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Observation of broad‑band water 
waveguiding in shallow water: 
a revival
Fabián Sepúlveda‑Soto1,2, Diego Guzmán‑Silva1,3, Edgardo Rosas1, Rodrigo A. Vicencio1,3* & 
Claudio Falcón1,2*

We report on the observation and characterization of broad-band waveguiding of surface gravity 
waves in an open channel, in the shallow water limit. The waveguide is constructed by changing 
locally the depth of the fluid layer, which creates conditions for surface waves to propagate along the 
generated guide. We present experimental and numerical results of this shallow water waveguiding, 
which can be straightforwardly matched to the one-dimensional water wave equation of shallow 
water waves. Our work revitalizes water waveguiding research as a relevant and controllable 
experimental setup to study complex phenomena using waveguide geometries.

Energy localization and transport are major goals in physics due to their fundamental and applied impact1. In 
particular, waves allow the transport of energy/information from one region of space to another, by taking advan-
tage of vibrational properties of the propagating media. This has been a key of success for the development of our 
modern societies where, for example, electrical waves propagate through copper cables transmitting information. 
Nowadays, different systems have consolidated as key technologies for the same tasks. Electromagnetic waves 
are broadly used for fast processing in open air as well as in solid materials2,3. Optical fibers, developed during 
the 70’s and consolidated during the 80’s and 90’s, form nowadays the most important communication network 
in our planet4. Almost all the internet global traffic is been transmitted through optical fibers across continents 
and oceans. Their operation is quite simple and it is nothing more than an optical solution to the wave equation, 
constrained to step-like refractive index potentials4. In fiber optics, light is trapped on a larger refractive index 
region. In that region, velocity is smaller and a gaussian-like profile is generated as a fundamental solution which 
propagates in a guided way along the fiber, presenting evanescent tails away from the fiber region. Depending 
on the specific conditions, optical fibers operate in single or multi-mode configurations, enhancing the possible 
ways of propagating energy/information by using orthogonal optical states, an important subject of research 
nowadays in order to increase the transmitted data volume by implementing different multiplexing techniques5. It 
is important to also mention that the inclusion of nonlinear interactions have allowed the observation of solitons 
in different optical configurations6–8, which can be viewed as a way to transmit information without requiring a 
waveguide structure due to self-trapping mechanisms.

In the context of surface water waves, waveguiding has been observed spontaneously on planetary flows 
for Kelvin waves9 and edge waves along shores10. Historically, when looking for guiding solutions of surface 
waves, the first answer comes fast, and we simply focus our attention on the concept of channelling (what, in 
addition, includes the historical observation of a first nonlinear solitary wave11). Channelling has been quite an 
important contribution to our societies and, in fact, one of the keys of modern agronomy using controlled water 
supplies which become scarcer nowadays. In addition, channelling has been also an important step forward 
to avoid damages stemming from natural catastrophes such as floods or heavy seas. However, can we guide 
waves on open spaces like an ocean or a wide channel without channelling? This question started to be solved 
several years ago in different studies. For example, Arthur et al.12 suggested the analogy between ray optics and 
oceanographic waves in shallow and deep water limits, connecting optical waves concepts to water waves. In 
1968, Longuett-Higgins13 theoretically suggested the possibility of trapping waves at oceanic depth disconti-
nuities, which is related to optical evanescent waves developing due to total internal reflection. The same year, 
Buchwald14 described theoretically the waveguiding problem on an oceanic ridge, finding an infinite number 
of guided modes. This is probably the first theoretical prediction showing the possibility to guide a water wave 
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without channeling, indicating a clear connection between optics and water wave phenomena. Interestingly, this 
ridge-induced localization could be a good explanation for several patterns observed in fluids when disordered 
ridge bottoms are present. In 1976, Stocks15 theoretically and experimentally described guided surface waves 
on the shallow-water limit, considering different bottom topographies and even a curved structure. This author 
nicely measured the fundamental guided mode by using a UV recorder and showed, for the first time, water 
wave trapping as a consequence of waveguiding and not due to channelling. No further attention on this kind 
of water waveguiding problems was reported and the topic was, surprisingly, forgotten. Almost forty years later, 
some theoretical and numerical work dealing with trapped wave modes on jet currents16 reprised the idea of 
water waveguiding, using a different approach due to the non-static nature of that problem.

Here, we explore water waveguiding in shallow water and describe a simple mechanism to control wave 
propagation based on waveguide concepts; i.e., to use the surface wave features in shallow fluid layers and 
observe waterguiding using a step-like potential. We follow a similar approach used more than 40 years ago14,15 
to revitalize this research topic using modern measurement techniques, which allow us to calculate and track 
experimentally the broad-band of allowed propagating wave vectors. In order to guide a wave17, we require to 
define a spatial region experiencing a different velocity with respect to its surroundings. In the shallow water 
regime18, different depths imply different propagation velocities. This velocity contrast can generate guided 
solutions in the effective water-wave equation, allowing us to observe the propagation of guided water modes 
on a rather simple experimental setup. Our proposal uses an interesting way of controlling the propagation of 
water waves, which could be of great impact in basic and applied sciences. The ability to guide a wave is the 
elementary ingredient to study phenomena appearing, for example, in solid-state physics19 as well as in several 
physical contexts where different lattice geometries are an essential framework20,21, including recent studies on 
topological phenomena22–26, which includes water waves27–29 as well. Therefore, the idea of guiding and control-
ling a water wave opens new possibilities for physical research and, without a doubt, an emergent topic in basic 
experimental science that deserves to be revitalized to deepen its understanding.

Experimental setup and results
Our surface wave experimental setup is depicted in Fig. 1a. A wave tank (200 cm long, 60 cm wide and 20 
cm deep) is filled up to a height h0 = 2.5 cm of destilled water. At its sides, absorvers (sponges) are placed to 
reduce wave reflections. At one end, 20 cm away from the wall, an electro-mechanical shaker, driven by a func-
tion generator via a power amplifier, generates monochromatic surface gravity waves. Waves with a frequency 
f ∈ [2.0, 5.0]Hz and an amplitude δη ∈ [0.5, 2.0]mm travel along a 10 cm plexiglass channel, creating a one-
dimensional wave train. For a given f the wave trains display corresponding wavelengths � ∈ [6, 16] cm in the 
channel. As the wave trains exit the channel and meet the open tank, diffraction occurs and a cylindrical front 
develops with a spatially decreasing amplitude due to radiation and viscous dissipation (see Fig. 1b). This observa-
tion significantly changes when a long bar is placed at the wave tank’s bottom, as sketched in Fig. 1a. Specifically, 
our bar has a height hg = 1.5 cm , a width a = 2.5 cm , and a length l = 100 cm . In this case (see Fig. 1c), wave 
trains propagate along the surface over the bar region, with a characteristic transversal profile. Waves do not 
change significantly for a distance much longer than the one showed for the open tank (see Fig. 1b). Thus, the 
observed water waves are well guided by a simple bathymetry reconfiguration without requiring channeling11.

We measured the surface wave profile in space and time using an optical profilometry technique30,31 for dif-
ferent experimental parameters. From the set of surface wave profiles we reconstruct the wave envelope, to follow 
closely the fiber optical analogy proposed in the Introduction. These are constructed by averaging several images 
taken with the same time-lag between them. Note that the wavelength of the guided wave is larger than the one 
for the radiated wave, which is characterized by its propagation constant β = 2π/� . To characterize the waveguid-
ing process, we fix δη at 2 mm and h0 at 2.5 cm. Thus, our experiments are set in the limit of steepness δη/h0 and 
an Ursell number �2δη/(4π2h30) below 0.1, which allows the application of linear wave theory18. Hence, we can 
focus on the effect of experimental parameters (f , hg , a) , systematically. First, we fix a = 2.5 cm and hg = 1.5 cm , 

Figure 1.   (a) Simplified experimental setup, including the measuring technique. (b) Wave amplitude in the 
open tank, without the waveguide. (c) Wave (guided) amplitude in the open tank, in the presence of a water 
waveguide with hg = 1 cm . In both cases, f0 = 3Hz , δη = 2mm and a = 2.5 cm.
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and change f  between 2.5 to 5.0Hz , with a step of 0.5Hz . We show some representative experimental results in 
Fig. 2. We observe that surface waves have a well defined bell-shaped profile in the x-axis, while propagating along 
the y direction. The amplitude of these trapped surface waves is, naturally, decreasing as they move away from 
the channel exit ( y = 0 ). As f increases, the distance the guided wave can propagate along the waveguide region 
decreases. We experimentally found that for f = 5.0Hz almost no wave propagates along the waveguide region, 
observing an effective cut-off for propagating modes. This could be associated solely to viscous wave damping, 
which increases for higher frequencies18. We claim that the observed phenomena is mainly a consequence of 
waveguiding and not viscous dissipation. To prove this claim, we characterize experimentally the linear wave 
damping via its damping rate per wavelength α = α(f , a, h0) , which is measured by fitting the wave amplitude’s 
spatial decay with an exponential function η̂0 × exp (−αy/�) . This fitting scheme is performed along a line on 
the y-direction centered at the middle of the waveguide section. For hg = 1.5 cm, the measured α values remain 
confined between two bounds for all values of a and f, presented by blue symbols, as shown in Fig. 2d. The lower 
bound is set by the wave damping rate measured along a one-dimensional wave channel (6 cm wide), similar 
to the one described above where no two-dimensional diffraction can take place. The measured values for one 
dimensional propagation are within 10% of the ones computed from the theoretical one dimensional shallow 
water damping rate per wavelength32 (2π/4h)× (2ν/ω)1/2 . The upper bound is set by the measured wave damp-
ing rate per wavelength of two-dimensional waves that propagate on an open tank after diffraction occurs (see 
Fig. 1b). In between these bounds, we observe the set of α values for different experimental waveguide configura-
tions and frequencies. There is a large scatter of α values for a < 5 cm and f < 3 Hz, which can be attributed to 
modulations of the wave amplitude observed in Fig. 2a–c . Thus, α for guided waves are roughly 2 times smaller 
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Figure 2.   Wave envelope for (a) f = 2.5Hz , (b) f = 3.5Hz and (c) f = 4.5Hz . a = 2.5 cm , hg = 1.0 cm and 
δη = 2mm . (d) α values as a function of frequency f0 ∈ [2.0,5.0] Hz for different experimental configurations. 
(d) Experimental linear wave damping rate per wavelength α for monochromatic wave propagation as a 
function of f for hg = 1.5 cm . α values for different waveguides (red symbols) with a = 2.0 ( ∗ ), 2.5 (open 
diamond), 5.0 (open square) and 10 (open circle) cm are bounded between the computed α (blue symbols) for 
free one (open square) and two (open circle) dimensional wave propagation.
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than the ones for a wave propagating over the open tank without waveguiding, which supports our claim of a 
one dimensional waveguiding dynamics.

Now, we fix f = 4Hz and hg = 1.5 cm , and run the experiment for three different bar widths (a), as shown in 
Fig. 3a–c. As a increases, we observe that the propagated wave along the waveguide region changes its transverse 
profile while it propagates along the y-axis: the effective propagation distance becomes smaller and transversal 
oscillations of the trapped wave profile appear, as it can be observed in Fig. 3a–c. These oscillations modify the 
profile, previously observed for narrower waveguides. In particular, the wider waveguide (see Fig. 3c) presents 
a profile associated to a first excited waveguide mode3, which also displays a different propagation constant. 
Finally, we set f = 3Hz and a = 2.5 cm , and vary the bar height ( hg ) to identify its effect on the guided wave 
amplitude. We explore three different values for hg = 1.0, 1.5 and 2.2 cm , and present our results in Fig. 3d–f. For 
the smallest value of hg the wave is well guided and almost no transverse modulation is observed. Its propaga-
tion distance is comparable to the case where hg = 1.5 cm, if not larger. For hg = 2.2 cm, the wave is still guided 
although longitudinal oscillations are observed along the waveguide, as well as some wave radiation away from 
the waveguiding region.

Theoretical modeling
To rationalize these observations, we focus on studying harmonic propagation, with a given angular frequency 
ω = 2π f  , of surface water waves in the linear inviscid case. In the open wave tank, surface gravity wave motion 
is encoded in the velocity potential

where z is the vertical coordinate normal to the bottom of the wave tank, as sketched in Fig. 1a. Here φ(x, y) is 
the solution of the Helmholtz equation

(1)�(x, y, z, t) = Re
[

φ(x, y) cosh (k(z + h))e−iωt
]

,

Figure 3.   Wave envelope profiles for (a) a = 2.5 cm , (b) a = 5.0 cm and (c) a = 10.0 cm , with δη = 2mm , 
hg = 1.5 cm , and f = 4Hz . Wave envelope profiles for (d) hg = 1.0 cm , (e) hg = 1.5 cm and (f) hg = 2.2 cm , 
with δη = 2mm , a = 2.5 cm and f = 4Hz.
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where ∇ is the bidimensional gradient and k is the wave vector chosen from the dispersion relation for surface 
gravity waves

Deformations of the interface η(x, y, t) from the flat surface at z = 0 are then found by the relation

In our experiments, the local depth of the fluid changes from h = h0 to h = h0 − hg over the waveguide, which 
changes the wave vector from k = k0 to k = kg . Thus, the ansatz (1) does not fulfill the boundary conditions 
where depth discontinuities develop, and the complete boundary value problem must be solved in order to find 
the observed waveguided modes. However, this issue can be sorted out if one deals with surface gravity waves 
in the shallow water limit. In this limit kh ≪ 1 , Eq. (3) becomes k = ω/

√

gh and the problem reduces to non-
dispersive waves with different wave speeds inside ( 

√

g(h0 − hg ) ) and outside ( 
√

gh0 ) the waveguide region18. 
Assuming that the wave is guided in the x-direction while propagating along the y-axis, then φ(x, y) = φ̃(x)eiβy , 
and thus Eq. (2) turns to

outside the waveguide region, and

inside. Here φ̃(x) represents the transversal profile of the guided mode and β corresponds to its propagation 
constant. φ̃(x) satisfies Eqs. (4) and (5) with φ̃ and ∂xφ̃ continuous at the edges of the waveguide region. From 
these equations, we find symmetric modal solutions for φ̃(x) when

is satisfied for a propagation constant β = βs , where “s” stands for “symmetric”. For asymmetric modes, this 
relation is similar but changing “ tan ” for “ − cot ” and βs for βa . These relations allow us to find the possible mode 
propagation constants β = {βs ,βa} in the wave vector band k0 < β < kg . The relation above is completely analog 
to what is found in optical waveguides4,5 where waveguiding occurs in regions with a larger refractive index as 
the light velocity becomes smaller. Optical guided modes have a cos-like profile inside the waveguide region 
and an exponentially decaying wave function (evanescent field) outside of it. Therefore, our water waveguide is 
completely equivalent to an optical waveguide, specifically to the case having a one dimensional step-like refrac-
tive index profile, a concept used in different physical contexts2,37.

When shallow water theory can not be used, one needs to solve the above problem including the condition of 
zero normal derivative along the entire bottom surface for �33–35. In this case, a more complex relation between 
the waveguide parameters is found. We have computed β using shallow water theory and the complete shelf model 
from Miles35, applied to our problem (see “Methods” section). In the case of narrow waveguides ( a = 2.0 cm ), 
only symmetric modes are excited. For wider waveguides ( a = 10.0 cm ) and f > 3.0Hz ( ω > 6π rad/s ), asym-
metric modes can be excited as well. This information is compiled in Tables 1 and 2, where for narrow waveguides 
we observe only symmetric states, while for wider ones we observe the appearance of asymmetric states above 
f > 3.0Hz . In Fig. 4a we show the experimental β values as a function of ω , for hg = 1.5 cm and for 4 different 
waveguide widths. We also show the dispersion relation (3) inside (continuous line) and outside (dotted line) the 
waveguide region, which sets the wave vector band k0 < β < kg . We observe an excellent agreement between the 
experimentally measured β values (symbols) and the numerical calculation of Eq. (6), for narrow waveguides (see 
dashed line in Fig. 4a). This case is simpler due to the absence of higher-order modes in the measured frequency 
range, as shown in Table 1. For wider waveguides, we observe a mismatch between the numerically computed β 
values (shown in Table 2) and the experimental ones for ω > 21.99 rad/s [ f = 3.5Hz ]. This can be the result of 
the development of asymmetric as well as symmetric modes, propagating along the waveguide region. In addi-
tion, Fig. 4b shows a comparison between the symmetric mode profiles obtained numerically and experimentally 
for a narrow waveguide ( a = 2.5 cm).

Following the equivalence between shallow water and optics, we compute the evolution of the guided water 
wave by implementing a beam propagation method (BPM) which solves numerically Eq. (2). This method, widely 
used in optics, allows us to track the envelope evolution along the waveguide. We include dissipation effects by 
multiplying directly the numerically obtained wave field on each spatial position with a damping exponential 
factor exp (−αy/�) . In Fig. 4c we show a numerical example, including an exponentially decaying factor due to 
dissipation, and compare it to its experimental counterpart in Fig.  4d. The numerical result is completely sym-
metric in the y-direction, due to the absence of inhomogeneities while the experimental image is slightly asym-
metric due to different background waves propagating through the open tank. Both figures display an excellent 
agreement, which corroborates water waveguiding in an open fluid layer.

(2)(∇2 + k2)φ(x, y) = 0 ,

(3)ω(k) =
√

gk tanh (kh) .

η(x, y, t) = Re

[

− iω

g
φ(x, y)e−iωt

]

.

(4)
[

∂2x + (k20 − β2)
]

φ̃(x) = 0 ,

(5)
[

∂2x + (k2g − β2)

]

φ̃(x) = 0 ,

(6)

√

β2
s − k20

k2g − β2
s

= tan

[

√

(

k2g − β2
s

) a

2

]
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Figure 4.   (a) Experimental values for β as a function of ω for a = 2.0 (open square), 2.5 (open circle), 5.0 
(open diamond) and 10.0 (open left angled triangle) cm. Lines show the theoretical dispersion relation curves 
for gravity surface waves ω = ω(k) with k = k0 when h = h0 (continuous line) and k = kg when h = h0 − hg 
(dotted line). These curves set the boundaries of the wave band k0 < β < kg . In between these boundaries, 
a dashed line shows numerically computed βs as a function of ω , obtained from Eq. (6) for a = 2 cm . (b) 
Numerical (continuous line) and experimental (dashed line) profiles for the first propagative mode, for 
a = 2.5 cm , hg = 1 cm , f = 3Hz , and δη = 2mm . (c) Numerical and (d) experimental wave envelopes for 
a = 2.5 cm , hg = 1 cm , f = 3Hz , and δη = 2mm.

Table 1.   Computed propagation constants for symmetric ( βs ) modes, for {a, hg } = {2.0, 1.5} cm.

ω (rad/s) 12.57 15.71 18.85 21.99 25.13 28.27 31.42

βs (rad/cm) 0.27 0.36 0.46 0.56 0.69 0.85 1.02

Table 2.   Computed propagation constants for symmetric ( βs ) and asymmetric ( βa ) modes, for 
{a, hg } = {10.0, 1.5} cm.

ω (rad/s) 12.57 15.71 18.85 21.99 25.13 28.27 31.42

βs (rad/cm) 0.30 0.40 0.50 0.62 0.75 0.90 1.06

βa (rad/cm) – – – 0.56 0.69 0.84 1.02
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Finally, following Eq. (3) and considering our experimental configuration for ω > 31.42 rad/s ( f = 5Hz ), we 
get k0 = kg . Therefore, as we enter the deep water limit outside and inside the waveguide, waveguiding becomes 
forbidden. The absence of an effective velocity contrast does not allow the excitation of guided modes. This is 
in agreement with the experimentally obtained data presented in Fig. 4a, where the existence region shrinks 
for f > 5Hz.

Conclusions
In conclusion, we have shown experimentally, theoretically and numerically water waveguiding, without chan-
neling, which can be envisioned as an optical analogue. Thus, all the machinery built for optics can be applied 
directly on surface water wave problems, considering slight modifications such as the inclusion of depth effects36, 
and viscous damping. From this point, water waveguiding on curved waveguides or solitonic propagation can 
be pushed towards a complete control of guided surface wave packets. Additionally, evanescent wave fields 
can be used to generate a coupling mechanism to transfer surface wave energy in the transversal direction, as 
discrete optics research has shown37. Harnessing trapped surface wave energy could be of great industrial and 
environmental utility, by presenting solutions for controlling water wave phenomena in different scales (includ-
ing tsunamis and heavy seas), which is nowadays relevant due to the evident change in global weather38. This 
also shows an important avenue for future basic and applied research using water waveguiding in different 
configurations, where our present work could be just the beginning of a revival for such a wonderful new area 
of development in physics.

Methods
Profilometry.  To access the spatio-temporal wave profile an optical technique adapted for free surface char-
acterization is implemented30,31. Different image sequences are acquired for a given f and δη , centered around 
the waveguide. Each image spanned 15.5× 62.5 cm2 with a 0.04 pix/cm sensitivity. The vertical resolution is the 
projected pixel size. The time step between images is set by the camera’s acquisition frequency at 30 fps, and the 
number of images per sequence is set at 1800. Our accessible wave numbers are limited by the wavelength of 
the projected light fringes used in the method, which is set at 0.5 cm. Figure 1a shows an sketch of the fringes 
generated by a projector, including the camera which collects light from the water surface. The average envelope 
of the guided surface wave is reconstructed by Fourier filtering each image pixel in time and then computing its 
rms fluctuations, which is averaged for a set of images. Figure 1b,c display stroboscopic wave envelopes of the 
experimental surface wave pattern without and with a waveguiding bottom, respectively. Note that the wave-
length of the guided wave, characterized by its propagation constant β = 2π/� , is larger than the one for the 
radiated wave.

Deep water calculations for waveguiding.  When the shallow water limit is not fullfilled, a theoretical 
derivation for intermediate and deep water wave calculation must be performed. In what follows, we compute 
the possible guided modes and propagation constants which are presented in Table 1. The problem is based on 
the calculation of �(x, y, z, t) which satisfies ∇2� = 0 , with boundary conditions, that read

which are valid in the inviscid linear regime35. Assuming that � can be decomposed (similarly as in the main 
text) as � = Re(φ̃(x)θ(z) exp (iβy)) , it is found that

where (·)′ stands for derivatives. Due to this separation of variables, using ∂z� = 0 on z = −hi , with hi is either 
h0 or h0 − hg , one finds that

with the dispersion relation

where ψ(z, κ) are the functions used by Miles35, which are orthonormal within [−hi , 0] . There are a numerable 
set of κ ∈ R solutions of Eq. (13), and only one pure imaginary one. This means that Eq. (11) reads

(7)
ω2

g
�+ ∂z� =0, z = 0;

(8)∂z� =0, z = −h0, |x| > |a/2|;

(9)∂z� =0, z = −h0− hg , |x| ≤ a/2;

(10)∂x� =0, x = ±a/2,−h0 < z < −h0− hg ;

(11)
φ̃′′(x)

φ̃(x)
+ θ ′′(z)

θ(z)
− β2 = 0,

(12)θ(z) = ψ(z, κ) = 2
1
2

[

h− g

ω2
sin2(κh)

]− 1
2
cos[κ(h− z)] ,

(13)gκ tan(κh)+ ω2 = 0,



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18307  | https://doi.org/10.1038/s41598-020-75335-8

www.nature.com/scientificreports/

Each κ defines a φ̃ and the sign of (β2 + κ2) determines its oscillatory or decaying nature. Thus, in 2 different 
regions (region 1 where h = h0 and region 2 where h = (h0 − hg ) ) there will be real (k and k̃ , respectively) and 
imaginary ( ik1 and ik2 , respectively) solutions. It must be noticed that in order to construct a guided solution 
one needs that (β2 − k21) > 0 outside the waveguiding region and (β2 − k22) < 0 inside the waveguiding region.

Applying that away from the waveguiding region φ̃(x → ±∞) = 0 , then the symmetric solution for � in 
the x–z plane must read

which can be used to compute the spatial derivatives of � . As both � and ∂x� must be continuous at x = ±a/2 , 
we can relate C2(k̃) and A2 to C1(k) and E1 . Using the fact that ψ2(z, k̃) and ψ2(z, ik2) in [0, h0 − hg ] are ortho-
normal by construction, one obtains 4 different equations via projecting onto Miles’s functions which are used 
to equate the expressions for C2(k̃) and A2 , allowing us to compute β

due to C1(k) > 0 . Here we have used that A = (k2 − k̃2)−1(k21 − k22)
−1 and B = (k2 + k22)

−1(k21 + k̃2)−1 . In the 
above calculations we have solved the symmetric case, and thus β = βs . A similar calculation can be done for 
the asymmetric case β = βa by solving

By solving Eqs. (16) and (17), different values of the propagation constant β can be found for both the symmetric 
and asymmetric cases, which are the values we used to construct the tables displayed in the main text. Moreover, 
once the value of β is known, a spatial profile corresponding to that mode can be calculated.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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(14)
φ̃′′(x)

φ̃(x)
= β2 + κ2.

(15)

φ̃(x)θ(z) =



























�

k

C1(k)e
−
√

k2+β2|x|ψ1(z, k)+ E1e
−
√

β2−k21 |x|ψ1(z, ik1) |x| ≥ a/2

A2 cos

�

�

k22 − β2|x|
�

ψ2(z, ik2)+
�

k̃

C2(k̃) cosh

�
�

k̃2 + β2|x|
�

ψ2(z, k̃) |x| < a/2

(16)

A





1

cosh((a/2)

�

k̃2 + β2)

+
�

k2 + β2

�

k̃2 + β2 sinh((a/2)

�

k̃2 + β2)





×





1

cos((a/2)
�

k22 − β2)

−

�

β2 − k21
�

k22 − β2 sin((a/2)
�

k22 − β2)





= B





1

cosh((a/2)

�

k̃2 + β2)

+

�

β2 − k21
�

k̃2 + β2 sinh((a/2)

�

k̃2 + β2)





×





1

cos((a/2)
�

k22 − β2)

−
�

k2 + β2

�

k22 − β2 sin((a/2)
�

k22 − β2)





(17)

A





1

sinh((a/2)

�

k̃2 + β2)

+
�

k2 + β2

�

k̃2 + β2 cosh((a/2)

�

k̃2 + β2)





×





1

sin((a/2)
�

k22 − β2)

+

�

β2 − k21
�

k22 − β2 cos((a/2)
�

k22 − β2)





= −B





1

sinh((a/2)

�

k̃2 + β2)

+

�

β2 − k21
�

k̃2 + β2 cosh((a/2)

�

k̃2 + β2)





×





1

sin((a/2)
�

k22 − β2)

+
�

k2 + β2

�

k22 − β2 cos((a/2)
�

k22 − β2)



.
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