
����������
�������

Citation: Hong, Q.; Jiang, L.; Wang,

S.; Huang, J.; Sun, J.; Li, X.; Zuo, P.;

Yin, J.; Lu, J. One-Step In Situ

Patternable Reduction of a Ag–rGO

Hybrid Using Temporally Shaped

Femtosecond Pulses. Materials 2022,

15, 563. https://doi.org/10.3390/

ma15020563

Academic Editor: Alina Pruna

Received: 15 December 2021

Accepted: 3 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

One-Step In Situ Patternable Reduction of a Ag–rGO Hybrid
Using Temporally Shaped Femtosecond Pulses
Quan Hong 1, Lan Jiang 1,2,*, Sumei Wang 1,2, Ji Huang 1, Jiaxin Sun 1, Xin Li 1,2, Pei Zuo 1,2,
Jiangang Yin 3 and Jiangang Lu 3

1 Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology,
5 South Zhongguancun Street, Haidian District, Beijing 100081, China; 159540180@163.com (Q.H.);
wangsumei@bit.edu.cn (S.W.); huangji002@126.com (J.H.); sunjiaxin9@gmail.com (J.S.);
lixin02@bit.edu.cn (X.L.); zuopei1990@163.com (P.Z.)

2 Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
3 Han’s Laser Technology Industry Group Co., Ltd., 6 Building WanYan Industry Zone, Haoye Road,

Fuyong Town, Baoan District, Shenzhen 518103, China; yjg@hanslaser.com (J.Y.);
lujg101927@hanslaser.com (J.L.)

* Correspondence: jianglan@bit.edu.cn

Abstract: In recent years, metallic nanoparticle (NP)–two-dimensional material hybrids have been
widely used for photocatalysis and photoreduction. Here, we introduce a femtosecond laser reduction
approach that relies on the repetitive ablation of recast layers by usi–ng temporally shaped pulses
to achieve the fast fabrication of metallic NP–two-dimensional material hybrids. We selectively
deposited silver-reduced graphene oxide (Ag–rGO) hybrids on different substrates under various
fabrication conditions. The deposition of the hybrids was attributed to the redistribution of the
cooling ejected plume after multiple radiation pulses and the exchange of carriers with ejected plume
ions containing activated species such as small carbon clusters and H2O. The proposed one-step in
situ fabrication method is a competitive fabrication process that eliminates the additive separation
process and exhibits morphological controllability. The Ag–rGO hybrids demonstrate considerable
potential for chemomolecular and biomolecular detection because the surface-enhanced Raman
scattering signal of the enhancement factor reached 4.04 × 108.

Keywords: femtosecond laser; photoreduction; hybrid film; Ag–rGO; SERS

1. Introduction

Metallic nanoparticle (NP)–two-dimensional material hybrids have been adopted in
various fields, such as nanoelectronics [1,2], drug delivery [3], sensors [4,5], catalysis [6–9],
and energy [10]. Such hybrid films not only retain the inherent properties of their compo-
nent materials but also possess multiple new properties that single-component or multilayer
films do not have. For instance, reduced graphene oxide (rGO) and Cu nanowire hybrids
can be synthesized to improve the electrical conductivity, oxidation resistance, substrate
adhesion, and stability of transparent electrodes [11]. Furthermore, an Ag/rGO@CTFE
nanocomposite was presented as a promising photocatalyst for rhodamine B (Rh B) and
Evans blue dye degradation under visible light irradiation [12]. Hybrid films have many
useful functions and features in different areas.

Common methods of preparing hybrid nanostructures include physical deposition [13,14],
chemical reduction [15–17], photocatalytic reduction [18], electrochemical deposition,
solvothermal methods [17,19], and wave-assisted reduction [20–22]. Some of these methods
require the use of environmentally unfriendly reducing agents or additional posttreatment
processes. Certain other methods without the aforementioned drawbacks cannot precisely
control the morphology or stabilize the physical connection and chemical properties of
the hybrid. To improve on these methods, simplified processes for fabricating hybrid
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nanostructures, such as using environmentally friendly reductants [23,24] and employing
one-pot [17], one-step [25], and in situ [26] synthesis methods, have been adopted. How-
ever, additional posttreatment processes such as filtration, centrifugation, and annealing
are still required.

Laser direct writing, a one-step, in situ technique, can solve all these problems and
has been used in various areas such as microprocessing and nanoprocessing, multiscale
visualization, and surface-enhanced Raman scattering (SERS) applications [27–30]. Hy-
brid structures fabricated using laser in situ reduction have been compared with conven-
tional processes. Yu et al. [31] fabricated a TiO2–C-based pressure sensor device by using
laser radiation and attributed the advantages of the fabrication process to the absence of
thermal annealing, which is usually not involved in common, solution-based methods.
Rahim et al. [32] presented a Ag–C hybrid for creating flexible, highly conductive traces
fabricated using direct laser radiation. When compared with a conventional inkjet printing
process, the process was free from the sintering temperature of 200–350 ◦C. In addition,
laser direct writing has been used in SERS applications. Zuo et al. presented a femtosec-
ond reduction process for fabricating Ag–MoS2 and Pt–MoS2 nanohybrids for SERS and
hydrogen evolution reactions. The enhancement factor reached 1.32 × 107, and the detec-
tion limit was as low as 10−11 M [18]. Teoh et al. provided a straightforward method for
microlandscaping Ag NPs on rGO, which enhanced the SERS by up to 16 times [33]. This
study demonstrated the patternable reduction of a Ag–rGO hybrid by using temporally
shaped femtosecond pulses; the process enhanced SERS by up to 4.04 × 108. During the
fabrication process, Ag ions and GO were reduced simultaneously, and hybrid films with
controllable morphology were formed through three steps: coating, laser direct writing,
and cleaning. Patterned silicon and silica, which are representative of semiconductor and
insulator substrates, respectively, were used to prove the wide applicability of the proposed
method in different types of materials.

2. Materials and Methods
2.1. Materials

The GO dispersion (0.5 mg/mL, particles size ranges 0.5–5 µm and stacked layer
ranges 1–5) prepared by the common Hummers’ method, was purchased from XFNANO
Materials Tech Co., Ltd. (Nanjing, China). Silver nitrate (CAS 7761-88-8), sodium citrate
(CAS 68-04-2), and rhodamine 6G (CAS 989-38-8) were obtained from Acros Organics,
Fisher Scientific Worldwide (Shanghai) Co., Ltd. (Shanghai, China). Siliconslides (10 mm
× 10 mm × 1 mm, <100>, double-sided polished) and silica slides (10 mm × 10 mm ×
1 mm, double-sided polished) were purchased from Hefei Kejing Materials Tech Co. Ltd.
(Hefei, China).

2.2. Preparation of the Ag–rGO Precursor

The silver nitrate solution (5 mM) was prepared by adding 4.25 mg of silver nitrate
powder to 5 mL of deionized water. The GO dispersion (10 mL, 0.5 mg/mL) was mixed with
the silver nitrate solution under sufficient stirring. Subsequently, 3–5 drops (approximately
60 µL per drop) of the mixed solution were homogeneously dispersed on the substrate
(Si or SiO2) through spin coating at a speed of 500 µm/s for 20 s. The substrate was then
dried in a vacuum drying oven (DZF-6034, Shanghai, China) at 50 ◦C overnight to form the
Ag–rGO precursor.

2.3. Characterization

Scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS) im-
ages were captured using a microscope (Hitachi SU8220, Tokyo, Japan) operating at an
accelerating voltage of 10 kV. The thermogravimetric analysis (TGA) data were recorded on
a PerkinElmer Diamond TG-DTA (Waltham, Massachusetts, USA) instrument at a heating
rate of 20 ◦C min−1 in N2. The SERS signal excited by a 532 nm light source was collected
using a Raman spectrometer (Renishaw-InVia-Reflex, Gloucestershire, UK) operating at an
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exposure time of 10 ms and an excitation power of 0.1% of the laser output power. X-ray
photoelectron spectroscopy (XPS) measurements were conducted using a PHI Quantera X-
ray photoelectron spectrometer (Chigasaki, Japan) with a monochromatic Al Kα (1486.6 eV)
source. The spatial and energy resolutions were 100 µm and <0.48 eV (Ag 3d5/2 FHWM), re-
spectively. The TEM results for the Ag NPs were observed using a JEM-2100 (JEOL, Tokyo,
Japan) at an acceleration voltage of 80 kV. The samples were prepared by first patterning a
5000 µm × 5000 µm area of the Ag–rGO hybrid on a 10 mm × 10 mm × 1 mm SiO2 slide.
Subsequently, the slide was immersed in 5 mL of ethanol solution and sonicated for 30 min.
Lastly, the droplets of the aforementioned solution were dropped on the carbon-coated
electron microscopy grids, and the grids were dried overnight before measurement.

2.4. Experimental Setup

The fabrication system consisted of a femtosecond laser (Spitfire Pro-35F1KXP, California,
USA, wavelength: 800 nm, repetition rate: 1000 Hz, pulse width: 35 fs), a six-axis Stewart
platform (Physik Instrumente M-840.5DG) controlled by a computer, a charge-coupled device
camera, a Michelson interferometer (one of the retroreflectors was mounted on a linear
transition stage to change the length of one interferometer arm to control the time delay
between the divided pulses), and other optical devices for attenuating the power (Figure S1).

2.5. Synthesis of the Hybrid Structure on Different Substrates

A silicon or silica substrate with the Ag–rGO precursor layer was mounted on the
six-axis Stewart platform, and the Ag–rGO precursor layer was ablated by focusing the laser
on the surface. The substrate was then washed with deionized water several times until the
entire laser-untreated area was thoroughly cleaned. The residual pattern was dried under
ambient conditions.

3. Results
3.1. Controllable Morphology of the Ag–rGO Hybrid

Because temporally shaped femtosecond pulses can modulate surface structures and
photochemical processes by controlling the localized electron density and its distribution
in the ablation zone [34,35], the shape, size, and distribution of the Ag–rGO hybrid could
be manipulated. We administered overlapping radiation through multiple pulses at dif-
ferent powers with a scanning speed of 200 µm/s and a spot size of 2 µm to obtain a
rectangular pattern with varying amounts of Ag–rGO hybrid coating (see Figure S2). The
quantities, locations, and shapes of the reductions varied considerably with the fluence.
As illustrated in Figure 1, the reduced composite structure changed from an initial coral
shape into a granular morphology, and the granules then melted into larger particles. This
phenomenon can be attributed to two causes: repetitive fabrication of the recast layer and
the different reduction degree of silver. Repeated ablation within a short period in the same
area generates a high local temperature, accelerating the melting of the recast layer into
either a coralloid-like structure or NPs. The melting of the recast layer can also build a
strong connection between the Ag–rGO hybrids and the substrate, which prevents the
fabricated structure from being washed away during the cleaning process. At relatively
low energy, the ejected plasma could not be sufficiently heated to melt the recast layer
into NPs. Therefore, a coralloid-like structure was formed (Figure 1a,b). With suitable
energy, this structure then melted into NPs after absorbing sufficient heat (Figure 1c,d).
A further increase in the fluence caused the coralloid-like structure to melt and cluster
together (Figure 1e,f). Although the shape depended considerably on the fluence, the shape
obtained at a specific fluence was fixed, which made the morphology controllable.

The controllable size distribution of the Ag–rGO hybrid when applying a double
pulse with different time delays is depicted in Figure 2. The two overlapping pulses with
interferometric fringes led to optical intensity fluctuation, which resulted in the discrete
distribution of heat. In contrast to the morphology displayed in Figure 2d, the hybrid
tended to melt together, and it had a larger size when the two pulses were not separated
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(Figure 2a,b). However, with an increase in the pulse delay between the two subpulses,
the size of the NPs and the density of their distribution decreased. By controlling the
distance between the two pulses, different sizes and distributions of Ag–rGO hybrid films
were obtained (Figure 2c–f). The distribution density of the Ag–rGO hybrid films reached
the minimum value when the delay was 500 fs (Figure 2e). A possible mechanism for
this phenomenon was considered to be the energy redistribution and carrier exchange
promotion in the second pulse. When GO is laser ablated, it dissociates into small carbon
clusters, which subsequently combine to form larger clusters through collision; the size of
the GO carbon cluster ions are highly sensitive to the applied laser energy [36]. Separated
pulses cause a redistribution of energy and a difference in the excited electron density [34],
which then controls the ejection of cluster ions. Therefore, by using these temporally shaped
pulses, we can decrease the size of the ejection ions to promote the exchange of carriers.

Figure 1. Micromorphology of the Ag–rGO hybrid on SiO2 treated with a femtosecond laser at the
following fluences: (a) 0.035 J/cm2, (b) 0.071 J/cm2, (c) 0.178 J/cm2, (d) 0.354 J/cm2, (e) 0.708 J/cm2,
and (f) 1.288 J/cm2.

Figure 2. Micromorphology of the Ag–rGO hybrid on SiO2 treated using a femtosecond laser with
different time delays, a fluence of 0.354 J/cm2, and pulse widths of (a,b) 0 fs, (c,d) 300 fs, and (e,f) 500 fs.
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3.2. Characterization of the Ag–rGO Hybrid

During ablation, the Ag–rGO precursor exchanged its carriers and then cooled in the
surrounding area to form a recast layer that was assumed to be Ag–rGO [33,37]. To verify
the composition, the EDS spectra of the obtained white nanocomposite are presented in
Figure 3. Two zones marked by white arrows (see Figure 3a) reveal totally different Ag
signals (see Figure 3b,c) indicating that the white coralloid-like structure was composed
of silver or silver oxide. Not that the Si and Au signals can be originated from the silicon
substrate and the gold spraying process, respectively.

Figure 3. Characterization of the Ag–rGO film. (a) Morphology of the coralloid-like Ag–rGO hybrid
when the fluence was 0.035 J/cm2, (b) EDS results for the zone indicated by arrow 2, (c) EDS results for
the zone indicated by arrow 1. XPS Peakfit software results for the Ag–rGO precursor before and after
femtosecond laser direct writing: (d) complete spectra of the Ag–rGO precursor, (e) Ag 3d spectra of the
Ag–rGO precursor after laser direct writing. (f,g) C 1s and O 1s spectra of the Ag–rGO precursor before
laser direct writing, (h,i) C 1s and O 1s spectra of the Ag–rGO precursor after laser direct writing.

To further investigate the valence state of the hybrid and the reduction degree of
GO, XPS Peakfit software was used [38]; the results are presented in Figure 3d–h. The
spectra were fitted using Voigt lineshapes with a mixing ratio M of 0.2 (M = 1.0 represents
a pure Lorentzian function) and a Tougaard-type inelastic background [39,40]. XPS Peakfit
software was employed [38]. Figure 3d indicates the existence of C, O, and Ag in both the
laser-treated and laser-untreated areas. To verify that silver oxide was not contained in
the hybrid, binding energy (BE) values of 367.4 eV (AgO) [41], 367.7 eV (Ag2O) [42], and
368.3 eV (Ag) [43] were considered when fitting the Ag 3d spectra; no Ag(I) or Ag(II) states
were found (Figure 3e), demonstrating the existence of the metallic form of silver. As to the
fitting of the C 1 s spectra, different carbon forms such as C sp2 as the nonfunctionalized
planar carbon, C sp3 as the aliphatic nonfunctionalized tetrahedral carbon [44], and oxygen
groups such as hydroxyls, carbonyls, and carboxyls should be considered. Moreover,
studies have reported that the BE separation values of C sp3 and other oxygen groups
with respect to C sp2 were 0.7 eV (reduced graphene oxide) [40], 1.2–2.5 eV (C–OH),
2.1–3.5 eV (C=O), and 4.0–5.4 eV (C–OOH) [45], respectively. In general, the spectrum can
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be deconvoluted into six components with BEs of 284.5 eV (sp2 carbon in the aromatic
ring) [44], 285.2 eV (sp3 carbon) [39], 286.2 ± 0.2 eV (hydroxyl C–OH), 287.1 eV (epoxy
C–O–C), 288 eV (carbonyl C=O), and 289.2 eV (carboxyl C=O(OH)) [46,47]. The C 1s and
O 1s spectra of the Ag–rGO precursor before and after femtosecond reduction and the
corresponding atomic contents of C and O are listed in Table 1 and displayed in Figure 3e–h.
The decrease of the sp3 carbon bond from 34.6% to 19.1% corresponds to the increase of the
sp2 bond from 29.0% to 39.3% after femtosecond reduction and indicates the conversion of
tetrahedral carbon to planar carbon and the partial reduction of GO [39].

Table 1. Atomic content of the C and O chemical groups before and after laser ablation.

Before
Femtosecond

Ablation

C 1s group content (at. %), (BE (eV))

C sp2

(284.5)
C sp3

(285.2)
C-OH
(286.2)

C-O-C
(287.1)

C=O
(288.0)

C-OOH
(289.2)

29.0 34.6 13.8 12.1 4.5 6.0

O 1s group content (at. %), (BE (eV))

C-OH
(532.6)

C-O-C
(533.3)

in carboxyl group C=O
(531.9)

35.1 23.7 35.7

After Femtosecond
Ablation

C 1s group content (at. %), (BE (eV))

C sp2

(284.5)
C sp3

(285.2)
C-OH
(286.4)

C-O-C
(287.1)

C=O
(288.0)

C-OOH
(289.2)

39.3 19.1 22.7 5.2 8.7 5.0

O 1s group content (at. %), (BE (eV))

C-OH
(532.6)

C-O-C
(533.3)

in carboxyl group C=O
(531.9)

42.5 25.5 32.0

The high-resolution transmission electron microscopy results displayed in Figure 4
further reveal the structure of crystalline silver and its orientation. The d-spacing of Ag–rGO
was 2.45 Å and close to the value corresponding to Ag (111) (JCPDS no. 89-3722), which
suggests the Ag (111) facet on the surface of the Ag NPs. The reduction of the Ag NPs can
change the morphology of Ag–rGO hybrid and promote the melting of the recast layer as
shown in Figure S5.

Figure 4. High-resolution transmission electron microscopy images of the Ag–rGO hybrid; (a) scar
bar = 100 nm, (b) scar bar = 10 nm.

3.3. Formation Mechanism of the Ag–rGO Hybrid

Studies have examined how H2O molecules play an important role in the synthesis
of silver nitrate and GO under liquid conditions [33,37,48]. The absorption of H2O by GO
and the Ag–rGO film ensure the occurrence of an in situ reduction. The TGA results of
GO and Ag–rGO (See Figure S3) show a significant mass loss under 100 ◦C, which can be
assigned to the absorption of H2O by GO [49,50].The mechanism of interaction between
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the Ag–rGO precursor (silver nitrate and graphene oxide) and a laser in a vacuum or under
a background gas condition has been investigated in detail. Xu et al. [43,51] discussed
the mechanism of the selective metallization of a silver nitrate film on insulators and the
localized melting and quasi-welding role of femtosecond direct writing. The reaction for
the reduction of a AgNO3 film during ablation by a femtosecond laser is assumed to be
as follows:

2AgNO3 → 2Ag + 2NO2 ↑ +O2 ↑ (1)

The interaction between GO and a laser has also been investigated. During ablation,
the ejected GO plume includes numerous carbon cluster ions. The large carbon cluster disso-
ciates into small carbon clusters, which subsequently combine and cool around the ablation
area to form the recasting layer. The ejected plume also includes other activated species
such as electrons, atoms, and released gases such as H2O, NO2, O2, and CO2 [36,52,53].

The ejected plume, which contains carbon cluster ions, plays a key role in the in situ
reduction of the Ag–rGO hybrid. A tentative mechanism for this process is illustrated in
Figure 5. When the Ag–rGO precursor was ablated by the laser, the electrons and holes of
GO were excited, and the critical electron density was quickly exceeded, which resulted in
ablation. The ejecta contained carbon cluster ions and silver ions, which exchanged their
electrons with the assistance of H2O. The in situ reduction of the Ag–rGO hybrid can be
represented as follows [33]:

GO hv→ GO(h++e−) (2)

GO
Multiple Radiation−−−−−−−−−−→ carbon clusters + CO2+H2O (3)

4h++ H2O→ O2+4H+ (4)

Ag++ GO
(
e−

)
→ GO + Ag (5)

GO + 4e++ 4H+ → rGO + H2O (6)

Figure 5. Formation of the Ag–rGO hybrid during ablation by a femtosecond laser.

3.4. Mapping of the Ag–rGO Hybrid and its SERS Application

Flexible or controllable reduction and mapping of Ag–rGO have considerable appli-
cations in microdevices and SERS. The high-resolution fabrication of conductive circuits
on various substrates under different fabrication conditions is applicable to microdevices.
The method of laser direct writing the Ag–rGO composite can be applied in various en-
vironments and with various substrates. A microscale “BIT” letter pattern was coated on
silica (Figure 6a) by using a far-focus objective lens (50×, NA = 0.5) under ambient environ-
mental conditions. The corresponding EDS mapping images of the pattern are displayed in
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Figure 6b–d. The results reveal a uniform distribution of C and Ag after reduction by the
femtosecond laser (Figure 6b,d). The distribution of O barely changed (Figure 6c); oxygen
was partially removed as GO was reduced, and consequently, the amount of oxygen in
the laser-treated area was considerably lower than that of silica. The microlandscaping
of the Ag–rGO on different substrates under aqueous conditions is illustrated in Figure
S4 and presented in Table S1. The successful deposition of silver-reduced graphene oxide
(Ag–rGO) hybrids on Si or SiO2 under various fabrication conditions proves that this
one-step, in situ, patternable reduction method can be used in different substrates.

Figure 6. Mapping of the Ag–rGO hybrid on the silicon substrate and the elemental distribution of
the hybrid obtained through energy-dispersive X-ray spectroscopy: (a) signal collecting area, (b) C,
(c) O, and Ag(d).

This method can also be applied for molecular detection; SERS spectroscopy is one of
the most popular methods for measuring the sample molecule. The controllable reduction
of metallic NPs is critical for obtaining the maximum detection limit because this process
enhances excited localized surface plasmon resonance. In this study, the SERS spectra
of rhodamine 6G (R6G) were used to verify the application of Ag–rGO. A total of 20 µL
of 1 µM R6G solution was dropped on the surface of the hybrid structure, which was
dried under ambient environmental conditions. For comparison, 20 µL of 10 mM R6G
solution was dropped on the surface of the non-laser-treated area. The SERS signal was
collected using a 532 nm laser. For the quantitative analysis of the enhanced Raman signal,
the estimation of the enhancement (G) factor is essential. This can be calculated from the
following equation [54]:

EF =
ISERS

Iref
× Nref

NSERS
× Pref

PSERS
(7)

where ISERS is the measured SERS intensity for the probe molecules on the nanoparticle
surface, Iref is the measured intensity of normal Raman scattering from the substrate, NSERS
is the concentration of the probe molecules used on the Ag–rGO hybrid sample, Nref is
the concentration of the probe molecules used on the substrate, PSERS is the power used
for probing the Raman signal on the concentration of the probe molecules, and Pref is the
power used for probing the Raman signal on the substrate. Here, the enhancement factor
was calculated for the R6G Raman spectra with a 532 nm laser excitation. The prominent
band at 1649 cm−1 (aromatic C-C stretching vibration [55] was chosen for calculating the
EF. Because neat R6G is highly fluorescent, 0.01 M R6G aqueous solution was analyzed for
the substrate Raman spectra. The concentration of R6G adsorbed on the rGO–Ag thin film
was 1 × 10−6 M. With the assumption that the R6G molecules spread homogeneously on
the sample, the ratio between the R6G molecules was predicted to be in direct proportion
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to the ratio between the concentrations. To make the Raman signal of the substrate evident,
the probe power was enhanced to 100 times relative to that of the Ag–rGO hybrid. Figure 7
indicates that the enhancement factor varied with the fluence and the delay between the
two subpulses. As shown in Figure 7a,b, the maximum enhancement factor reached was
EF = 28699/71 × 100 × 104 = 4.04 × 108 when the fluence was 0.708 J/cm2 and the delay
was 1 ps. The fluctuation of the enhancement factor was mainly caused by the different
shapes and distributions of metallic NPs.

Figure 7. Raman spectra of R6G when the power was varied from 0.178 to 1.399 J/cm2 (a) and when
the time delay was varied from 0 to 1 ps at a fixed power of 0.708 J/cm2 (b).The concentration of R6G
used in the laser-untreated area was 10−2 M, and the concentration used in other areas was 10−6 M).

4. Conclusions

In summary, femtosecond laser direct writing of the Ag–rGO hybrid was demonstrated
to be a method unlimited by the substrate material or processing environment. Patterning
of the Ag–rGO hybrid on the silicon and silica substrates was displayed under ambient
and aqueous conditions. By using temporally shaped femtosecond pulses, the fabrication
and transfer of the hybrid were considerably simplified. The controllability of the proposed
approach was demonstrated by examining the morphology with changes in the fluence
and the delay between the two subpulses. The thermal effect accumulation of multiple
pulses and the synergistic effect between GO and Ag NPs were assumed to be the two
main reasons for the controllability of the reduction. The characterization results further
verified that silver NPs and graphene oxide were simultaneously reduced. Moreover, the
Ag–rGO hybrid was applied to an SERS application with good Raman signal enhancement,
indicating excellent potential for photoreduction and photocatalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15020563/s1, Figure S1: Experimental setup; Figure S2: Mor-
phology of the Ag–rGO hybrid on SiO2 treated with the femtosecond laser at various fluences;
Figure S3: TGA results of the GO and Ag–rGO hybrid; Figure S4. Mapping of the Ag–rGO hybrid
under different conditions, with various substrates; Figure S5. Micromorphology of the GO on SiO2
treated with a femtosecond laser at the following fluences: Table S1: Main parameters of the different
synthesis methods.
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