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A B S T R A C T

The search for disease modifying therapies in Alzheimers disease (AD) has recently led to promising results
but also revealed design issues in clinical trials themselves. Of particular importance is the potential statistical
challenges that can arise when dosages change after an interim analysis, which is not uncommon in
contemporary AD trials. Following the recent Aducanumab trials, we sought to study the implications of dose
changes on the statistical power of an AD trial. We conducted extensive simulations to calculate statistical
power when the relationship between treatment effect size and time is linear or non-linear, and the investigated
drug has delayed treatment effect or not. Statistical power depends on many design factors including the dose
change time, correlation, population homogeneity, and treatment effect time. We recommend that researchers
conduct simulation studies at the interim analysis to justify the modified sample size and/or follow-up time
modification meanwhile the type I and II error rates are controlled.
1. Introduction

Clinical trial designs for disease modifying therapies (DMTs) for
Alzheimer’s disease (AD) have become increasingly complex. Several
clinical trial programs including those involving gantenerumab [1],
solanezumab (A4 study) and aducanumab (EMERGE and ENGAGE
studies) have incorporated mid-trial dose adjustments [2–4]. The Dom-
inantly Inherited Alzheimer Network-Trials Unit (DIAN-TU) reported
their first trial for patients with dominantly inherited Alzheimer’s
disease (DIAD) treated with gantenerumab or solanezumab (two anti-
amyloid monoclonal antibodies) [1]. During that trial, the doses of
both drugs were escalated. Interim analysis or new information has
led to alterations in drug dosing during the study that were not part
of the initial trial design [5,6]. Given the time frame needed to show
disease modification in AD clinical trials (usually a minimum of 18
months), and the expenses associated with such large-scale and com-
plicated studies, interim analyses [7] are often done for a number
of reasons including to: (1) gauge the likelihood of success of the
agent and (2) modify the trial if needed, including dose adjustment.
Reasons for changing the dose within a given study vary, but the rates
of adverse events and differences in rates of target engagement to
biomarker effects are often cited as rationale [8]. Equally important
as the methodological changes, particular attention must also be paid
to the potential impact of dose changes on the originally formulated
statistical plans. Failure to properly account for the effects of dose
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changes, as was seen in EMERGE/ENGAGE trials [2–4], can have far
reaching effects on study outcomes.

The Emerge and Engage phase III trials in particular point out the
difficulties with instituting dose changes during a clinical trial [4,9,10].
In the aducanumab trial, there initially were a total of three groups:
placebo, low dose, and high dose. Based on the information gathered
during the study, the low dose group had their dose increased to the
high dose. However, one of the statistical challenges raised from the
aducanumab trial was that the trial duration for participants with the
dose change remained the same as did the timing of an interim futility
analysis. While the trail was subsequently stopped for futility the final
analysis which included additional follow up showed a positive result
for the primary outcome measure in one of the two trials [11,12].

As more potential AD DMTs go into clinical trials, and often earlier
in the disease process, it is critical to develop statistical methods that
are able to adapt to the data that is collected and analyzed during the
study itself and prospectively integrate these methods at the outset.
We propose a means to calculate how the sample size or duration
of a trial could be modified in response to changes made in dosing
during a clinical trial. The purpose of this paper is to examine the
effects of dose changes on study design and power analyses and to
describe methodology for modeling dose changes. Finally, we apply our
approach to the experience of the EMERGE/ENGAGE studies [2–4] to
demonstrate the importance of correctly modeling dose changes.
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Fig. 1. Dose change flow chart.

. Methods

In this section we propose a method for modeling the effects of dose
hange on clinical trial designs. Suppose 𝑇𝑠 is the originally planned
otal follow up time, and 𝑇𝑙 is the time when a patient is switched from
ow dose to high dose, see Fig. 1. The time on high dose is 𝑇ℎ = 𝑇𝑠−𝑇𝑙.

Over the course of the trial, the accumulated total doses for patient
switched from low dose to high dose, are less than the total doses for
patients from the original high dose group because of the lower dose
from 𝑇0 (baseline) to 𝑇𝑙. The total dose difference between these two
subpopulations depends on the time of dose change 𝑇𝑙. When 𝑇𝑙 is close
to baseline, their difference becomes very small. Otherwise, 𝑇𝑙 is close
to 𝑇𝑠, and a big difference would be expected. When dose change is
scheduled to occur during an on-going trial based on the results from an
interim analysis, it is critical to understand how this dose modification
would affect the statistical power.

In reality, participants with dose changes are often included in
the high dose group because their final dose at the time of 𝑇𝑠 is
high dose [1–3,6,13]. However, including these participants in analyses
and treating them the same as those originally randomized to the
high dose group, without accounting for the lower accumulated dose,
may ultimately decrease the overall treatment effect for the high dose
group. If enough patients are changed from a low to a high dose in
a trial, the overall impact would increase the likelihood of reducing
the treatment effect and lead to the failure of an investigational new
drug. In addition, some drugs might have delayed treatment effects on
improving symptoms, delaying the onset, and slowing the progression.
Then, the treatment effect at time 𝑇𝑠 for patients with dose change
could be smaller than that for patients who are always on high dose.
Therefore, it is important to adjust the follow-up time for patients with
dose change in a study when the planned dose has been changed. This
effect may be even more pronounced for drugs that might have a de-
layed treatment effect, which could further mask the disease modifying
effects of treatment.

In accounting for mid trial dosage changes we propose extending
the follow-up time from 𝑇𝑠 to 𝑇𝑚 with additional time 𝑇𝑎 = 𝑇𝑚 − 𝑇𝑠 on
igh dose, as illustrated in Fig. 1. As mentioned above if participants
ho are switched are only analyzed at 𝑇𝑠 their cumulative treatment
xposure is lower than those on high dose the duration of the trial and
hus not comparable. The additional time 𝑇𝑎 would thus be added for
articipants who have undergone a dose change to increase their dose
xposure at time 𝑇𝑚 (blue in Fig. 2), where 𝑇𝑚 would account for the
ime on lower dose and match cumulative dose exposure to those who
ere started at the higher doses at baseline (red in Fig. 2).

Multiple other factors contribute to the estimation of treatment
2

ffect at 𝑇𝑠 for patients always on high dose, and that at 𝑇𝑚 for
Fig. 2. Treatment effect sizes for a study with or without dose change.

atients with dose change. Suppose the parameter of interest is the
hange of the primary outcome from 𝑇0 to 𝑇𝑠 in designing clinical
rials. The estimated difference between groups is the primary factor,
. Correlation between outcome at 𝑇0 and that at 𝑇𝑠, 𝑟, is another
mportant factor. Correlation affects the sample size calculation in a
efore–after study [14]. In addition, variances of outcome at baseline
nd the end are another two factors in power analysis. The estimated
alues from these four parameters are traditionally used in sample size
alculation. Suppose 𝑌0 and 𝑌𝑠 are the outcomes at 𝑇0 and 𝑇𝑠. The
ample size calculation based on the score change 𝛥 = 𝐸(𝑌𝑠 − 𝑌0) [15],
hich is presented as

=
2(𝑍1−𝛼∕2 +𝑍1−𝛽 )2𝑠2

𝛥2
,

here 𝑠2 = 𝑣𝑎𝑟(𝑌0) + 𝑣𝑎𝑟(𝑌𝑠) − 2𝑟
√

𝑣𝑎𝑟(𝑌0) × 𝑣𝑎𝑟(𝑌𝑠) is the variance of
𝑌𝑠 − 𝑌0, and 𝑍𝑏 is the 𝑏th quantile of the standard normal distribution.

Other factors could affect the statistical power, including the rela-
tionship between treatment effect and time: linear or non-linear for a
drug with delayed treatment effect, and the ratio of patients who are
always on high dose and those with dose change. Finally, the modified
time 𝑇𝑚 for patients with dose change is another factor to consider.
These factors are studied in the following section in the power analysis.

3. Numerical results

Suppose we conduct a hypothetical study with a dose change in-
corporated during the conduct of the study. In this study there are
three arms: a low dose group, a high dose group, and a placebo group.
Suppose it is a randomized balanced clinical trial with sample size of
𝑁 = 300 per group.

3.1. Model for linear relationship

The estimated mean value of the primary outcome at baseline for
the three groups is assume to be the same as 𝐸(𝑌0) = 15. For purposes of
illustration, higher scores indicate worse performance (e.g., Alzheimer’s
Disease Assessment Scale–Cognitive subscale (ADAS-Cog)). Let the
scheduled follow-up time be 𝑇𝑠 = 24 months. After 24 months, suppose
the placebo group declines by 6 points (𝐸(𝑌24) = 21), the low dose
group by 4 points (𝐸(𝑌24) = 19), and the high dose group by 2 points
(𝐸(𝑌24) = 17).

At baseline, patients are more likely to be similar across the groups.
Standard deviation (SD) at baseline is assumed to be the same for the

three group: 𝜎0 = 6. In the placebo group, the SD is assumed to be
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Fig. 3. Power of a study with dose change as a function of additional follow-up time under the assumption of linear treatment effect, when the proportion of high dose patients
is 20%, 50%, and 80%. Six correlation values are studied: 𝜌 = 0.05, 0.10, 0.15, 0.20, 0.35, and 0.55. ‘‘High’’ on the far left is for the case that all patients are in the high dose
group without any dose change.
w
(
1
d
f
𝜃
t

a
a
c
a
a

constant over the trial. In the treatment groups, however, variance in
the primary outcome could increase as time goes on. The SD value at 𝑇𝑠
is 𝜎𝑙 = 7.2 in the low dose group, and 𝜎ℎ = 7.8 in the high dose group.
Six correlation coefficients between 𝑌0 and 𝑌𝑇𝑠 are studied: 𝜌 = 0.05,
0.10, 0.15, 0.20, 0.35, and 0.55.

In Fig. 3, we present the computed statistical power for a study with
dose change as a function of the modified follow-up time under the
assumption of linear treatment effect within each group. The outcome
at time 𝑇𝑏 ∈ [0, 𝑇𝑠] is 𝐸(𝑌𝑏) = 𝐸(𝑌𝑠 − 𝑌0)∕𝑇𝑠 × 𝑇𝑏. For patients with dose
change, we assume that the change time for these patients is uniformly
distributed from baseline to 𝑇𝑠. We compute power for a study with
3 different proportions of patients who are always on high dose: 60
(20%), 150 (50%), and 240 (80%). When 80% patients are always on
high dose, the remaining 20% patients have dose change from a low
dose to a high dose during the study. The far left value (‘‘High’’ in the
x-axis) is the statistical power for comparing the placebo group with
the high dose group. In this configuration, all patients in the high dose
group received the high dose at baseline.

When the extended follow-up time is 0, this is a study that conducts
the interim analysis as originally planned. As a result, patients with
dose change do not expose to the same total dosing as those always on
high dose. We expect that the observed treatment effect size could be
smaller from patients with dose change, as compared to the original
high dose group. As the extended follow-up time increases in the dose
change group, the statistical power increases when the proportion of
patients always on high dose is not too large (e.g., 20%, 50%), and
it is close to that for a study without dose change when additional
𝑇𝑎 = 12 months are added in the follow up. Within each plot, we
observe that power of a study goes up when more patients are from the
high dose group without dose change. Between these plots, statistical
power increases as correlation goes up.

3.2. Model for delayed treatment effect

Many agents for neurodegenerative diseases may have delayed
treatment effects. This is important to account for that effect when
modeling dose changes. For this model we assumed a non-linear
relationship in the treatment group (but not in the placebo) with the
baseline value of 𝐸(𝑌0) = 22 in this subsection. In the placebo group, a
3

linear treatment effect is assumed with 𝐸(𝑌24) = 27 from 22 at baseline. c
Fig. 4. Non linear curve.

While in the two treatment groups, we assume the treatment effect
follows an exponential distribution with the rate parameter 𝜆 = 0.4,

ith the relationship between the outcome and time as: 𝑓 (𝑡, 𝜃) = 22 +
1 − exp𝜆𝑡∕10) × 𝜃, where 𝑡 is time by month, 𝜃 is a scale parameter, and
− exp𝜆𝑡∕10 is the cumulative distribution function of an exponential
istribution. The scale parameter can be determined by solving the
ollowing equation: 𝑓 (24, 𝜃) = 26.32 for the low dose group having
= −2.68, and 25.46 for the high dose group with 𝜃 = −2.15. The

hree curves are presented in Fig. 4.
In Fig. 5, we present the statistical power under the assumption of

non-linear treatment effect [1] given the proportion of patients who
re always on high dose as 60 (20%), 150 (50%), and 240 (80%). Six
orrelation values from the linear treatment effect configurations are
lso studied here. It can be seen from the figure that power increases
s the modified follow-up time goes up, and a study with a higher

orrelation often has a higher statistical power. When the extended



Contemporary Clinical Trials Communications 30 (2022) 100988G. Shan et al.

p
d

t
c
c

3

b
m
r
o

h

Fig. 5. Power of a study with dose change as a function of additional follow-up time under the assumption of non-linear treatment effect, when the proportion of high dose
atients is 20%, 50%, and 80%. Six correlation values are studied: 𝜌 = 0.05, 0.10, 0.15, 0.20, 0.35, and 0.55. ‘‘High’’ on the far left is for the case that all patients are in the high
ose group without any dose change.
ime is long enough (e.g., 12 months), power of a study with a low
orrelation could have a slight higher power than studies with higher
orrelations.

.3. Studies with different variances

Neurodegenerative diseases are multifactorial diseases that may
e effected by unaccounted for factors such as genetics, medical co-
orbidities, pharmacokinetics/dynamics likely resulting in differential

esponse rates to treatment. In Fig. 6, we set the estimated mean value
f the primary outcome at baseline for the three groups as 𝐸(𝑌0) =

22. After 24 months, suppose the placebo group declines by 6 points
(𝐸(𝑌24) = 28), the low dose group by 5 points (𝐸(𝑌24) = 27), and the
igh dose group by 4 points (𝐸(𝑌24) = 26).

In Fig. 6, we present the statistical power as a function of the ex-
tended follow-up time for studies with different variances: (𝜎0, 𝜎𝑙 , 𝜎ℎ) =
(6.0, 6.0, 6.6) for small variances, (6.0, 6.6, 7.2) for medium variances,
and (6.0, 7.8, 8.4) for large variances. As we expected, studies with
larger variances, both for the low and high dose groups, have smaller
statistical power. When the extended time increase the estimated sta-
tistical power increases. Given the proportion of participants on high
dose, a larger correlation is often associated with higher power. When
more participants on the high dose (e.g. 50% on the right plots)
additional follow up time after 3 months only slightly increases the sta-
tistical power. As the proportion of participants on high dose increases
its statistical power is much higher when Tm is short, and its advantage
goes away when the extended follow up time goes longer.

3.4. Example

If we apply the methodology we describe in the previous sections
we can begin to get a clearer picture of how the EMERGE and ENGAGE
studies [2–4] failed their futility analysis. The trials were designed
with a total of three arms: a high dose treatment arm, a low dose
treatment arm, and a placebo group. The primary outcome of the
studies was the change in Clinical Dementia Rating Scale-Sum of Boxes
(CDR-SOB) at week 78 from baseline. The CDR-SOB is a composite
index summed from six cognitive and functional domains: memory,
orientation, judgment and problem-solving, community affairs, home
4

and hobbies and personal care. The range of CDR-SOB is 0–18 with
higher scores indicating greater impairment.

For these studies the expected increase in of the CDR-SOB score
was 2 in the placebo group. The assumed baseline value was 2.45
all groups. Based on data from earlier Phase Ib studies, an increase
of 1.74 was expected in the low dose treatment arm and 1.5 in the
high dose treatment arm. The improvement of 0.5 in the high dose
group represents a 25% reduction in the primary outcome (e.g. clinical
worsening or slowed rate of decline).

In our model we apply several assumptions: variances in CDR-SOB
at baseline of 1.50 in all groups; at 78 weeks variances of 1.50 in the
placebo group, 1.55 in the low dose group, and 1.60 in the high dose
group. Correlation of CDR-SOB at baseline at week 78 is assumed to be
the same across the groups, we study four correlation coefficients: 0.05,
0.1, 0.2, 0.30, and 0.40. Suppose in the high dose group, only 60% of
participants (240 out of 400 for a study with 400 per arm) were actually
exposed to high dose from baseline to week 78.

Using a sample size of 400 per group to calculate the statistical
power in Fig. 7 with or without dose change the computed statistical
power increases as the extended follow-up time goes up. For this
particular example, power is similar to each when the extended follow
up time is 3 months or more for each configuration. Power for a study
with the extended time of 9 months is slightly below the study with
participants only on the high dose. When the correlation is 10% or
above, a study with 3 months extended time has a power above 90%.
For a study with a low correlation (e.g. 0.05) the estimated power for
a study with a dose change could be below 90% even with an extended
follow up.

4. Discussion

In this article, we evaluate the statistical power in a study with
dose increasing for one group. It is also possible in trials that the
assigned dose for one group could be changed to a lower level due to
the concerns from the trial (e.g., side effects). In general, a lower dose
is often associated with a lower rate of incidences. For a study with
more than 2 treatment groups, dose changes could happen in multiple
groups based on the results from interim analysis to increase the success
rate of the on-going trial [16–18]. We would recommend researchers

conduct sufficient enough simulation studies to justify the sample size
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Fig. 6. Power of a study with dose change as a function of additional follow-up time under the assumption of linear treatment effect when 𝜌 = 0.1 on the first row and 0.2 on
the second row, for (𝜎0 , 𝜎𝑙 , 𝜎ℎ) = (6.0, 6.0, 6.6) for small variances, (6.0, 6.6, 7.2) for medium variances, and (6.0, 7.8, 8.4) for large variances. ‘‘High’’ on the far left is for the case
that all patients are in the high dose group without any dose change.
Fig. 7. Example from the aducanumab trial using the CDR-SB score. ‘‘High’’ on the
far left is for the case that all patients are in the high dose group without any dose
change.

and/or follow-up time modification meanwhile the type I and II error
rates are controlled.

EMERGE and ENGAGE were identical Phase III studies looking at
the potential disease modifying effects of the monoclonal antibody
aducanumab in individuals with early AD [2–4,19,20]. The trials were
designed with a total of three arms: a high dose treatment arm, a low
dose treatment arm, and a placebo group. Within each treatment arm
there were a total of two possible doses—6 mg/kg or 10 mg/kg in
the high dose and 4 mg or 6 mg in the low dose treatment arm [21].
To avoid a common dose-related side effect known more frequently
seen in individuals with the APOE E4 genotype, the dose in the high
dose treatment group was initially limited to 6 mg/kg in E4 carriers.
When it became clear that the incidence of symptomatic ARIA remained
low, a protocol amendment allowed for all high dose participants to be
titrated to 10 mg/kg. Despite this dose adjustment, no changes were
made to the follow up time and the interim analysis plan remained
unchanged. At the scheduled interim analysis, both trials appeared
headed for failure and stopped for futility [22,23].
5

Clinical trials of disease modifying agents in AD often span over a
number of years due to the time it takes to enroll study participants
and the duration of these studies [24–26]. During that time, new
information and data may become available to the study investigators
which would influence the decision on optimum drug dosing or sample
size in the study. However, introducing protocol changes during the
study that were not pre-planned raise the possibility of ending up with
a type II error and discarding a potentially useful treatment.
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