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Abstract: Contact lenses are widely prescribed for vision correction, and as such they are an
attractive platform for drug delivery to the anterior segment of the eye. This manuscript explores a
novel strategy to drive the reversible adsorption of peptide-based therapeutics using commercially
available contact lenses. To accomplish this, thermo-sensitive elastin-like polypeptides (ELPs) alone
or tagged with a candidate ocular therapeutic were characterized. For the first time, this manuscript
demonstrates that Proclear CompatiblesTM contact lenses are a suitable platform for ELP adsorption.
Two rhodamine-labelled ELPs, V96 (thermo-sensitive) and S96 (thermo-insensitive), were employed to
test temperature-dependent association to the contact lenses. During long-term release into solution,
ELP coacervation significantly modulated the release profile whereby more than 80% of loaded V96
retained with a terminal half-life of ~4 months, which was only 1–4 days under solubilizing conditions.
A selected ocular therapeutic candidate lacritin-V96 fusion (LV96), either free or lens-bound LV96,
was successfully transferred to HCE-T cells. These data suggest that ELPs may be useful to control
loading or release from certain formulations of contact lenses and present a potential for this platform
to deliver a biologically active peptide to the ocular surface via contact lenses.
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1. Introduction

As growth factors and peptides derived from the tear proteome are explored as novel therapies
for the anterior segment [1], it may be worthwhile to explore new drug delivery platforms that can be
integrated with contact lenses [2]. New platforms may benefit from being biocompatible, biodegradable,
and compatible with existing medical devices [3]. One such platform explored by our group and
others are the elastin-like polypeptides (ELPs) [4]. ELPs are composed of repeated pentameric peptides,
(Val-Pro-Gly-Xaa-Gly)n. They reversibly phase separate from aqueous solution above a transition
temperature (Tt) which can be tuned by adjusting the identity of a guest amino acid (Xaa) and the
length (n) [5]. Like parent ELPs, ELP fusion proteins ‘coacervate’ above Tt; furthermore, this assembly
process can functionalize pharmacologically drug carriers [6] or imaging probes [7]. Our group
previously demonstrated the encapsulation [8] and fusion [9] ability of thermo-responsive elastin-like
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polypeptides (ELPs) carrying either small molecules or protein treatments to ocular tissue. Now, this
manuscript reports the surprising discovery that ELPs significantly attach and dramatically extend
release from a commercially available contact lens, Proclear CompatiblesTM. Using this discovery, two
hypotheses were tested: 1) coacervation enhances attachment and slows the detachment of ELPs to
and from contact lens; 2) ELP fusions with a biologically active peptide can transfer proteins from
the lens to a cell-culture model of the corneal epithelium. By involving two types of ELPs, V96
(thermo-sensitive) and S96 (thermo-insensitive), the data show that the attachment and release of ELPs
to contact lenses is both ELP and incubation temperature dependent. As a proof of the concept that
ELPs can deliver a fusion protein, we modified the lens with a prosecretory mitogenic fusion called
LV96 and demonstrated that the proximity between the LV96 on the contact lens enhances transfer to
cultured human corneal epithelial cells.

2. Materials and Methods

2.1. Synthesis, Expression and Purification of ELPs

cDNAs encoding either ELPs V96, S96, or LV96 were cloned into the pET-25b(+) vector that was
originally purchased from Novagen (#69753, Madison, WI, USA) and further modified for ELP or ELP
fusion cloning [10]. The cloned constructs were sequenced, transformed into and expressed in BLR(DE3)
competent Escherichia Coli (E. Coli) (#69053, Novagen, Madison, WI, USA). For V96 and S96, both were
fermented in terrific broth media for 16–18 h at 37 ◦C without isopropyl β-D-1-thiogalactopyranoside
(IPTG). For LV96, it was fermented in terrific broth media for 4 h at 37 ◦C followed by 0.5 mM IPTG
induction. The temperature was immediately decreased to 25–30 ◦C and it was fermented for another
5–6 h. For all ELPs, the supernatant was subjected to ELP-mediated phase separation in 2 M sodium
chloride at 37 ◦C after bacterial cell lysis and clarification of cell debris by centrifugation. Coacervates
were immediately pelleted after the phase separation was observed (hot-spin). After centrifugation,
soluble impurities (supernatant) were removed and coacervates (pellet) were resolubilized in clean
ice-cold phosphate buffered saline (PBS). Thoroughly resolubilized ELPs were centrifuged to remove
any insoluble impurities (cold-spin). After the cold-spin, the supernatant was transferred to a clean
tube. Cycles of hot-spin followed by cold-spin were repeated 3 times to achieve the necessary purity.
LV96 was further subjected to size exclusion chromatography to remove the cleaved byproduct.

2.2. ELPs Inverse Phase Transition Characterization

The Tt-concentration phase diagrams for rhodamine-labeled ELPs or ELP fusion proteins
were characterized by optical density observation at 350 nm (OD 350nm) using a DU800 UV–Vis
spectrophotometer (Beckman Coulter, CA, USA) as a function of solution temperature. Different
concentrations of ELPs (5, 10, 25, 50, and 100 µM) were heated at 1 ◦C/min from 10 to 85 ◦C and OD
350 nm was recorded every 0.3 ◦C. Tt was defined at the point of the maximum first derivative. The Tt

from each concentration was used to plot the phase diagram and fit with Equation 1.

Tt = b−m log10[CELP] (1)

2.3. Rhodamine Labeling of V96, S96 and LV96, and Decoration of Proclear CompatiblesTM Contact Lenses

ELPs were covalently modified with N-hydroxysuccinimide (NHS)-Rhodamine (Thermo Fisher
Scientific Inc, Rockford, IL, USA). The conjugation was performed in 100 mM borate buffer (pH 8.5)
overnight at 4 ◦C to covalently conjugate amine reactive NHS-esters to the primary amine at the ELP
amino terminus. Excess fluorophore was removed using a desalting PD-10 column (GE Healthcare,
Piscataway, NJ, USA) and overnight dialysis against PBS at 4 ◦C. For the initial screening study,
contact lenses were either incubated with 50 µM labeled ELPs overnight at 37 ◦C in a 24-well plate or
spot-decorated with concentrated, labeled ELPs using a 20-µL pipette at 37 ◦C. Proclear CompatiblesTM

contact lenses (CooperVision, Inc., Lake Forest, CA, USA) were incubated in 100 µM rhodamine-labeled
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V96 or S96 for 48 h at 4 or 37 ◦C. After a gentle rinse with ddH2O at 4 or 37 ◦C, contact lenses were
immediately imaged using Zeiss 510 confocal laser scanning microscopy (Carl Zeiss AG, Oberkochen,
Germany), respectively at 37 or at 4 ◦C, and quantified using ImageJ. Decoration of LV96 onto contact
lenses in a ring shape was achieved by overnight incubation of 50 µM rhodamine-labeled LV96 with
Proclear CompatiblesTM contact lens at 37 ◦C followed by washing off LV96 attached at the center of
the lens using ice-cold PBS and pipetting out.

2.4. Characterization of Release Kinetics of ELPs from Proclear CompatiblesTM Contact Lenses

Contact lenses were incubated in 100 µM rhodamine-labeled V96 or S96 for 24 h at 4 ◦C or 37 ◦C.
After one gentle rinse with PBS at 4 or 37 ◦C, contact lenses were immediately placed into 4 mL of PBS
at 4 or 37 ◦C for 1 week. Small aliquots of the solution (100 µL) were withdrawn at predetermined
intervals (5, 15, 30 min, 1, 2, 4, 8, 24, 48, 72, 96, 120, 168 h) and kept at −20 ◦C. After one week, lenses
were thoroughly washed in PBS at 4 ◦C for 24 h to detach ELPs. Fluorescence intensity of collected
samples was measured spectrophotometrically (Ex: 525 nm, Em: 575 nm) using a Synergy™ H1m
Monochromator-Based Multi-Mode Microplate Reader (BioTek Instruments, Inc., Winooski, VT, USA)
and analyzed using built-in Gen5 2.01 Data Analysis Software (BioTek). Total fluorescence on the lens
was calculated using Equation 2. Since the measurement of the contact lens-bound fraction at each
time point was distorted due to the convex shape of the contact lenses, the percent of retention on
the lens was defined at each time point using Equation 3. Using GraphPad Prism (Prism Software,
Irvine, CA, USA), these retention data failed to fit one-phase dissociation model; however, a two-phase
dissociation model (Equation 4) fit well to the observed profiles. Goodness of fit and predicted values
are reported.

Total Irhodamine = Irelease_Total + Iwash_Total (2)

Retention(t) =
Total Irhodamine −

∑t
t=0 Irelease_t

Total Irhodamine
× 100% (3)

Retention(t) = Percent f ast e−k f astt +
(
100− Percent f ast

)
e−kslowt (4)

AUC0−In f inity = AUC0−168h + %last/kslow (5)

2.5. Human Corneal Epithelial Cells-Transformed with SV40 (HCE-T) Uptake Study

HCE-T cellular uptake was conducted on 35-mm glass coverslip-bottomed dishes. Briefly, HCE-T
cells were grown to 70–80% confluence and gently rinsed with warm fresh medium before changing
to fresh media containing either rhodamine-labeled lacritin (10 µM, protein concentration), LV96
(10 µM) or contact lenses loaded with rhodamine-labeled LV96. After incubation at 37 ◦C for 1 h,
cells were rinsed with fresh media, incubated with 4′,6-diamidino-2-phenylindole (DAPI) for 15 min
to stain nuclei, and then imaged using a Zeiss 510 confocal microscope system (Carl Zeiss AG,
Oberkochen, Germany) with quantification by ImageJ (National Institutes of Health, Bethesda, MD,
USA). To evaluate the transfer of contact lens-bound LV96 to the monolayer of HCE-T cells, images
from different zones were directly obtained at the edge of the lens where the highest likelihood of
direct contact between the lens and the monolayer occurred.

2.6. Statistical Analysis

All experiments were repeated at least three times. Statistical analysis was performed by Student’s
t-test or one-way ANOVA followed by Tukey’s post-hoc test using statistical software IBM SPSS Statistics
v21 (IBM Corp., Armonk, NY, USA). A p value of less than 0.05 was considered statistically significant.
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3. Results

3.1. Expression and Purification of ELPs

All ELPs involved in this study, V96, S96, and LV96, were heterologously expressed from a
seamlessly cloned synthetic gene in E. coli (Table 1). Purification was done via inverse transition
cycling [10], which is a non-chromatographic purification method that utilizes ELP-mediated
phase separation from clarified bacterial lysates supplemented with 1~2 M NaCl to induce phase
separation [11]. The final material after purification yielded ~90 mg/L of V96, ~40 mg/L of S96,
and ~10 mg/L of LV96 with > 98% purity, as verified by SDS-PAGE (Figure 1A). The precise determination
of molecular weight by MALDI-TOF for V96, S96, and LV96 was reported previously [10,12].
To determine the Tt of ELPs, optical density at 350 nm over a range of temperatures was measured
(Figure 1B). All ELPs tested showed a negative correlation between the Tt and the ELP concentration [13],
and the phase diagram was fit by Equation 1 (Table 1).

Table 1. Summary of the elastin-like polypeptides (ELPs) involved in this study.

Label
Amino Acid
Composition *MW (kDa)

Tt (◦C) at
25 µM

Phase Diagram

Slope, m
[◦C/log10(µM)]

y-intercept,
b [◦C]

S96 G(VPGSG)96Y 38.4 57.6 −1.669 59.31
V96 G(VPGVG)96Y 39.5 31.6 −3.252 36.06

LV96 **Lacritin-G(VPGVG)96Y 52.3 26.8 −1.192 28.56

*MW determined by MALDI-TOF analysis. **Lacritin (12.7 kDa) amino acid sequence:
EDASSDSTGADPAQEAGTSKPNEEISGPAEPASPPETTTTAQETSAAAVQGTAKVTSSRQELNPLKSIVEKSILLTE
QALAKAGKGMHGGVPGGKQFIENGSEFAQKLLKKFSLLKPWA.
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Figure 1. The purity, size, and temperature-dependent phase behavior of V96, S96, and LV96 evaluated
for this study. (A) Identity and purity of V96, S96 and LV96 were analyzed by SDS-PAGE using
Coomassie blue staining. (B) The phase transition temperature was plotted vs. concentration as a phase
diagram, below which ELPs remains soluble, and fit with Equation 1. Solid line: Fit; Dashed line: 95%
confidence interval of mean.

3.2. ELPs Display Differential Attachment to Commercially Available Contact Lenses

Discovery of ELPs’ attachment to contact lenses came from a quick screen of four commonly
marketed contact lenses, including Acuvue Oasys®, Acuvue Advance Plus®, Dailies AquaComfort
PlusTM and Proclear CompatiblesTM (Table 2). Surprisingly, rhodamine-labeled V96 selectively attached
to Proclear CompatiblesTM contact lenses at 37 ◦C after overnight incubation in PBS solution. This
attachment remained stable at 37 ◦C in PBS solution for more than 24 h (Figure 2A). Motivated by
the rationale that the delivery system itself should not scatter light within the central visual field,
we investigated whether it was possible to arrange the ELP only around the periphery of the contact
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lens using a cold wash. Interestingly, by controlling the location of cold washing and warm spotting,
the final deposition pattern on the lens could be controlled (Figure 2B).

Table 2. Summary of the contact lenses involved in this study.

Brand Name Manufacturer Polymer Monomer ELP Attachment

Proclear
CompatiblesTM CooperVision Omafilcon A pHEMA/PC +

Dailies
AquaComfort

PlusTM
CIBA Vision Nelfilcon A HPMC/PEG/PVA −

Acuvue Oasys® Johnson & Johnson Senofilcon A

pHEMA + DMA +
mPDMS + siloxane

macromer +
TEGDMA + PVP

−

Acuvue Advanced
Plus® Johnson & Johnson Galyfilcon A

pHEMA + DMA +
mPDMS + siloxane

macromer +
EGDMA + PVP

−

pHEMA: poly(hydroxyethyl methacrylate); HPMC: Hydroxypropyl methylcellulose; PC: phosphorylcholine;
mPDMS: monofunctional poly(dimethylsiloxane); DMA: N,N-dimethylacrylamide; EGDMA: ethyleneglycol
dimethacrylate; TEGDMA: tetraethyleneglycol dimethacrylate; PVP: poly(vinyl pyrrolidone); PVA: poly(vinyl
alcohol); PEG: poly(ethylene glycol).

Pharmaceutics 2019, 11, x 5 of 13 

 

of the contact lens using a cold wash. Interestingly, by controlling the location of cold washing and 

warm spotting, the final deposition pattern on the lens could be controlled (Figure 2B). 

Table 2. Summary of the contact lenses involved in this study. 

Brand Name Manufacturer Polymer Monomer 
ELP 

Attachment 

Proclear 

CompatiblesTM 
CooperVision 

Omafilcon 

A 
pHEMA/PC + 

Dailies 

AquaComfort 

PlusTM 

CIBA Vision 
Nelfilcon 

A 
HPMC/PEG/PVA − 

Acuvue Oasys® 
Johnson & 

Johnson 

Senofilcon 

A 

pHEMA + DMA + mPDMS + 

siloxane macromer + TEGDMA 

+ PVP 

− 

Acuvue 

Advanced Plus® 

Johnson & 

Johnson 

Galyfilcon 

A 

pHEMA + DMA + mPDMS + 

siloxane macromer + EGDMA + 

PVP 

− 

pHEMA: poly(hydroxyethyl methacrylate); HPMC: Hydroxypropyl methylcellulose; PC: phosphorylcholine; 

mPDMS: monofunctional poly(dimethylsiloxane); DMA: N,N-dimethylacrylamide; EGDMA: ethyleneglycol 

dimethacrylate; TEGDMA: tetraethyleneglycol dimethacrylate; PVP: poly(vinyl pyrrolidone); PVA: poly(vinyl 

alcohol); PEG: poly(ethylene glycol). 

 

Figure 2. ELP selectively phase separate onto Proclear compatiblesTM contact lens. (A) Among four 

types of contact lenses tested, rhodamine-labeled V96 preferentially phase separated onto Proclear 

compatiblesTM contact lens. 1: Proclear compatiblesTM; 2: Dailies AquaComfort PlusTM; 3: Acuvue 

OASYS® ; 4: Acuvue Advance Plus® . Label buffer: 50 µM rhodamine-labeled V96 in PBS; Wash buffer: 

ddH2O used for gentle wash after contact lens incubation with label buffer. White circles: each well in 

12-well plate; yellow circles: contact lens in the well. (B) Different spatial deposition patterns for 

rhodamine-labelled V96 on Proclear compatiblesTM contact lens were evaluated. The entire lens can 

be labeled during complete immersion in a warm solution (immersion), the central field can be 

depleted by a cold PBS wash (cold wash), or individual positions can be labeled by warm pipet 

spotting. Upper: white light; lower: fluorescence. 

Label buffer

Wash buffer 

V96 loaded

Contact lens in 
PBS after wash

1 2 3 4A

B
Immersion Cold Wash Warm spotted

Figure 2. ELP selectively phase separate onto Proclear compatiblesTM contact lens. (A) Among four
types of contact lenses tested, rhodamine-labeled V96 preferentially phase separated onto Proclear
compatiblesTM contact lens. 1: Proclear compatiblesTM; 2: Dailies AquaComfort PlusTM; 3: Acuvue
OASYS®; 4: Acuvue Advance Plus®. Label buffer: 50 µM rhodamine-labeled V96 in PBS; Wash buffer:
ddH2O used for gentle wash after contact lens incubation with label buffer. White circles: each well
in 12-well plate; yellow circles: contact lens in the well. (B) Different spatial deposition patterns for
rhodamine-labelled V96 on Proclear compatiblesTM contact lens were evaluated. The entire lens can be
labeled during complete immersion in a warm solution (immersion), the central field can be depleted
by a cold PBS wash (cold wash), or individual positions can be labeled by warm pipet spotting. Upper:
white light; lower: fluorescence.
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3.3. ELP-Mediated Phase Separation Enhances Attachment to Proclear CompatiblesTM

To test whether V96 attachment is due to coacervation of V96 at 37 ◦C, lenses were visualized
following overnight V96 incubation at 37 ◦C (above Tt) or 4 ◦C (below Tt). There was a striking and
significant difference in V96 deposition in response to coacervation (Figure 3A). Contact lenses were
then incubated with V96 at 37 ◦C overnight and cut into halves. The first half was incubated at 4 ◦C and
the second half was incubated at 37 ◦C. Incubation at 4 ◦C resulted in rapid dissociation of V96, whereas
V96 was retained at 37 ◦C (Figure 3B). To test the effects of Tt and incubation temperature on ELPs’
affinity to contact lenses, V96 (Tt = 29.6 ◦C, 100 µM, Equation 1) was compared to a heat-insensitive
control S96 (Tt = 60.0 ◦C, 100 µM, Equation 1). After 24 h incubation, total attachment of V96 at 37 ◦C
was about 5-fold higher than that of S96 at 37 ◦C; and 59-fold higher than that of V96 at 4 ◦C and 8-fold
higher than that of S96 at 4 ◦C (Figure 3C,D). The contact lens association with S96 at 37 ◦C, V96 at
4 ◦C, and S96 at 4 ◦C did not differ significantly from each other (p > 0.50). The difference in contact
lens association between V96 and S96 at 37 ◦C was confirmed using confocal microscopy (Figure 3E).
Heat-insensitive S96 washed away immediately prior to imaging. However, V96 coacervates decorated
the lens uniformly, even after 3 days of incubation at 37 ◦C (Figure 3E). Although the specific biophysical
interactions between ELPs and contact lenses remains to be explored, the ProClear lens composition
(Table 2) clearly demonstrated both a non-specific association with S96 and a coacervate-dependent
association with V96 when incubated above its transition temperature.
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Figure 3. Coacervation of a temperature-responsive ELP enhances loading onto Proclear CompatiblesTM

contact lenses. (A) Contact lenses were loaded overnight at 4 or 37 ◦C with rhodamine-labeled V96
(100 µM) and imaged side by side using confocal microscopy. Each lens’ location is depicted by yellow
lines upon the differential interference contrast (DIC) channel. (B) A contact lens loaded with V96
(100 µM) at 37 ◦C was cut into halves and incubated at 4 or 37 ◦C in ddH2O overnight. Side-by-side
confocal microscopy shows that the half incubated at 37 ◦C retains most of the V96 label. (C) Shown
are representative pictures of lenses loaded with rhodamine-labeled V96 or S96 at 37 or 4 ◦C for 24 h
and washed. (D) Total fluorescence intensity associated with lenses loaded overnight with V96 or
S96 at different incubation temperature. Mean ± SD, N = 3, ****p < 0.0001. Significant differences
between: V96_37 ◦C vs. V96_4 ◦C (p = 0.00004); V96_37 ◦C vs. S96_37 ◦C (p = 0.0002); V96_37 ◦C
vs. S96_4 ◦C (p = 0.00009). (E) Confocal microscopy was used to observe lenses incubated overnight
with rhodamine-labeled S96 and V96 at 37 ◦C and gently washed. Even after 3 days at 37 ◦C, the V96
remained associated with the lens. Scale bar: 50 µm.

3.4. Coacervation Prolongs the Retention of ELPs on Proclear CompatiblesTM Contact Lenses

Having demonstrated that ELP phase separation enhances loading of V96, the retention of ELPs
was explored following washing. Five groups were evaluated for the retention of rhodamine-labeled



Pharmaceutics 2019, 11, 221 7 of 13

ELPs and lenses: group 1) load V96 at 37 ◦C and retention at 37 ◦C (V96_37 ◦C→ 37 ◦C); group 2) load
V96 at 37 ◦C and retention at 4 ◦C (V96_37 ◦C→ 4 ◦C); group 3) load V96 at 4 ◦C and retention at 4 ◦C
(V96_4 ◦C→ 4◦C); group 4) load S96 at 37 ◦C and retention at 37 ◦C (S96_37 ◦C→ 37 ◦C); group 5)
load S96 at 4 ◦C and retention at 4 ◦C (S96_4 ◦C→ 4 ◦C). After one week of lens retention testing in
PBS, group 1 (V96_37 ◦C→ 37 ◦C) retained ~ 80% of the initial fluorescence, that was mostly lost from
all others (Figure 4A,B). Groups 3, 4, and 5 showed similar retention profiles, while group 2 lost ~
75% of initial signal during the first 24 h. When both incubation and retention temperatures were
below Tt, little difference was observed in either total fluorescence loaded (Figure 3D) or retention
(groups 3, 4, and 5). The relationship between ELP retention and coacervation is most evident by
comparison of groups 1 and 2. To understand retention kinetics, we attempted to fit each dataset first
by a one-phase and then by a two-phase decay model. The two-phase disassociation model was best
(p < 0.0001) and was applied to the estimation of the terminal half-life and percentage of material lost
to washing through fast release (Table 3). Most notably, the area under the curve (AUC) of group 1
during a one-week period (AUC0-120) was about 4-fold higher than group 2, 2-fold higher than group
3, 3-fold higher than group 4, and 2-fold higher than group 5. The extrapolated total AUC (AUC0-Inf)
for group 1 was about 119-fold higher than group 2, 45-fold higher than group 3, 55-fold higher than
group 4, and 44-fold higher for group 5.
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Figure 4. ELP retention on Proclear CompatiblesTM lenses depends on ELP Tt and incubation
temperature. (A) Release profiles of group 1 (V96_37 ◦C → 37 ◦C), group 2 (V96_37 ◦C → 4 ◦C),
and group 3 (V96_4 ◦C → 4 ◦C) were shown. (B) Release profiles of group 4 (S96_37 ◦C → 37 ◦C)
and group 5 (V96_4 ◦C→ 4 ◦C) were shown. Small aliquots of the incubation solution were sampled
over time and the fluorescence intensity of these samples were measured to estimate lens retention
(Equation 3). Lines joining data points represent a best-fit to a biexponential decay model (Equation 4).
Mean ± SD, N = 3.

Table 3. Release kinetics of ELPs from Proclear CompatiblesTM contact lenses.

Parameters Group 1 Group 2 Group 3 Group 4 Group 5

ELP V96 V96 V96 S96 S96
Label Temp (◦C) 37 37 4 37 4

Release Temp (◦C) 37 4 4 37 4

Percent Fast (%) 16.8
(15.6~18.0)

75.0
(63.7~86.2)

35.1
(27.9~42.2)

63.3
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kfast (h−1) 2.9 (2.0~3.9) 0.1 (0.06~0.2) 3.3 (0.0~6.7) 3.4 (2.0~4.7) 2.4 (1.4~3.7)
t1/2,fast (h) 0.2 (0.18~0.35) 5.8 (4.0~10.9) 0.2 (0.1~inf.) 0.2 (0.1~0.3) 0.3 (0.2~0.5)

kslow (h−1)
0.0002

(0.0~0.0004)
0.009

(0.004~0.01)
0.007

(0.005~0.009)
0.005

(0.003~0.007)
0.006

(0.005~0.007)

t1/2,slow (h) 4615
(1815~inf.)

78.3
(49.8~183.7)

96.2
(76.9~128.4)

137.1
(101.6~210.7)

112.5
(95.9~136.0)

AUC0-120h 9938 2565 5156 3245 4660
AUC0-Inf 418564 3525 9302 7608 9436

R2 0.89 0.88 0.81 0.82 0.93

Fast and slow represent the fast and slow exponential decay phase in the two-phase dissociation (decay) model,
respectively. Values indicate the mean (95% CI).
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3.5. Co-Incubation of LV96 with Proclear CompatiblesTM Enables Transfer to Cultured HCE-T Cells

To explore cellular delivery from ELP-loaded contact lenses, lacritin, an abundant protein from
normal human tears [14], was selected. Topical lacritin, including lacritin-ELP [12,15], promotes basal
tearing and corneal wound repair in rabbit and mouse models [15] which makes it a potential treatment
for dry eye disease and cornea wound healing. We first added rhodamine-labeled lacrtin-V96 (LV96) or
recombinant lacritin (Lacrt) to HCE-T cells (Figure 5A). After 60 min, high levels of rhodamine-labeled
lacritin had become internalized, whereas LV96 remained associated with the cell surface in lower
relative amounts (Figure 5B). Accordingly, the average nuclei to closest rhodamine pixel distance was
significantly greater for LV96 versus recombinant lacritin after both 10 and 60 min (Figure 5C), possibly
due to steric hindrance with lacritin ligand syndecan-1 [16] on the cell surface and/or with endocytic
machinery. These observations are in accordance with our previous report of comparably low cellular
targeting and delay on cellular uptake of LV96 compared to Lacrt, mainly due to the fusion of V96
and its ability to coacervate at 37 ◦C [12]. Nonetheless, evidence of LV96 cell targeting was clearly
apparent. We next tested delivery from LV96-decorated contact lenses in which rhodamine-labeled
LV96 was restricted to a peripheral ring. HCE-T cells growing directly under (zone 1), adjacent (zone 2)
or outside (zone 3) the ring were scrutinized after one hour (Figure 6A). Most zone 1 cells were covered
with LV96, versus progressively less coverage of zones 2 and 3 cells (Figure 6B) with zone 3 showing
negligible targeting and uptake (Figure 6C).
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Figure 5. HCE-T cells associate with both recombinant Lacritin (Lacrt) and a Lacritin-V96 fusion (LV96).
(A) Representative pictures showing live-HCE-T cell targeting and uptake of 10 µM rhodamine-labeled
lacritin (Lacrt) or LV96 over 1 h at 37 ◦C in complete media. Red: rhodamine-labeled Lacrt or LV96; Blue:
DAPI-stained nuclei. Bar = 10 µm. (B,C) Image analysis was used to quantify (B) integrated intensity
per cell and (C) average distance to the nucleus of LV96 vs. Lacrt. Mean ± SD, N = 9 measurements,
****p < 0.0001.
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Figure 6. Spatial proximity is required for the efficient transfer of LV96 from Proclear CompatiblesTM

contact lenses to cultured HCE-T cells. (A) Cartoon showing contact lens loaded with a ring pattern of
LV96 with three zones indicated: 1) under the lens; 2) at the edge of the lens, and 3) distal to the lens. (B)
Confocal imaging was performed to confirm the location of the rhodamine-labeled LV96 bound to a lens
above cultured HCE-T cells, which were incubated for 1 h at 37 ◦C in complete media. Bar = 100 µm.
(C) High magnification images show efficient association of rhodamine-labeled LV96 with cultured
HCE-T cells in zones 1 and 2. In zone 3, less labeling was apparent. Red: rhodamine-labeled LV96;
Blue: DAPI-stained nuclei. Bar = 10 µm. Images shown are representative from at least three
independent experiments.

4. Discussion

Drugs delivered by drops on the eye can suffer from an inefficient pharmacokinetic profile
beginning with an initial transient overdose, followed by a prolonged period of drug insufficiency [17],
further diminished by blinking, reflex tearing, and nasolacrimal system drainage. Only 1~7% by volume
generally targets the eye [18]. Emerging drug delivery systems include: ophthalmic ointments, viscous
polymer vehicles, nanoparticles, in situ gel-forming systems, iontophoresis, and modified punctal
plugs [19–21]. Problems include the lack of optically transparency, instability, difficulty inserting and
discomfort [22]. Druggable contact lenses offer an attractive alternative [23] as they are conceptually
simple, and should not impair vision [24]. Strategies include simple immersion in drug [25,26],
inclusion of drug-loaded colloidal nanoparticles [27,28] and molecular imprinting [29] with a focus on
small molecule therapeutics, including cyclosporine A [30], timolol [31,32] and Latanoprost [33]. Also,
adipose-derived stem-cells loaded contact lens were tested for the treatment of acute alkaline burns [34].
In general, none have succeeded in exerting full spatiotemporal control over drug delivery towards
eliminating a drug bolus on application, and consequential side effects. Further, none have successfully
developed a method to slowly deliver protein therapeutics [35,36], which is more challenging due
to steric hindrance and complex template design. ELP fusion proteins offer a solution, and custom
contact lenses are not required. We report here the selective adsorption of thermo-responsive ELPs to
a commercially available contact lens, elucidate the Tt dependence for attachment and detachment,
and we further showed proof of the concept by the spatiotemporal delivery of model ocular protein
drug lacritin via contact lens to HCE-T cells. Although ELP-contact lens delivery systems have not
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met the desirable zero-order release, 80% retention (group 1: V96_37 ◦C→ 37 ◦C) after initial release
may provide a way to maintain therapeutic dose for an extended time on the ocular surface that
can overcome short half-lives, low tear bioavailability, and prolonged sub-therapeutic concentrations
accompanying eye drop instillation. In addition, by changing the ELP composition and raising its
transition temperature closer to that at the ocular surface, future studies may show that it is possible to
titrate the rate of release necessary for optimal therapy.

The core questions that have to be answered would be the mechanism behind ELP-contact lens
adsorption that is uniquely observed with Proclear CompatiblesTM and further stabilization of ELP
adsorption upon coacervation. As can be seen from the S96 association with the lenses, even below
their transition temperature (Tt), ELPs nonspecifically adsorb to ProClear contact lenses. Upon an
increase in temperature, we hypothesize that adsorbed ELPs nucleate coacervation, which recruits
additional ELPs from solution. The exact interaction that leads to the adsorption of ELPs to ProClear
remains unknown. Electrostatic interactions are ruled out because neither the ELP nor the ProClear
formulation contain excess charged groups. Van-der Waals interactions are possible between the
hydrophobic moiety on the abundant Valine residues on the ELP and hydrophobic groups on the
ProClear formulation. A third possibility is that hydrogen bonding may play an important role for
this adsorption. Two representative biopolymer modalities used to study temperature-dependent
phase transition behavior are ELPs and Poly(N-isopropylacrylamide) (PNIPAM) [37]. Both polymers
undergo coacervation above their transition temperature (Tt). During coacervation, highly unordered
PNIPAM remains unordered with negligible amount of additional hydrogen bond formation [38];
however, highly unordered ELPs are thought to form more ordered structure (type II β-turns, β-spirals,
or distorted β-sheets) that nucleate the growth of coacervate phases [39]. This process involves the
formation of a hydrogen bond called ‘1–4 hydrogen bond’ (C=O of the first residue (valine) and
the NH of the fourth residue (guest residue)) within the ELP pentapeptide [40]. We propose that
these abundant hydrogen bonds may participate in hydrogen bonding with organic phosphates on
the phosphorylcholine (PC)-coated contact lens [41]. Given that every ELP pentamer forms one
additional hydrogen bond upon coacervation, and each ELP contains 96 pentameric units, even small
contributions from these hydrogen bonds to phosphate-mediated hydrogen bonding between ELP
coacervates and contact lens may promote ELP adsorption and coacervation. It should be emphasized
that the adsorption of V96 coacervates to the contact lens does not indicate this particular brand is
sub-optimal in preventing protein adsorption because ELPs and their coacervates do not have the
amino acid compositions, biophysical properties, or affinity for typical proteins [42]. Given that only
Proclear CompatiblesTM contains phosphorylcholine on the contact lens surface among those tested,
further investigations comparing the adsorption of ELP coacervates to pHEMA vs. pHEMA+PC may
give more insights towards the molecular bonding that links ELPs to this formulation of lenses.

Several aspects have to be considered when using ELP coacervates on the lens for future therapeutic
purposes. First, the presence of the ELP layer may alter O2 permeability which may lead to insufficient
oxygen supply to the cornea surface. Second, ELP coacervates may affect visual acuity. These possible
limitations can be solved by loading ELP coacervates in a defined region, e.g., on the edge of the ring
(Figures 2 and 6). This may guarantee sufficient oxygen supply to the cornea surface with clear vision,
while ELP drugs diffuse into the cornea surface.

The delivery of therapeutic ELP fusion proteins to the ocular system and its compatibility,
biodistribution, or therapeutic efficacy were studied by us and other groups. Examples include
the delivery of intravitreal αB crystallin ELP fusion to a mouse model of age-related macular
degeneration [43], topical lacritin-ELP as an eyedrop for healing of mouse corneal wound model [44],
intravitreal injection of poly(VPAVG) particles to a normal rabbit model [45], and cell-penetrating
peptide ELP fusions to a normal rabbit model [46]. As these modalities have shown ELPs as a highly
promising ocular drug delivery platform, it is necessary to have a unique set of evidence that the
delivery of ELPs or ELP fusions can be rerouted to the ocular system via contact lenses in a more
hassle-free fashion.
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Different from other reported contact lens-mediated drug delivery systems, our study represents
a ‘drug refillable system,’ which would enable refill of a drug at home, by the patient [47,48]. Given the
panel of ELP fusion modalities developed in our laboratory, the data presented in this study indicate
that this system’s application catalogue can be broadened to anti-inflammation agents, antibiotics,
polypeptides and diverse protein/antibody therapeutic libraries via encapsulation or recombinant
protein expression strategies. While its underlying mechanism remains to be elucidated, our discovery
may provide a promising new avenue to circumvent challenges associated with the effective delivery
of therapeutics to the ocular surface.
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