They do this either via soft or hard decisions (i.e., p-value ranks

vs. sets of discovered genes), but do not provide directionality of effect (i.e., harmful v.

protective effect), limiting actionability. The binomialRF provides an effect size along

with a p-value, providing a small improvement in this direction to make these algo-

rithms more ‘white-box’ and interpretable, but it is still not a fully a white box algo-

rithm. In contrast, novel algorithms, such as TreeExplainer [43], provide great

visualization and model-interpretation tools that provide directionality for feature ef-

fects by measuring each feature’s contributions to the prediction. However, TreeExplai-

ner differs from the algorithms in Table 1 as it does not provide an automated or

decision-boundary-based mechanism to prioritize features. This does not allow for a

fair comparison between these methods, resulting in its exclusion from the analysis.

Thus, future work should incorporate the interpretive power of new algorithms (such

as TreeExplainer) into feature selection, in order to provide a set of prioritized genes as

well as the direction of their effect on the outcome.

As recent work by our lab and others have shown, there is a subspace of genomic classi-

fiers and biomarker detection anchored in pathways and ontologies [44–46] that has

yielded promising results in biomarker detection using a priori defined gene sets (i.e., GO

[47]). Hsueh et al. have explored the subdomain of ontology-anchored gene expression

classifiers in random forests [48]. They also discuss alternate statistical techniques avail-

able for geneset analyses and paved the way towards RF-based geneset analysis. In future

work, we will direct our efforts along this path and extend binomialRF to incorporate gene

set-anchored feature selection algorithms that explore pathway interactions.

Conclusion
We propose a new feature selection method for exploring feature interactions in ran-

dom forests, binomialRF, which substantially improves the computational and memory
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usage efficiency of random forest classifier algorithms and explicitly reveals RF Classi-

fier features for human interpretation. The simulation studies and theoretical analyses

compared to previous methods have shown that binomialRF attains a substantially im-

proved runtime (between 30 and 300 fold speed reduction) and a combinatoric reduc-

tion in memory requirement for interaction detection (a 500-fold and 170,000-fold

memory reduction, for 2-way and 3-way interactions in genomes with 1000 genes). Out

of the ten techniques, binomialRF is also among the top four most accurate (precision,

recall) across large scale simulations and benchmark datasets. In addition, in clinical

datasets, the prioritized interaction classifiers attain high performance with less than

1% of the features and produce pathophysiologically relevant features (evaluated via

curation and external reference standards). We have released an open source package

in R on GitHub and have submitted it to the CRAN (R archive) for consideration.

Machine learning algorithms are increasingly required to explain their predictions

and features in human-interpretable form for high stake decision making. Therefore,

there is a need for methods that provide explicit white-box-style classifiers with the

high accuracy rates otherwise observed in conventional blackbox-style algorithms (e.g.,

random forests). Among feature selection methods designed for random forests, bino-

mialRF proves to be more efficient and as accurate for exploring high order interactions

between biomolecular features as compared to ten published methods. This increased

efficiency for exploring complexity may contribute to improving therapeutic decision

making, which may address existing machine learning gaps in precision medicine.

Methods
We propose a new method for feature selection in random forests, binomialRF (Fig. 4),

which extends and generalizes the “inclusion frequency” strategy to rank features [25]

by modeling variable splits at the root of each tree, Tz, as a random variable in a sto-

chastic binomial process. This is used to develop a hypothesis-based procedure to

model and determine significant features. In the literature, there are a number of exist-

ing powerful feature selection algorithms in RF algorithms (Table 1). However, this

work proposes an alternative feature selection method using a binomial framework and

demonstrates its operating characteristics in comparison to existing technology. Table

1 illustrates the advantages of the proposed binomialRF as it is both p-value-based and

permutation-free, features not identified in our review of literature.

binomialRF notation and information gain from tree splits

Given a dataset, we denote the input information by, which is comprised of N subjects

(usually < 1000) and P features (genes in the genome; usually P≈ 25,000 expressed

genes). Genomics data typically represent the “high-dimensional” scenario, where the

number of features is much larger than the sample size N (e.g., “ P > >N ”). In the con-

text of binary classification, we denote the outcome variable by Y, which differentiates

the case and control groups (i.e., “healthy” vs. “tumor” tissue samples). Random Forests

(RF) are ensemble learning methods that train a collection of randomized decision

trees and construct the decision rule based on combining V individual trees. We denote

a random forest as RF = {T1,…, TV}. Each individual decision tree, Tz (z = 1, …, V), is

trained by using a random subset of the data and features. This randomization

Rachid Zaim et al. BMC Bioinformatics          (2020) 21:374 Page 13 of 22



encourages a diverse set of trees and allows each individual tree to make predictions

across a variety of features and cases. Each tree only sees m< P features in the root

when it determines the first optimal feature for splitting the data into two subgroups.

The parameter, m, is a user-determined input in the random forest algorithm with de-

fault values set usually to either m¼ ffiffiffiffi
P

p
or m¼P

.
3
. Fj,z denotes the random variable

measuring whether feature Xj is selected as the splitting variable for tree Tz ’s root (Eq.

1):

F j;z ¼ 1 ; if root Tzð Þ ¼ X j

0 ; otherwise

�
ð1Þ

This results in Fj, z following a Bernoulli random variable, Fj, z ∼ Bern(proot). In bino-

mialRF, to test whether the feature Xj is significant in predicting the outcome Y, we

Fig. 4 The binomialRF feature selection algorithm. The binomialRF algorithm is a feature selection
technique in random forests (RF) that treats each tree as a stochastic binomial process and determines
whether a feature is selected more often than by random chance as the optimal splitting variable, using a
top-bottom sampling without replacement scheme. The main effects algorithm identifies whether the
optimal splitting variables at the root of each tree are selected at random or whether certain features are
selected with significantly higher frequencies. The interaction-screening extension is detailed in Section 3.
Legend: Tz = zth tree in random forest; Xj = feature j; Fj = the observed frequency of selecting Xj; Pr =
probability; P = number of (#) of features; V = # of trees in a RF; m = user parameter to limit P; g = index of
the product
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build a test statistic F j¼
PV

z¼1F j;z to the the null hypothesis of no feature being signifi-

cant. One would expect that the probability of selecting a feature Xj is equal to that of

every other feature Xi. Therefore, under the null hypothesis, proot is constant across all

features and trees. Since trees are not independent as they are sampling the same data,

Fj follow a correlated binomial distribution that accounts for the tree-to-tree sam-

pling co-dependencies (Fig. 4). The following sections will describe combining the

probabilistic framework (2.3), the tree-to-tree sampling co-dependency adjustment

(2.4), and the test for significance (2.5).

Optimal splitting variable and decision trees

Consider a decision tree, Tz, in a random forest (Fig. 5). At the top-most “root” node,

m features are randomly subsampled from the set of P features, and the optimal split-

ting variable, Xopt, is selected as the best feature for separating two classes. Formally,

this is stated in Eq. 2.

Xopt ¼ argmaxX j Information Gainð Þ ð2Þ

Focusing on the root, under a null hypothesis, each feature has the same probability

of being selected as the optimal root splitting feature, denoted by proot = Pr(Xopt = Xj) ∀

j ∈ {1,…, P}. The random variable Fj, z (shown in Eq. 1) is an indicator variable that

tracks if Xj is selected as the optimal variable for the root at tree Tz . Fj, z is a Bernoulli

random variable, Fj, z ∼ Bern(proot). If all trees are independent, summing across trees

yields F j ¼
PV

z¼1F j;z (a binomial random variable). However, trees are not entirely in-

dependent since the sampling process creates a co-dependency or correlation across

trees.

Adjusting for tree-to-tree co-dependencies

Each tree in a RF samples n ⊂N observations either by subsampling or bootstrapping,

which creates a tree-to-tree sampling co-dependency, denoted as ρ. In subsampling, the

co-dependency between trees is exactly ρ≤n=m , whereas in bootstrapping, the co-

dependency is bounded above, i.e., ρ≤n=m . Therefore, in all cases, ρ≤n=m provides a

conservative upper bound on the co-dependency between trees. This upper bound ad-

justs for this tree-to-tree sampling co-dependency. Since the number of sampled cases

Fig. 5 Decision tree and node variables. In the binary split decision tree, X1 is the optimal splitting feature

at the root of the tree, and fX jg3j¼1¼fX1;X2; X3g is the optimal splitting sequence that indicates a

potential X1⊗ X2⊗ X3 3-way interaction, where the symbol “ ⊗ ” denotes interactions
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is determined by the user as a RF parameter, the tree-to-tree co-dependency is known

and does not require any estimations. Kuk and Witt both developed a generalization of

the family of distributions for exchangeable binary data [49, 50] by adding an extra par-

ameter to model for correlation or association between binary trials when the correl-

ation/association parameter is known. We model this co-dependency among trees by

introducing either Kuk’s or Witt’s generalized correlation adjustment in the correlbi-

nom R package [49], which is incorporated into the binomialRF model.

Calculating significance of main RF features

At each Tz, m < P features are subsampled resulting in a probability, proot, of Xj being

selected by a tree, Tz, as shown in Eq. 3:

proot ¼ 1 −
Ym

g¼1

P − g
P − g − 1ð Þ

1
m

� �� �
ð3Þ

Using Eq. 3, we can calculate whether Xj provides a statistically significant informa-

tion gain to discriminate among classes if Fj exceeds the critical value Qα, V, p, (where

Qα, V, p is the 1 − α th quantile of a correlated binomial distribution with V trials, p is

the probability of success, and ρ correlation). For multiple hypothesis tests, we adjust

our procedure for multiplicity using Benjamini- Yekutieli (BY) [51] false discovery rate.

Calculating significance of RF feature interactions

In classical linear models when detecting 2-way interactions, interactions are included

in a multiplicative fashion and treated as separate features with their own linear coeffi-

cients. Here, we denote Xi⊗ Xj as an interaction between features Xi and Xj. One con-

dition imposed in mathematical interaction selection is strong heredity which states

that if the interaction Xi⊗ Xj is included in the model, then their main effects Xi and Xj

must be included. Similarly, under weak heredity, at least one of the two main effects

must be included in the model if their interaction term is included. In the context of

linear models, several existing methods have been proposed to select interactions and

studied in terms of their feasibility and utility [52, 53]. Tree-based methods uniquely

bypass these conditions as strong heredity hierarchy is automatically induced resulting

from the binary split tree’s structure. As Friedman explains, trees naturally identify in-

teractions based on their sequential, conditional splitting process [38]. This “greedy”

search strategy reduces the space from all possible, ðP2Þ interactions, to only those se-

lected by trees, greatly reducing computational cost and inefficiencies in identifying in-

teractions. We generalize the binomialRF to model interactions by considering pairs or

sets of sequential splits as random variables and modeling them with the appropriate

test statistic and hypothesis test.

To modify the binomialRF algorithm to search for 2-way interactions, we add another

product term to Eq. 3 denoting the second feature in the interaction set to calculate p2

− way (Eq. 4).

p2 − way ¼
1
2

1 −
Ym

g¼1

P − g
P − g − 1ð Þ

1
m

� �� �� �
1 −

Ym

g¼1

P − 1ð Þ − g
P − 1ð Þ − g − 1ð Þ

1
m

� �� �� �� �
ð4Þ

Since we are interested in selecting interactions across variables, if Xj is selected at

the root node, then it is no longer available for subsequent selection. Thus, we replace
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P with (P − 1). Further, since the interaction can happen two different ways (via the left

or right child node), we include a normalizing constant of ½ to account for both ways

in which the interaction could occur. Figure 6a illustrates the binomialRF extension to

identify 2-way interactions by looking at feature pairs at the root node.

To generalize Eq. 4 into multi-way interactions and calculate pK −way, we first note

that for any multi-way interaction of size K in a binary split tree results in at most

2K − 1 terminal nodes. Therefore, there are 2K − 1 possible ways of obtaining the K-way

interaction (Fig. 6b). Thus, the normalizing constant in Eq. 4 is replaced with 2K − 1 in

Eq. 5 as a conservative bound on the probability. The product of two terms in Eq. 4 is

now expanded to the product of K terms (each term representing the probability of

selecting one individual feature in the interaction set), and (P − 1) is replaced with (P −

k) to account for sampling without replacement, which yields Eq. 5.

Fig. 6 Calculating RF features’ interactions. a 2-way Interactions. To extend the binomialRF algorithm for 2-
way interaction selection, we define the test statistic which reflects the frequency, Fij of the pair Xi⊗ Xj
occurring in the random forest. In particular, the probability of an interaction term occurring by random
chance is recalculated and normalized by a factor of a half. b K-way interactions, K = 4. Here, we illustrate
the tree traversal process to identify all 4-way interactions, �X4

i¼1, with each color denoting a possible
interaction path. The legend on the right shows how each interaction path results in a set of 4-way feature
interactions. In general, for any user-desired K, the k.binomialRF algorithm traverses the tree via dynamic
tree programming to identify all possible paths from the K-terminal nodes to the root, where K-terminal
nodes are all nodes K-steps away from the root node
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pK − way ¼
1

2K − 1

YK

k¼1
1 −

Ym

g¼1

P − kð Þ − g
P − kð Þ − g − 1ð Þ

1
m

� �� �� �
ð5Þ

Next, we update the hypothesis test and modify it to identify 2-way interactions for

all possible �XK
i¼1 sets.

Evaluation via simulations

To understand the strengths and limitations of the binomialRF feature selection algo-

rithm and to compare its performance with state-of-the-art methods, we conduct a var-

iety of simulations and trials against the Madelon benchmark dataset from the

University of California – Irvine (UCI), and clinical datasets from The Cancer Genome

Atlas (TCGA).

To evaluate each technique’s feature selection accuracy, we measure model size (# of

genes discovered), test error, variable precision and recall, and pure noise selection rate.

For variable precision and recall, we measure how precise the gene discoveries were

and what proportion of the seeded genes in the simulation they captured. Since preci-

sion is 1-False Discovery Rate (FDR), variable FDR is implicitly illustrated in Table 3

via the variable precision column, and states how much noise is detected on average

relative to the signal detected by the model. The pure noise statistic complements the

FDR analysis by analyzing how much pure noise the algorithm detects in absence of a

true signal. The five metrics listed above were measured using the equations below:

Model Size ¼ Genes discoveredj j; Precision ¼ TP
TP þ FP0 Recall ¼

TP
TP þ FN 0

Test Error ¼
X

i
y_i ¼ yi

� 	
; Pure Noise Selection Rate ¼ # Uninformative features

# Total features

ð6� 10Þ

These simulation scenarios generate logistically-distributed data to mimic binary clas-

sification settings in gene expression data using parameters described in Table 6: gen-

ome size = the dimension of the X matrix, a coefficient vector β that denotes the

number of genes seeded linked to the outcome, and the number of trees V grown in

the random forest. The parameters used to grow the random forests were V = 500 and

1000 trees, while the number of features selected at each split was set to the default

value of 33% (see discussion for additional sensitivity analysis experiments on this par-

ameter). The first two parameters are used to generate the design matrix XN×P, gener-

ate the binary class vector Y using a logistic regression model.

To determine the performance of binomialRF in detecting important interactions, we

conduct a simulation study with 30 total features in which we seeded 4 main effects

and all 6 possible pairwise interactions. Since the interactions have to be explicitly

multiplied in the design matrix, all techniques except binomialRF had a design matrix

with all 30þ ð302 Þ = 465 features, and the task was to detect all 6 interactions. Since

binomialRF can detect interactions from the original design matrix, we used the

Table 6 Parameters settings for the simulation study

Parameter Values

Genome size (P) 100, 500, 1000, 2000, 10,000

Genes seeded (β) 5, 25, 50, 100

Number of trees (V) 500, 1000
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original matrix with 30 variables first to identify the main effects and then a second

time to identify interactions from main effects.

To evaluate computational runtime and efficiency, we measure the theoretical and

empirical results of running the feature selection algorithms (Table 1). To measure em-

pirical runtime, 3 simulation studies were run using simulated genomes with 10, 100,

and 1000 genes, and we measured their runtime (in seconds) 500 times across each sce-

nario. Figure 1 presents the boxplot of runtimes, measured in seconds and graphed in

incremental powers of 10 (i.e., 101, 102, 103, …), to illustrate the difference in magni-

tudes. To evaluate the theoretical computational efficiency of binomialRF, we compare

the theoretical memory requirements of each method described in Table 1 to identify

interactions. Since binomialRF can detect interactions using the original design matrix,

while other techniques require explicitly mapping the gene-gene interactions, Table 2

compares the memory gain attained across genomes with 10, 100, and 1000 genes when

trying to identify 2-way and 3-way interactions.

Evaluation in UCI benchmark and TCGA clinical sets

To determine the utility of the binomialRF feature selection algorithm in translational

bioinformatics, we conduct a validation study using data from the University of Califor-

nia – Irvine machine learning repository (UCI, hereinafter) and from The Cancer Gen-

ome Atlas (TCGA; Table 7). The UCI machine learning repository contains over 480

datasets available as benchmarks for machine learning developers to test their algo-

rithms. We present results for all techniques in the Madelon dataset and illustrate their

performances using classification accuracy metrics (cases) presented above in Eqs. (6-

10). Since true variables are not known in these datasets, variable selection accuracies

are not calculated. For the TCGA datasets, we only present results for a subset of the

methods that did not encounter memory or computation issues.

We selected the TCGA breast and kidney cancers as two representative datasets with

at least 100 matched normal-tumor samples (Table 7). The data were downloaded via

the R package TCGA2STAT [54], accessed 2020/01, using R.3.5.0. Both RNA sequen-

cing datasets were normalized using RPKM [55] and matched into tumor-normal sam-

ples. With many prior studies using the TCGA datasets, our goal was to conduct a

binomialRF case study to i) confirm the clinical findings, ii) attain similar prediction

performance, and iii) evaluate qualitatively the main effect features and their prioritized

interactions. To validate the binomialRF interaction algorithm, we extend the validation

of the TCGA datasets by proposing statistical gene-gene interaction discoveries and

build a classifier from these interactions. We then evaluate their cancer relevance in

two ways: (i) a review of literature by trained curators to identify the involvement of

Table 7 TCGA validation study datasets

Description Breast cancer Kidney cancer

Cohort 194 matched tumor-normal samples 130 matched tumor-normal samples

Outcome prediction 97 tumor,
97 normal samples

65 tumor,
65 normal samples

Access TCGASTAT;;getTCGA TCGASTAT;;getTCGA
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these transcripts in cancer pathophysiology, and (ii) a comparison of transcripts with

the cancer-driving genes of the COSMIC knowledge-base [56].

binomialRF implemented as open source package

The binomialRF R package, wrapping around randomForest R package [57], is freely

available on on CRAN (stable release), with accompanying documentation and help

files while experimental updates are released on the Github repository (https://github.

com/SamirRachidZaim/binomialRF). The following repository contains all the code and

results presented in this manuscript (https://github.com/SamirRachidZaim/bino-

mialRF_simulationStudy).
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