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Umbilical cord blood is an established source of hematopoietic stem cells for
transplantation. It enjoys several advantages over bone marrow or peripheral blood, includ-
ing increased tolerance for Human Leukocyte Antigen mismatches, decreased incidence
of graft-versus-host disease, and easy availability. Unrelated cord blood does have limita-
tions, however, especially in the treatment of adults. In the 24 years since the first umbilical
cord blood transplant was performed, significant progress has been made, but delayed
hematopoietic engraftment and increased treatment-related mortality remain obstacles to
widespread use. Here we summarize the latest results of unrelated cord blood transplants,
and review strategies under investigation to improve clinical outcomes.
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INTRODUCTION
Since the first sibling human leukocyte antigen (HLA)-matched
umbilical cord blood transplant (UCBT) was performed in 1989
by Gluckman and Colleagues on a pediatric patient with Fanconi’s
anemia, cord blood stem cells have been recognized for their bene-
fits (1). Umbilical cord blood (UCB) hematopoietic stem cells can
be procured easily, without risk to the donor, and an appropriate
number of stem cells can be stored, tested, and processed for future
use (2–4). These advantages make UCB suitable to fill the growing
need for suitable grafts for patients with hematologic malignancies
or underlying bone marrow or metabolic defects. It is also impor-
tant to note that a significant population of patients, specifically
minority groups, lack a suitable HLA-matched bone marrow, or
peripheral stem cell donor, thus UCB offer an important source of
allografts for such groups (5). In this review we examined the two
decade history of this subset of allogeneic stem cell transplants, and
then focused specifically on the major developments for improv-
ing and accelerating cord blood engraftment, widely recognized as
its’ Achilles heel. A comparison of haploidentical and cord blood
grafts is beyond the scope of this review.

PEDIATRIC UMBILICAL CORD BLOOD TRANSPLANTATION
Following the report of the first sibling HLA-matched UCBT, the
first pediatric studies showed UCBT present higher rates of pri-
mary engraftment failure as well as delayed time to engraftment.
Initial studies investigating the impaired engraftment in UCBT
focused on HLA matching and the optimum dosage of CD34+
cells or total nucleated cells (TNC). It is important to note that
many of these studies were retrospective; almost 20 years passed
between the Gluckman’s first transplant and the first prospective
randomized clinical trial (phase 2). This underscores the contin-
ued need for prospective randomized clinical trials, as bias is a
much more significant problem in retrospective studies.

Wagner et al. described 44 patients who underwent matched
sibling UCBT, mismatched at 0 or 1 HLA locus (6). Day 50
engraftment rate was 85%,while the rate of grade II–IV acute graft-
versus-host disease (aGVHD) was a very low 3%, with a survival
rate at 1.6 years of 72%. However, primary graft failure occurred
in 15% of patients. Subsequently, 22 patients were reported that
received either HLA-matched or HLA 1–3 antigen mismatched
cord grafts (7). Engraftment at day 50 was 100%, with aGVHD rate
of 11%, while 6-month survival rate was 65%. These early studies
positioned UCBT as a clear alternative for pediatric patients in
need of allogeneic transplantation.

Subsequently, Barker and Coworkers compared 0–3 HLA mis-
matched UCBT recipients with recipients of unrelated matched
bone marrow transplants (BMT). This matched pair analysis sug-
gested that mismatched UCBT led to similar survival than matched
BMT, but at expense of longer time to engraftment with similar
aGVHD rates (8). Rubinstein et al. performed an analysis of trans-
plants from the New York cord blood bank, and observed that the
chances of successful engraftment could be increased with a better
HLA-matched cord (9).

Gluckman et al. reported the Eurocord registry experience in
1997, showing that recipients of related UCBT had rates of 1-year
survival, grade II-IV aGVHD, and day 60 neutrophil engraftment
of 55, 18, and 79%, respectively; recipients of unrelated UCBT
had rates of 1-year survival, grade II–IV aGVHD, and neutrophil
engraftment at day 60 of 31, 32, and 89% (10). Rocha et al. retro-
spectively compared outcomes of pediatric UCBT, T cell depleted
bone marrow, and non-manipulated BMT. UCB was again asso-
ciated with delayed neutrophil and platelet engraftment as well
as increased early treatment-related mortality (TRM). However,
the risk of aGVHD was lower, while the overall risk of relapse was
similar among groups. Mortality was greatest in the T cell depleted
BMT group (11).
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In another observational, retrospective study, Eapen and Col-
laborators compared pediatric matched and mismatched UCBT
with matched or mismatched unrelated BMT. The authors again
pointed to delayed engraftment and increased TRM with UCBT,
especially for those receiving low cell doses. However, 5-year
leukemia-free survival (LFS) rates were similar between all groups
and the risk of relapse was lowest in UCBT with two mismatched
alleles (12).

The first prospective multicenter study in pediatric UCBT, pub-
lished in 2008, enrolled 191 patients with high-risk hematologic
malignancies. Cord grafts were matched to at least 3 of 6 HLA
loci, and median TNC infused was 3.9× 107 c/kg. The condition-
ing regimen was myeloablative, with 1350 cGy total body irra-
diation (TBI), cyclophosphamide (60 mg/m2), and equine ATG
(15 mg/kg). Median time to neutrophil and platelet engraftment
was 27 and 173 days, respectively. Primary graft failure occurred in
11% of patients, while rates of grade II–IV aGVHD, relapse, and
2-year OS were 42, 19, and 50%, respectively (13).

Two subsequent studies emphasized the importance of cell dose
on engraftment and TRM. In an observational study of pedi-
atric UCBT, Wagner’s group found that among donor-recipient
pairs with ≤2/6 HLA mismatches at HLA A, B, and DRB1, UCBT
consisting of a cell dose of 1.7× 105 CD34+ cells/kg resulted
in improved outcomes (14). Gluckman, Locatelli, and others on
behalf of the Eurocord, showed that pediatric leukemia patients
receiving a TNC dose above 3.7× 107 had a higher probability
of engraftment and survival (10, 15, 16), with a median time to
neutrophil engraftment of 25 days compared to 35 days for those
receiving <3.7× 107/kg.

These studies solidified the role of UCBT as an alternative
to traditional forms of transplant. They also clearly defined the
importance of HLA matching and cell dose in UCBT. Grafts with
more than 3/6 HLA mismatches (low resolution typing for HLA A
and B, and high-resolution DRB1 typing) result in significantly
higher TRM rates and should be avoided. The importance of
“minimum” cell dose was also established, and is an additional
complicating factor in adults, as the cell dose threshold is unlikely
to be reached with a single UCB unit in this patient population.

ADULT UMBILICAL CORD BLOOD TRANSPLANTATION
Adult UCBT studies have also been mostly retrospective, and
continue to show worse outcomes when compared with those
of pediatric populations. The cell doses in these studies have
been significantly lower than the “minimum” defined by Wagner,
Gluckman and others (10, 14–16).

In 2001, Laughlin and Colleagues retrospectively analyzed the
outcomes after adult UCBT following myeloablative condition-
ing for malignant and non-malignant hematological diseases. The
median infused TNC was 1.6× 107/kg; all patients had a graft with
three or less HLA mismatches. The median time to neutrophil and
platelet engraftment was 27 and 99 days, respectively. Graft fail-
ure occurred in 10% of patients, and grade II–IV aGVHD rate
was 60%. At 40 months, 26% of patients were alive. CD34+ cell
dose was associated with improved event-free survival (EFS) (17).
Subsequently, other adult UCBT studies have also observed a high
rate of graft failure and delayed engraftment compared to bone
marrow or peripheral blood grafts (18–22) (Tables 1 and 2).

Rocha compared the outcomes of 98 UCBT patients reported
to the Eurocord with those of 584 patients who received matched
bone marrow grafts (intermediate resolution HLA typing for HLA
A and B, and high-resolution typing for HLA-DRB1). Of note,
the average TNC dose differed by a factor of 10 between groups:
in the UCBT cohort the TNC was 2.3× 107 c/kg compared to
2.9× 108 c/kg for those undergoing BMT. Although the degree of
donor-recipient HLA mismatches was higher in the cord blood
group (most subjects received 4/6 matched units), aGVHD risk
was significantly lower compared to the BMT cohort. Neutrophil
engraftment was significantly delayed in the cord blood group, and
primary graft failure occurred in 20% of UCBT patients versus 7%
in the bone marrow group. Nevertheless, overall survival and the
rates of TRM, cGVHD, relapse, and LFS were not significantly
different between the two groups (23).

In a retrospective analysis using registry databases, Eapen com-
pared 165 UCBT, 888 peripheral blood progenitor cell (PBPC), and
472 BMT recipients. TRM was higher in the umbilical cord group,
but LFS was similar across all groups. The rate of aGVHD was
lower after UCBT compared to PBPC, while cGVHD was lower
in the UCBT compared to 8/8 matched BMT (24). A similar ret-
rospective study by Eapen also demonstrated the importance of
HLA C matching in UCBT (25) (Table 3).

Taken in aggregate, these studies indicate that adults receiv-
ing single, mismatched UCB grafts have higher early mortality
but similar overall survival to that observed in recipients unre-
lated donor BMT or PBSC. Neutrophil and platelet engraftment
is delayed, and a smaller proportion of patients become platelet
transfusion independent. Primary graft failure rates are also higher
with single UCBT than when using peripheral blood or bone mar-
row grafts (Table 2). Of note, all comparative studies published to
date are retrospective, and there seems to be a significant variation
in center outcomes.

REDUCING TRM IN UCBT: REDUCED INTENSITY
CONDITIONING, DOUBLE UMBILICAL CORD TRANSPLANTS,
AND HLA MATCHING
Due to high TRM rates, UCBT is often used as a transplant of last
resort. Early efforts to reduce TRM focused on reducing condition-
ing regimen toxicity and increasing UCB cell dose. Most studies
available correspond to small prospective trials, usually from a
single institution.

Reduced intensity conditioning has reduced early mortality in
allogeneic transplants, and has allowed treatment of older and
frailer patients (26–34). Barker et al. treated 43 patients with high-
risk hematologic malignancies. Two regimens were used: busulfan
(8 mg/kg), fludarabine (200 mg/m2), and of TBI (200 cGy) (BFT)
in 21 patients; and cyclophosphamide (50 mg/kg), fludarabine
(200 mg/m2), and TBI (200 cGy) (CFT) in 22 patients. UCB units
were matched to at least 4/6 HLA loci. Median time to neutrophil
engraftment was 9.5 and 22 days in the CFT and BFT groups,
respectively, while sustained engraftment was observed in 94 and
76% in the CFT and BFT groups. For the whole cohort, 1-year
overall survival was 39% with 21% relapse rate and 9% grade II–
IV aGVHD (35). This low dose TBI-based regimen is now widely
used in the U.S., and retrospective comparisons have suggested it
is superior to alkylating-based combinations (36).
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Table 1 | Comparison of multiple UCBT studies, including both pediatric and adult patients and single UCBT and dUCBT.

Study Type No.

patients

Cord information Primary

graft

failure (%)

Time to

neutrophil and

platelet engraftment

(days)

Grade II–IV

aGVHD

(%)

Survival

Wagner et al. (6) Pediatric 44 Single cord HLA

identical/HLA-1

mismatch

15 Neutrophil=22 3 1.6 year OS=72%

Wagner et al. (7) Pediatric 18 Single cord

HLA-matched versus

HLA (1–3) mismatched

0 Neutrophil=24;

platelet=54

11 6 month OS=65%

Wagner et al. (14) Pediatric

retrospective

102 Single cord 0–3 HLA

mismatched

5 GCSF(+) neutrophil=21;

GCSF(−) neutrophil=31;

platelet (50k)=86

11 1 year OS=58%

Kurtzberg et al. (13) Pediatric 191 Single cord 0–3 HLA

mismatched

11 Neutrophil=27; platelet

(50k)=174

19.5 2 year OS=49.5%

Laughlin et al. (17) Adult 68 Single cord 0–3 HLA

mismatched

7 Neutrophil=27;

platelet=99

60 40 month OS=27%

Sanz et al. (18) Adult 22 Single cord 0–3 HLA

mismatched

0 Neutrophil=22;

platelet=69

73 8 month OS=54%

Takahashi et al. (20) Adult 68 Single 0–2 HLA

mismatched

8 Neutrophil=22;

platelet=40

44 2 year DFS=74%

Rocha et al. (23) Adult

retrospective

98 Single cord 0–3 HLA

mismatched

20 Neutrophil=26 26 2 year OS=36%

Cornetta et al. (19) Adult 34 Single cord 0–2 HLA

mismatched

34 Neutrophil=42;

platelet=180

34 D180 OS=30%

Brunstein et al. (41) Adult RIC 110 85% dUCBT/15%

single 0–2 HLA

mismatched

6 Neutrophil=22; platelet

(50k)=59

59 3 year OS=26%

Ballen et al. (21) Adult RIC 21 dUCBT 0–2 HLA

mismatched

9 Neutrophil=20;

platelet=41

40 2 year OS=71%

GCSF, granulocyte colony stimulating factor; OS, overall survival; DFS, disease free survival.

Double UCBT (dUCBT) has been proposed as a strategy to
increase cell dose and possibly improve outcomes (37, 38). Barker
and Collaborators treated 22 hematologic malignancy patients
with myeloablative conditioning and dUCBT grafts containing a
median TNC dose of 3.5× 107/kg, matched to at least 4/6 HLA
loci. Median time to neutrophil engraftment in this adult cohort
(median weight of 73 kg) was 23 days. There were no primary or
secondary graft failures, while aGVHD II–IV and 1 year DFS rates
were 65 and 57%, respectively (39).

MacMillan and coworkers retrospectively compared outcomes
of single versus dUCBT treated at the University of Minnesota.
Although cGVHD rates were similar (17 versus 18%), grade II–
IV aGVHD rates were greater in the dUCBT group (58 versus
39%, p < 0.01). dUCBT recipients presented GVHD at earlier time
points (day 28 versus 36) but had lower 1-year TRM rates (24
versus 39%, p= 0.02) (40).

Brunstein and Colleagues reviewed the results of a
non-myeloablative conditioning regimen consisting of fludarabine
(200 mg/m2), cyclophosphamide (50 mg/m2), and a single

fraction of 200 cGy TBI on 110 patients with high-grade
hematologic malignancies (41). TNC dose target was 3.0× 107/kg,
and patients were to receive a dUCBT if a single unit did not
provide that cell dose. Eight-five percent of patients received a
dUCBT. TRM rate was 19% at 180 days and OS was 26% at 3 years.
Relapse rates were higher in the single cord group compared
to the dUCBT group (41 versus 30%, p= 0.07), while aGVHD
incidence tended to be higher in the dUCBT cohort (62 versus
41%, p= 0.09). Primary and secondary graft failure occurred in
6 and 7% of patients, respectively. Overall, higher rates of TRM
were associated with age below 45 years, recipient negative CMV
serostatus, use of ATG, high-risk clinical features and recent fungal
infection.

Kindwall-Keller conducted a prospective study involving high-
risk patients with hematologic malignancies comparing sin-
gle (n= 27) versus dUCBT (n= 23). Both patient groups
received fludarabine (35 mg/m2), cyclophosphamide (1 g/m2),
horse ATG (30 mg/kg), and 200 cGy TBI. Single UCB graft had
at least 2.5× 107 TNC/kg, while dUCBT grafts should provide
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Table 2 | Comparison of graft sources.

Study Type Groups No.

patients

Neutrophil

(ANC = 500) and

platelet engraftment

(20,000)

Grade II–IV

aGVHD

Survival

Hamza et

al. (22)

Adult

retrospective

UCB, at least HLA

3/6 matched

28 Neutrophil=day 29 33% EFS day 100=34%; EFS

3 year=25%

MUD 23 Neutrophil=day 14 27% EFS day 100=78%; EFS

3 year=35%

Eapen et

al. (24)

Adult retro-

spective/Cox

regression

UCB at least HLA

4/6 matched

165 Neutrophil=day 24,

platelet=day 52

30% LFS=59%

PBPC 888 Neutrophil=day 14,

platelet=day 19

8/8 HLA matched=48%;

7/8 HLA matched=52%

8/8 HLA matched=57%;

7/8 HLA matched=66%

BM 472 Neutrophil=day 19,

platelet=day 28

8/8 HLA matched=39%;

7/8 HLA matched=46%

8/8 HLA matched=56%;

7/8 HLA matched=57%

UCB, umbilical cord blood; MUD, matched unrelated donor; PBPC, peripheral blood progenitor cells; BM, bone marrow.

Table 3 | Retrospective analysis of HLA C typing in UCBT.

Study Type Groups No. patients Transplant related

mortality

Overall survival

Eapen et

al. (25)

Allo pediatric

retrospective/Cox regression

HLA A, B, C, and DRB1

matched

69 3 year TRM=9% 3 year OS=57%

HLA A, B, and DRB1 matched;

HLA C mismatched

23 3 year TRM=26% 3 year OS=51%

Either HLA A, B, or DRB1

mismatch+HLA C mismatch

234 3 year TRM=31% 3 year OS=37%

TRM, treatment-related mortality; OS, overall survival.

a combined 3.0× 107 TNC/kg. Each cord was matched at least
4/6 HLA loci to the recipient. Seven patients (26%) in the sin-
gle unit group and five patients (22%) in the double unit group
failed to engraft. The median time to neutrophil engraftment was
25 days in the single cord group and 23 in the double cord group
(p= 0.99). The median time to platelet engraftment was 39 days
in the single cord group and 57 in the double cord group. Relapse
rates were significantly lower in the dUCBT group (30 versus
59%, p= 0.045). There was no significant difference in aGVHD
rates between the two groups. Overall survival at 60 months was
39% in the dUCBT group and 26% in the single unit group
(p= 0.86) (42).

Although the controversy surrounding single versus dUCBT in
adult patients is far from resolved, a recently completed phase
III clinical trial comparing single and double cord transplants
in pediatric patients showed no difference in 1 year survival (71
versus 65%, p= 0.13). In addition, increased aGVHD rates were
observed after dUCBT (14 versus 23%, p= 0.03) (43). These
results argue against dUCBT in pediatric patients outside of
clinical trials.

Further data continues to be reported on retrospective com-
parisons of CB versus other sources of hematopoietic stem
cells for transplant. More recent studies incorporate high-
resolution class I HLA typing for the controls. Brunstein and
Collaborators compared the outcomes of patients receiving
matched related donor transplants (n= 204), MUD (n= 152),
mismatched unrelated donor (n= 52), and 4–6/6 HLA-matched
dUCBT (n= 128). dUCBT was associated with similar LFS,
at the expense of delayed hematopoietic engraftment, with
lower aGVHD rates. Interestingly, relapse risk was lower in
the dUCBT group, but at the expense of higher rates of early
TRM (44).

Many of the above studies stress the importance of both HLA
matching and TNC, however, the question arises: which is more
important? In 2010, Avery analyzed 84 dUCBT and found no rela-
tion to HLA matching and sustained donor engraftment or time
to neutrophil engraftment (45). In regards to single UCBT, both
Arcese et al. and Laughlin et al. found no correlation with GVHD
or survival with HLA disparity (17, 46). Thus it would seem that
cord selection would be based primarily on TNC dose. However,
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a large retrospective analysis by Barker, focusing on 1061 single
unit UCBT, found that patients with 0 HLA mismatches had a
lower TRM independent of TNC. Interestingly, the greater HLA
mismatch, the greater the importance of TNC was on overall
survival. For example, patients with 1–2 HLA mismatch and a
TNC >5.0× 107 c/kg had a TRM of almost half of patients with
1–2 HLA mismatch and a TNC between 2.5 and 4.9× 107 c/kg
(47). This study suggests HLA mismatch plays a more important
role that previously thought, especially in single UCBT. Current
opinion with regard to cord selection recommends screening for
grafts with >2.0× 107 c/kg and 4–6 HLA matches, then group-
ing cords into 6/6, 5/6, and 4/6 HLA-matched groups, and finally
out of that best matched group, select the graft with the highest
TNC (48).

UMBILICAL CORD ENHANCEMENT
Focus has since shifted to methods of umbilical cord graft enhance-
ment. These endeavors include umbilical cord expansion to
increase the transplanted cell dose; methods that increase engraft-
ment; alternative UCB delivery procedures; or co-transplantation
with other types of cell grafts. As mentioned previously, due to
a much larger body mass, the ratio of CD34+ cells or TNC to
kilograms is significantly decreased in adults compared to pedi-
atric patients. UCB expansion techniques attempt to overcome
this challenge by increasing cell dose prior to infusion. Alternative
delivery methods of UCB attempt to by-pass presumed stem cell
trapping and/or decrease transit time to the bone marrow. Most
of the studies reported are phase I or II and represent the latest
advances in UCBT.

COMBINING HAPLOIDENTICAL HEMATOPOIETIC STEM CELLS WITH
UNRELATED CORD BLOOD
Fernández and Collaborators hypothesized that selected CD34
haploidentical cells, when co-infused with UCB cells, would result
in earlier engraftment. Interestingly, in the majority of the cases
the haploidentical cells provided early engraftment but were subse-
quently rejected by the long-term engrafting cord blood cells (49).
Recently,Lui and Colleagues expanded on Fernández’s observation
(50). Forty-five patients with hematologic malignancies under-
went RIC (fludarabine, melphalan, and ATG), followed by T cell
depleted haploidentical CD34+ cells from a non-maternal donor
(CD34+ cell dosage up to 3× 106 c/kg), and an UCB graft (min-
imum cell dose of 1× 107 c/kg and at least a 4/6 HLA match).
Median time to neutrophil and platelet engraftment was 11 and
19 days, respectively, while aGVHD rate was 25%. TRM at day 100
was 9%, and 1-year overall survival was 55%.

EX VIVO UMBILICAL CORD EXPANSION
Shpall et al. employed a liquid culture system to expand a frac-
tion of the UCB unit. Expanded UCB cells were selected for
CD34, and after 10 days in liquid culture, TNC was expanded
56-fold, and CD34+ cells, fourfold. The expanded portion was
then infused with the unmanipulated UCB. The median CD34+
cell dose was 10.4× 104 c/kg. The median time to neutrophil and
platelet engraftment was 28 and 106 days respectively. Overall sur-
vival was 35% at 30 months (51). Subsequently, a randomized
study at MDACC compared “standard” dUCBT versus one unma-
nipulated unit co-infused with a 100% expanded unit using the

approach described above. Modifications of the expansion strategy
included CD133 selection instead of CD34 (given the possibil-
ity of selecting earlier hematopoietic progenitors using CD133),
and freezing the unselected cells left after CD133 separation, with
reinfusion at the time of transplant (hypothesizing that this cell
population could contain engraftment-facilitating cells). This trial,
reported in abstract form, did not show an advantage for ex vivo
expansion in terms of engraftment or survival (52). It is likely
that cytokine-based liquid culture systems, such as the ones used
in these expansion methods, push progenitor cells toward a less
differentiated stage of maturation, essentially depleting the stem
cell potential.

EX VIVO UMBILICAL CORD EXPANSION CO-CULTURED WITH
MESENCHYMAL STEM CELLS
The bone marrow microenvironment is important for the prolif-
eration and differentiation of hematopoietic stem cells (53–58).
Mesenchymal stem cells (MSCs) are found in the bone marrow
and give rise to bone marrow stroma as well as other mesoder-
mal tissues (59–62). Adding a layer of third party MSCs to the
liquid culture system, as proposed by McNiece, Robinson, and
Shpall, increased significantly the CD34 cell expansion in vitro
(53). In addition, by adding MSCs the authors were able to expand
cells without CD34 cell selection, a step associated with significant
cell loss in the previous studies summarized above. Outcomes of
the resulting clinical trial have been reported (54). The approach
was a dUCBT in which one of the cords was ex vivo expanded
with MSC, while the other unit was transplanted unmanipu-
lated. Thirty-one high-risk hematologic malignancy patients were
included. Expansion increased TNC numbers by a median factor
of 12.2 and CD34+ cells by a median factor of 30.1, leading to
grafts with median cell dose of 5.8× 107 TNC/kg. Importantly,
the median number of megakaryocyte and platelet progenitors
was also increased in the expanded cord. The median time to neu-
trophil and platelet engraftment was 15 and 42 days, respectively.
Chimerism studies indicated that the expanded unit provided early
engraftment while the unmanipulated unit provided most of long-
term engraftment, although a minority of patients had evidence
of long-term expanded-unit hemopoiesis (although the unmanip-
ulated unit predominated). Some of the challenges in this study
included the realization that family derived MSC pose significant
logistical and coordination problems, which were alleviated by
using an “off the shelf” MSC source. An important question unan-
swered by this study is whether faster engraftment will lead to less
transfusions and shorter hospital stay. This question and others of
cost effectiveness will be addressed in an upcoming randomized
trial. These results provide the rationale for an ongoing interna-
tional randomized multicenter study comparing unmanipulated
dUCBT versus dUCBT containing one ex vivo expanded unit as
described above.

CO-INFUSION OF MSC WITH UMBILICAL CORD STEM CELLS
To study the effect of MSC and UCB co-infusion in vivo,
MacMillan conducted a promising phase I–II study in which
parental expanded MSCs were co-infused with UCB in pediatric
patients with high-risk leukemia following myeloablative condi-
tioning (63). Among patients receiving MSC/UCB co-infusions,
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median neutrophil and platelet engraftment occurred 19 and
53 days after transplant, respectively. Grade II–IV aGVHD rate
was 38%, while there was no cGVHD observed and OS was 75%
at 1 year.

COPPER CHELATION
Cellular copper concentration modulates differentiation of cord
blood hematopoietic stem cells (64, 65). Copper chelation has been
used to arrest maturation during cord blood expansion, and may
lead to expansion of primitive progenitors without differentiation
to a less pluripotent cell (66, 67). The feasibility of ex vivo expan-
sion using a copper chelator in a liquid ex vivo expansion system
was investigated in a phase I/II study that included 10 advanced
hematologic malignancy patients. UCB units frozen in two frac-
tions had the smaller fraction cultured for 21 days in media with
cytokines. The median CD34+ cell increase was sixfold, resulting
in a mean time to neutrophil and platelet engraftment of 30 and
48 days, respectively. Primary graft failure occurred in one patient.
Grade II–IV aGVHD occurred in 44% of cases, while survival after
100 days was 90% (68). An ongoing multicenter randomized trial
is comparing single unit UCBT with or without partial ex vivo
expansion through copper chelation.

NOTCH-MEDIATED EXPANSION
Delaney and Collaborators have investigated a novel strategy of
ex vivo expansion based on the knowledge that Notch signaling
is involved in hematopoietic stem cell renewal and maintenance
(69–73). Mouse transplant models using ex vivo Notch-mediated
expansion of selected human umbilical cord CD34+ stem cells
have resulted in improved hematopoietic engraftment (74). Ex
vivo expansion of CD34+ HSC resulted in a 222-fold expansion
following culture for 17–21 days in the presence of fibronectin
fragments and immobilized engineered Notch ligand. A phase I
clinical trial was conducted in Seattle, in which 10 hematologic
malignancy patients with receiving myeloablative conditioning
and dUCBT with HLA matched to at least 4/6 HLA loci in each
unit. One unit was 100% ex vivo expanded and the other was not.
The median time to neutrophil engraftment was 16 days; grade II–
IV aGVHD was 100%. After a mean follow-up of 354 days, survival
was 70%.

Since most studies reported so far used a dUCBT or inves-
tigated expansion of a fraction of a single unit (Table 4), it is
unclear if expansion preserves the long-term engraftment capac-
ity. The expanded unit is outcompeted in dUCBT or fractional
models, as discussed above, but it is yet unknown whether
this phenomenon represents loss of engraftment-facilitating cells
(most expansion platforms deplete lymphocytes) or stem cell
exhaustion.

INTRAOSSEOUS TRANSPLANTATION
A significant proportion of hematopoietic stem cells do not reach
the bone marrow niche after intravenous (iv) infusion (75, 76).
In mouse models, intrabone (ib) injection of hematopoietic stem
cells improves engraftment, possibly by bypassing “trapping” in
organs such as the lung, liver, and kidney (77–82). Interestingly, ib
transplantation has also led to decreased GVHD rates in murine
models (83–85).

Hägglund and Colleagues conducted the first human studies
of ib transplantation (86). Thirty-four patients were random-
ized to either iv alone, ib alone, or iv+ ib following myeloabla-
tive conditioning. There were no differences in survival, engraft-
ment, or GVHD between groups. Of note, Technetium (Tc-99m)
scintigraphy imaging studies demonstrated similar stem cell body
distribution in all groups.

Frassoni and Collaborators performed 32 ibUCBT after mye-
loablative conditioning to treat hematologic malignancies (87).
The grafts were matched to at least 4/6 HLA loci and the median
TNC dose infused was 2.6× 107 c/kg. Median time to neutrophil
and platelet engraftment was 23 and 27 days, respectively. There
were no instances of grade III–IV aGVHD, and the authors sug-
gested there was a reduced risk of aGVHD with this strategy.
Interestingly, a subsequent study performed PET imaging sites
of ibUCBT recipients and found that platelet recovery correlated
with increased FDG uptake within the area of injection (88).

Studies performed by investigators at the University of Min-
nesota group were not able to reproduce these promising results.
Brunstein et al. published a study of 10 patients who under-
went dUCBT following myeloablative conditioning to treat hema-
tologic malignancies (89). One unit underwent ib infusion,
whereas the other was injected iv. The trial was closed ear-
lier due to futility given engraftment times similar to historic
numbers.

Recently, Carrancio et al. showed that ib co-transplantation
of MSC in combination with human CD34+ UCB cells led to
improved engraftment in a NOC/SCID mouse model (90). We
are now also investigating these intriguing observations, with the
hypothesis that human ib CB transplants can be improved by
“priming” with MSC.

Following the preliminary success of many of the above stud-
ies, many new trials are enrolling patients. Most new trials have
focused on novel methods of UCB engraftment or expansion.

ONGOING AND NEW STUDIES
Following the preliminary success of many of the above stud-
ies, many new trials are enrolling patients. Most new trials have
focused on novel methods of UCB engraftment or expansion.

Gamida Cell is sponsoring multicenter studies investigating ex
vivo expansion utilizing NiCord (copper chelation). One trial is
a dUCBT following myeloablative conditioning: one cord will be
100% expanded while the other will be unmanipulated. They are
also sponsoring a trial evaluating the safety of a single UCBT in
which a fraction of the unit is expanded with NiCord (Clinical
Trial identifier: NCT01590628, NCT01221857).

The University of Pennsylvania has opened a phase I study
where patients undergoing UCBT will have a part of the cord
expanded specifically for the generation of T cells that could be
used for adoptive immunotherapy after transplant (Clinical Trial
identifier: NCT00891592).

The Fred Hutchinson Cancer Center has opened a randomized
phase II trial comparing dUCBT with or without Notch-mediated
ex vivo cord expansion (Clinical Trial identifier: NCT01690520).
Another phase II study opened at that institution is investigating
the infusion of a non-HLA-matched ex vivo expanded cord (i.e.,
an “off the shelf” cord) combined with either a single or dUCBT
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(Clinical Trial identifier: NCT01175785). Both studies focus on
reducing engraftment time.

Dana Farber Cancer Institute investigators are exposing UCB
grafts to PGE2 with the goal of improving engraftment rates
(Clinical Trial identifier: NCT00890500).

The MD Anderson Cancer Center group (P.I. Elizabeth Shpall)
and Mesoblast are leading a randomized trial of dUCBT in which
one unit is ex vivo expanded using the MSC strategy discussed
above, versus controls receiving unmanipulated dUCBT grafts.
This trial is also open for accrual at University Hospitals Case
Medical Center,Case Western Reserve University, and other centers
in the U.S. and Europe (Clinical Trial Identifier: NCT00498316).

Shpall and Collaborators are studying fucosylation as a means
of increasing homing and engraftment of UCB. Fucosylation is
the process of adding fructose to a molecule. Ex vivo fucosylation
of cord blood CD34+ cells has shown to improve engraftment
in a NOD/SCID mouse model (91). In this trial, the UCB unit
is incubated with a fucosylating enzyme before transplantation.
It hypothesized that fucosylation may lead to faster engraftment
in humans by changing UCB CD34+ cell ligands (Clinical Trial
Identifier: NCT01471067).

CONCLUSION
Over the last 25 years, UCBT has become a valid source
of hematopoietic stem cells, allowing for increased access to
hematopoietic stem cell transplantation, particularly in patients
without available BMT or PBSC donors. Decreased engraftment
rates and kinetics are still important limitations of this hematopoi-
etic stem cell source. UCB engraftment has been the focus of
intensive basic and early clinical research and recent progress
indicates that several methods will become soon widely avail-
able to increase the applicability of this graft type. Future chal-
lenges to research in UCBT will include identification of the
optimal methods that expedite engraftment and immune recon-
stitution after transplant and the effect these methods will have
in GVHD, disease control, and long-term transplant complica-
tions. With the increased development of haploidentical donor
transplants, researchers will have the additional charge of per-
forming studies that accurately delineate the role of these two
alternative graft sources to allow a rational use of resources in
the new exciting reality of widespread availability of graft sources
for patients in need of an allogeneic hematopoietic stem cell
transplantation.
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