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Abstract. Older patients with depression or Alzheimer’s disease (AD) at the stage of early dementia or mild cognitive
impairment may present with objective cognitive impairment, although the pathology and thus therapy and prognosis differ
substantially. In this study, we assessed the potential of an automated algorithm to categorize a test set of 65 T1-weighted
structural magnetic resonance images (MRI). A convenience sample of elderly individuals fulfilling clinical criteria of either
AD (n=28) or moderate and severe depression (n=37) was recruited from different settings to assess the potential of the
pattern recognition method to assist in the differential diagnosis of AD versus depression. We found that our algorithm learned
discriminative patterns in the subject’s grey matter distribution reflected by an area under the receiver operator characteristics
curve of up to 0.83 (confidence interval ranged from 0.67 to 0.92) and a balanced accuracy of 0.79 for the separation of depres-
sion from AD, evaluated by leave-one-out cross validation. The algorithm also identified consistent structural differences
in a clinically more relevant scenario where the data used during training were independent from the data used for evalu-
ation and, critically, which included five possible diagnoses (specifically AD, frontotemporal dementia, Lewy body dementia,
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depression, and healthy aging). While the output was insufficiently accurate to use it directly as a means for classification

when multiple classes are possible, the continuous output computed by the machine learning algorithm differed between the
two groups that were investigated. The automated analysis thus could complement, but not replace clinical assessments.

Keywords: Alzheimer’s disease, depression, magnetic resonance imaging, supervised machine learning, support vector

machine

INTRODUCTION

In the elderly population, depressive symptoms
are frequently associated with cognitive impairment
which can also be a manifestation of a neurodegen-
erative disorder [1]. As clinical symptoms of old age
depression are particularly variable and impact cogni-
tive performance, the distinction between depression
and mild cognitive impairment or mild dementia due
to a neurodegenerative disorder is often challenging
[2]. This is illustrated by the term pseudo-dementia
[3] which refers to the cognitive impairments related
to depression. Reliable figures on the frequency of
misdiagnosis are difficult to obtain as depressive
symptoms may be an early sign of neurodegeneration
[4]. Reports indicate that around 30% of referrals to
a memory clinic had symptoms of depression and no
evidence of dementia [5]. Those figures could, how-
ever, be an overestimation as general practitioners
may refer patients who fear early signs of dementia
with the aim to exclude that.

Both dementia due to Alzheimer’s disease (AD)
and depressive symptoms are frequent in the elderly
population. Given the substantial prognostic and ther-
apeutic differences between depression and AD in
its early clinical stages (mild cognitive impairment
(MCI), and mild dementia due to AD), an accurate
diagnostic distinction is necessary. Studies examin-
ing the classification accuracy of specific diagnostic
tools such as cued recall [6] found that MCI could be
separated from depression with a sensitivity of 0.58
and a specificity of 0.85.

Cerebral imaging is part of the recommended
workup for suspected dementia. It may aid in the
differential diagnosis and provides more objective
markers than the assessment of symptoms. Although
subjects with late-life depression often show more
atrophy compared to healthy aging in a number of
brain regions, including the hippocampus [7], the
pattern of structural changes is not completely over-
lapping with that of AD [8]. Two studies reported
a negative correlation between hippocampal volume
and the duration of depression [9, 10] but more recent
large studies and reviews failed to confirm such find-
ings [7, 11].

So far, no study has attempted to separate early
symptomatic stages of AD, including MCI, from
depression at the level of the individual patient using
MRI and automatic image analysis. As current evi-
dence indicates that a combination of distributed
regions will be most informative for this separation
[8], pattern recognition methods are ideally suited
for that purpose [12]. Automated multivariate MRI
based volumetry separates dementia due to AD or
MCI from healthy aging [13—17], but also, clinically
more challenging, separates between different types
of dementia [18, 16, 19], or between those with MCI
who convert to dementia or remain stable [20-25].
Recently, these methods have also been applied to
patients with late-life depression and successfully
separated those with future cognitive decline from
those remaining stable [26]. Technically, these super-
vised machine learning methods identify separating
patterns of grey matter (GM) changes from training
data and apply it to separate testing data.

We set out to assess the ability of an automated
pattern recognition algorithm to separate patients
with depression from patients with early dementia
or MCI based on structural MRI. We investigated
two scenarios. In the first scenario, data from the
same imaging center served for training and eval-
uation using a cross-validation scheme, a scheme
typical for research studies [12]. In the second,
clinically more relevant and more challenging set-
ting, the algorithm was trained with external data
which included five diagnostic categories (specif-
ically, patients with AD-dementia, frontotemporal
dementia, Lewy body dementia, depression, and
healthy elderly). We hypothesized, that automatically
generated scores derived from structural MRI could
provide similar or better discriminative performance
than neuropsychological tests [6] and thus could serve
as complementary diagnostic tool.

MATERIAL AND METHODS

Study design

This study was set up as a retrospective study to
complement previous work on differential diagnosis
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[19] with a new research question in which we
hypothesized that the employed machine learning
algorithm would be able to discriminate between
elderly subjects with early dementia and those with
old age depression.

Data sets and clinical characterization

For the within center analysis (first scenario in
Fig. 1), we identified a convenience clinical sam-
ple of 65 individuals from a single site (Department
of Geriatric Psychiatry, Mannheim, Germany) with
either (1) diagnosis of dementia, which was proba-
bly caused by AD (NINCDS-ADRDA Alzheimer’s
Criteria after McKhann et al. [27]), or (2) diagnosis
of moderate or severe depression (Table 1). A sub-
set of patients of the latter group has already been
included in a previous study [28]. Subjects with mod-
erate or severe symptoms of dementia (MMSE<20)
were excluded as the identification of progressed
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dementia is less challenging. Furthermore, we did
not include individuals with AD and relevant current
depressive symptoms. Depression was excluded over
the diagnostic course of dementia through psychiatric
examination by an experienced psychiatrist. The 37
cases with depression (but no clinical indication of
AD) fulfilled ICD-10 criteria for moderate or severe
depression and had an average Hamilton Rating Scale
for Depression score [29] of 23.0+/-8.4, reached
32.9+/-7.5 on the Montgomery—Asberg Depression
Rating Scale (MADRS) [30] and were aged 60
or above. The classification of the MADRS into
severity categories according to [31] mirrored the
ICD-10 classification as all these patients had a
moderate (17<MADRS<23) to severe (MADRS>24)
depression. We also report the fraction of relaps-
ing versus first episode depression. Structural T1
weighted MRI of this population were acquired on
a Siemens TimTrio with 1.9 seconds repetition time,
2.32 milliseconds echo time, and 9° flip angle at a
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Fig. 1. Use of the three data sets to estimate hyperparameters for the regression model (A), producing binary cross-validation predictions
(B), and multi-class predictions based on a model that was independent from the test data (C). Each leave-one-out cross-validation fold and
the training of the multi-class SVM involved a grid search with a series of inner cross-validation loops to find the optimal SVM parameter
C (see the Methods for more details).

Table 1
Demographics and basic clinical information on training and test data set including healthy controls (HC), patients with mild cognitive
impairment or dementia due to Alzheimer’s disease (AD), patients with depression (DEP), frontotemporal dementia (FTD), or Lewy body

dementia (LBD)
Diagnostic group Group size (female) Mean age [y] =1 SD Mean MMSE + 1 SD Relapsing depression

TEST AD 28 (16) 69.3+£104 243£25 n.a.
DEP 37 (21) 723+6.3 27.3+3.4 (n=26) 18

TRAIN AD 360 (178) 752738 23.1+2.0 n.a.
DEP 24 (16) 704+5.0 n.a. 15

FID 39 (19) 58.6+64 245+3.8 n.a.

LBD 23 (7) 73.4+4.6 227435 n.a.

HC 586 (299) 747+5.8 29.0+1.2 n.a.

Note. The mini-mental state examination score (MMSE) from patients with depression was available only from 26 subjects of the test set.
Healthy controls were used to correct for confounding effects of sex, age, and total intracranial volume.
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magnetic field strength of 3 Tesla using a 32 channel
head coil. The acquired images had 192 x 192 x 160
voxels with 1 mm isotropic voxel size. All included
MRI scans were free of major artefacts as judged by
visual inspection of the T1 weighted image by a sin-
gle rater and the according neuro-radiological report
did not mention other neurological disorders except
white matter hyperintensities [28]. The set also served
as test set in the second scenario as detailed below.

For the prediction based on independent training
data (second scenario in Fig. 1), we employed an inde-
pendent training set. The data set included elderly
healthy controls as well as patients with demen-
tia, including AD-dementia, Lewy body dementia
and frontotemporal dementia. All cases, expect those
with depression have been reported previously [19].
In brief, data consisted of a combination of data
sets from public and non-public sources acquired
in a large number of sites with various scanner
types and different T1 weighted protocol variants.
There were substantial differences in the number
of cases per class (ngc =586, nap =360, nprp =39,
npp =23, npgp =24) and in the age distribution per
diagnostic group and site. A portion of the publicly
available training data was from the ADNI-study
(http://www.adni-info.org) and from the AIBL study
(http://www.aibl.org). The ADNI was launched in
2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year
public- private partnership. The public database
provides extended longitudinal data including neu-
ropsychological tests, genetic data, imaging, and
cerebrospinal fluid data. We included the same data
set as previously used for training [19] that had four
diagnostic classes and added a class of patients with
depression to complete the training data set. Of note,
since we excluded patients with MMSE lower than 20
only in the test set inclusion criteria differed between
training and test set.

Patients with depression contributing to the train-
ing set were recruited from regular clinical routine at
a single centre (Freiburg, Germany) and totalled 24
cases, treated in the psychiatric hospital with a diag-
nosis of either first episode or relapsing depression
according to ICD-10 criteria for moderate or severe
depressive episode. Additional inclusion criteria were
an age above 50 years and a cerebral MRI scan with-
out contrast agent and without major artefacts less
than a year apart from the hospitalisation. Subjects

with a cerebral disorder (such as stroke, long-term
alcohol abuse or Parkinson’s disease) were excluded.
MR-sequences that would allow to reliably quantify
subtle white matter hyperintensities were not always
available. Subjects were therefore included unless
clinical reports indicated symptoms typically associ-
ated with white matter pathology (cognitive slowing,
focal neurological signs). The structural MRI data
were acquired on a Siemens TrioTim with 1.44 sec-
onds repetition time, 2.15 ms echo time, and 15° flip
angle at a magnetic field strength of 3 Tesla using a
32 channel head coil. The acquired MRI images had
256 x 256 x 160 voxels and 1 mm isotropic voxel
sizes.

The study was carried out in accordance with
the latest update of the Declaration of Helsinki and
approved by the local ethics committees (primary
site: University of Freiburg, Ethics ID 89/15).

MRI processing

The MRI pre-processing was the same as that in
our previous study [19] and is depicted in Fig. 2. The
main steps include estimation of GM probability
maps and transformation into common template
space, warp and modulation of GM probability maps,
extraction of four feature sets and correction of effects
of age, sex, and intracranial volume. T1 weighted
images were segmented using VBMS (http://www.
neuro.uni-jena.de/vbm/download/), a toolbox for
SPMS8  (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/) implemented in Matlab R2015a (http:/
www.mathworks.com). The resulting GM prob-
ability maps were non-linearly transformed into
a common space using DARTEL [32] and cor-
rected for local volume changes due to the spatial
transformation. After these procedures, the value
in each voxel represents local GM tissue volume.
Classification was based on the combination of four
sets of features. Two feature sets consisted of local
GM volumes across the whole brain GM at each voxel
either sampled without spatial smoothing at 1.5 mm
isotropic voxel spacing defined by the common
template space or after smoothing with an isotropic
Gaussian filter with 8 mm full width at half maximum
sampled at 2 mm resolution of the LONI probabilistic
brain atlas (LPBA) [33]. Two feature sets were
constrained to regions of interest. One consisted of
the 56 weighted averages over anatomical regions,
whereby for each region each voxel was weighted
by the probability for the respective region in the
LPBA. The second regional feature set consisted of
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Fig. 2. Data pre-processing for extraction of the raw features for each individual T1 weighted image. The pipeline extracts four different
features sets from the native T1 image, including smoothed and unsmoothed voxel-wise local grey matter (GM) volumes, average GM volumes
of seven ROIs identified in an independent meta-analysis [8], as well as weighted averages of local GM volumes weighted by the LONI
probabilistic brain atlas (LPBA) [47]. The estimation of local grey matter was computed using the VBMS toolbox (http://www.neuro.uni-
jena.de/vbm/) with default parameters and modulation by the Jacobian determinant of the local non-linear deformation field. The number of
features per feature set varies between 7 (spherical ROI features) and 254255 (unsmoothed voxel features).

the average local GM values of voxels within seven
spherical ROIs with a diameter of one centimetre.
The coordinates of the centre of the spheres of these
ROIs were taken from a meta-analysis that identified
regions with consistent differences in GM between
healthy controls and patients with late life depression
[8]. Prior classification, we corrected the data for
effects of age, sex, and total intracranial volume
using Gaussian process regression with a non-linear
covariance function with age, sex, and total intracra-
nial volume as covariance factors. We followed
the approach of [34], whereby Gaussian process
regression was employed to estimate the effects of
the covariates using a covariance function that can
account for linear as well as non-linear effects. The
variance-bias trade-off was balanced by maximizing
the log marginal likelihood with respect to a set of
hyperparameters of the covariance function. Only the
group of healthy controls was used to estimate the
regression parameters, as we aimed to estimate the
effects of healthy aging only.

SVM-based classification

GM image data that was corrected for age, sex,
and total intracranial volume were classified using an
SVM classifier [35]. Briefly, an SVM is a machine
learning method that learns a function to separate
two classes based on training examples. In prac-
tice, SVMs perform well on high dimensional data
and are computationally very efficient, even with
hundreds of thousands of dimensions that are typi-

cal for MRI data, where every voxel of a processed
image is one feature. Extensions of the classical for-
mulation of SVM classifiers include probabilistic
outputs and multiple classes [36—38]. As in our pre-
vious work [19], we employed a soft margin SVM
with a linear kernel using freely available software
(https://www.csie.ntu.edu.tw/~cjlin/libsvm; version
3.22). The kernel function was the weighted sum of
the dot product of the whole-brain feature set and the
dot product of the voxels within the ROIs. To balance
the importance of both feature sets we normalized the
kernel matrices such that the mean of the diagonals
were equal to one before summing them up. We also
tuned the SVM cost hyperparameter C using a nested
cross-validation (10 folds in the inner partitions) by
selecting in each outer fold the cost C among the
candidates C={exp(-4), exp(-3.9), exp(-3.3), ...,
exp(2)} which had highest accuracy.

For the single center data analysis, we aimed to
categorize individuals into one of two groups using
a leave-one-out cross-validation scheme. We quanti-
fied the diagnostic accuracy by assessing the receiver
operating characteristics (ROC) curves and respec-
tive area under the curve (AUC) using the scaled,
probabilistic output of the SVM [36] which ranges
from zero to one and sums up to one across the
two classes. We denote the continuous probabilis-
tic outputs of the binary classifier trained with data
from patients with AD or patients with depression
as cv_pDEP and cv_pAD. Note, that cv_pAD=1-
cv_DEP, as the two values sum up to one. The class
AD was defined as the positive class. We also pro-
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vide the balanced accuracy obtained with a threshold
of cv_.pAD=0.5 as a measure of classification per-
formance in the case that the algorithm is forced to
make a decision.

For the second scenario, we trained an SVM
classifier with five possible diagnoses (specifically,
AD-dementia, fronto-temporal dementia, Lewy body
dementia, depression, and healthy aging) and thereby
extended our previously published classifier [19] as
it now also included a group of subjects with depres-
sion. Since the test data were acquired at a different
site, there was a strict separation of data used for
training and data used for evaluating the perfor-
mance, thus mimicking a prospective study. Of note,
when classifying multiple classes, the SVM multi-
class algorithm first learns multiple binary classifiers
[39] and then aggregates the results and scales them
between zero and one to produce one probabilistic
output per class for each subject [38]. The five pre-
dicted class probabilities for each subject sum up to
one.

We provide code necessary to replicate the pre-
processing, feature extraction, correction for covari-
ates, and classification at http://github.com/abdulka/
mri-classification.

Evaluation of performance

We computed the ROCs based on the (pseudo-)pro-
babilistic classifier outputs. In the first scenario,
we used the cross-validated posterior predictions.
For the discrimination performance of AD versus
depression of the multi-class classifier, we report the
ROCs based on the multi-class probability of AD
(mc_pAD), depression (mc_pDEP), and healthy aging
(mc_pHC). We also illustrate the class-wise distribu-
tion of the three aforementioned probabilities with
boxplots including all individual data points. For

Table 2
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consistency, the class AD was defined as positive
class and in case of the output for healthy controls
and depression, we used 1-mc_pHC and 1-mc_pDEP
to compute the ROC curves and plot associated char-
acteristics such as sensitivity and 1-specificity. The
classification performance at a pre-defined cut-off is
reported as sensitivity and specificity at the default
threshold of 0.5. We report the area under the ROC
curve as a quantitative measure of how well the clas-
sifier can discriminate between two classes without
enforcing a pre-defined cut-off. To obtain pointwise
confidence bounds we created 1000 bootstrap repli-
cas at each threshold. If the 5% confidence bound of
the area under the ROC curve was above 0.5, we reject
the hypothesis that the result was obtained by chance
alone. In addition to the ROC analysis, we report
confusion matrices when the class label was deter-
mined by the class that obtained the highest posterior
probability.

RESULTS

We quantified the classification performance by
area under the ROC curve, sensitivity (true positive
rate), specificity (1-false positive rate), and balanced
accuracy. We report the numbers on Table 2 and
illustrate the results in Fig. 3. In the within site cross-
validation analysis, the area under the curve was
0.83 and the estimated lower confidence bound was
0.67 and the upper confidence bound was 0.92. The
balanced accuracy of the scenario evaluated by cross-
validation was 0.79. The area under the curve based
on the mc_pHC — the probability of class HC obtained
from the the multi-class classifier — was similarly
high. In contrast, the balanced accuracy of the cross-
validation was at least 0.12 percent points higher than
that obtained with any of the multi-class outputs.

Performance was evaluated in groups of patients with mild cognitive impairment dementia due
to Alzheimer’s disease (AD) and patients with depression (DEP)

Classification Output AUC [CI] SE SP BAC
AD > DEP cv_pAD 0.83 [0.67 0.92] 0.89 0.71 0.79
AD > DEP mc_pAD 0.74 [0.58 0.84] 0.70 0.61 0.67
AD > DEP 1-mc_pHC 0.84 [0.69 0.93] 0.43 0.86 0.63
AD > DEP 1-mc_pDEP 0.51 [0.36 0.66] 0.03 0.93 0.50

Evaluation of the classification performance of the test set obtained either by cross-validation (cv_pAD)
or with multiple outputs of an independent multi-class classifier, specifically, multiclass probability for
AD (mc_pAD), healthy (mc_pHC), and depression (mc_pDEP). The reported performance is based on the
receiver operation characteristic curves (Fig. 3, top row). We report sensitivity and specificity at the 0.5
probability threshold of the classifier output. AD is defined as the positive class. AUC, area under the curve;
95% CI, confidence interval; SE, sensitivity or true positive rate; SP, specificity or 1-false positive rate;

BAC, balanced accuracy.
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Fig. 3. Class-probabilities for individuals and corresponding box plots (bottom row) grouped by diagnosis (AD/DEP) and prediction output
(background color) with according receiver operator characteristics plots (top row). The bottom panel shows the class probabilities estimated
by the cross validation (light blue, cv_pAD) and three class probabilities estimated by the multi-class classification, specifically, probability
for AD (mc_pAD, orange), probability for HC (mc_pHC, yellow), and probability for depression (mc_pDEP, violet). The graphs in the top
row use the same color-codes as the background in the bottom row and plot true versus false positive rate and highlight the positions at
different probability thresholds (0.25/0.75 as dots and 0.5 as asterisk). AD, Alzheimer’s disease; DEP, depression.

Table 3
Confusion matrix of reference test and multi-class classifier decision

Index test (multi-class prediction based on structural MRI)

AD DEP HC FTD LBD )
Reference test AD 18 3 5 2 0 28
(clinical DEP 13 2 20 2 0 37
examination) b 31 5 25 4 0 65

Area under the curve and balanced accuracy based
on mc_pDEP — the probability of class DEP obtained
from the multi-class classifier — was at chance level
and almost all values were below 0.5. Additionally,
the area under the curve of the conditional probabil-
ity of AD given that only AD or DEP were possible
(computed as mc_pAD/(mc_pAD+mc_pDEP) was
substantially worse than the area under the curve
of mc_pAD - the probability of class AD obtained
from the multi-class classifier. The distributions of
estimated class-conditional posterior probabilities of
AD and HC cases are relatively similar in the cross-
validation experiment compared to the multi-class
estimations (Fig. 3). In the cross-validation pre-
dictions, the median of AD cases is 0.31 and the
median of DEP cases is 0.75 and inter-quartile dis-
tances are 0.35 and 0.28 for the cases AD and DEP,
respectively. The median of the multi-class poste-

rior probabilities of the AD cases was lowest for
mc_pHC (median: 0.02, interquartile distance 0.08)
and highest for mc_pAD (median: 0.56, interquartile
distance: 0.45). The multi-class posterior probabil-
ity estimates for HC cases were lowest for mc_pDEP
(median: 0.03, interquartile distance 0.10) and high-
est for mc_pHC (median: 0.46, interquartile distance:
0.44). Table 3. shows the confusion matrix of the
classification result. Sixty-four percent of the AD
patients were classified as such by the machine. Only
five percent of patients with depression were cor-
rectly classified. Fifty-four percent of patients with
depression were classified as healthy controls.

DISCUSSION

We complemented our previous study on employ-
ing automated diagnosis in clinically relevant and
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challenging scenarios [19] by adding old age depres-
sion as additional class, using training data from
clinical practice, while keeping the data set and prin-
ciple methodology as previously [19] in order to
minimize the risk of a false positive finding given the
small sample size. Since the differentiation between
early AD and old age depression is challenging and
the diagnoses of the test data were not validated
with follow-up analyses or nuclear medicine, the
reference test that defined the class labels was not
certain.

The ROC curves and AUC of the cross-validation
results indicate that the multivariate classification
algorithm found structural features in the GM maps
that differentiate patients with early dementia due to
AD and patients with depression. Furthermore, the
balanced accuracy was 0.79. As for other similar
studies, the results reported in this study are asso-
ciated with rather large confidence intervals due to
the small sample size. A meta-study that collectively
reported the classification accuracies of more than
200 studies that were conducted between 1994 and
2015 of various methods, modalities and disorders,
including major depression disorder and AD revealed
alarge range variability in the reported accuracy [40].
Specifically, for the classification of major depres-
sion disorder versus healthy controls, the accuracies
ranged from 60 to almost 100 percent. Although
structural changes related to depression in the elderly
have been reported [8], these changes are likely far
more subtle compared to those inflicted by a neurode-
generative disorder. The classification performance,
when evaluated on a model trained for multi-class
differential classification of three types of dementia,
depression, and healthy aging, varied substantially
dependent on the output of the classifier. Almost all
cases with AD appeared as clearly not healthy (Fig. 3,
third column, mc_pHC). Specifically, the median of
the AD cases was 0.02. The estimated probabilities
for healthy controls (mc_PHC) of the DEP cases were
spread widely and the median was below 0.5. Both,
cases with AD and cases with Depression, had a
low median (<0.1) and small interquartile distance of
mc_pDEP which was also reflected by an area under
the curve close to 0.5. Thus, while the group of AD
cases appeared distinctively in terms of mc_HC, the
group of DEP cases did not. Further supporting the
hypothesis that the DEP group did not show con-
sistent differences with the group of HC. A high
number of algorithms for classification of disease
states based on brain MRI exist and employ a wide
range of pre-processing and classification algorithms.

See [41] for an overview of classification methods
in dementia from a pattern classification perspective,
[42, 14] for examples of works that compared algo-
rithms directly in the context of dementia, and [40]
for a meta-study of reported performances across a
wide range of data sets, MRI modalities, disorders,
and classification methods. Some of those methods or
modifications to our method such as unequal class-
weights and optimization of the SVM cost C within
each one-versus-one classification may achieve bet-
ter performance. Testing across a range of algorithms
could however lead to too optimistic results unless
appropriate validation strategies are in place. We
thus refrained from those modifications to maintain a
methodological consistency with our previous work
[19], as we used it in combination with a data set
that also was used for this study. For the evalua-
tion based on outputs of the multi-class classifier,
specifically mc_pAD and mc_pHC, the lower con-
fidence bound remained above 0.5, which means that
the obtained performance was unlikely due to chance
alone. The added group of 24 patients with dementia
did not produce a useful output for the differentia-
tion between dementia and depression. In a direct
comparison of three-way classification methods for
AD, MCI, and healthy controls [42], our method,
that was very similar to that used in this study, per-
formed among the best in terms of AUC but was only
average in terms of accuracy. That means that the
method in or previous work found a good discrimi-
native function but did not use a suitable function to
discretize the scores into the three categories. Given
this result, we expected that the classifier favors larger
training classes. However, the extent of this effect is
noteworthy. Our algorithm categorized most patients
with depression as healthy controls. A relatively high
heterogeneity in the depressed group could further
contribute to the decrease in performance from the
first to the second scenario. Specifically, as we do
not have clinical follow-up of cases with depres-
sion and for some, depressive symptoms may be an
early sign of AD which already alters brain struc-
ture [4]. Since the data on which the classification
performance were evaluated were the same in both
scenarios, the results obtained in the cross-validation
setting and in the independent training setting were
not independent and potential biases in the data sets
could affect both results. The selected samples for
training and evaluation were a retrospective conve-
nience samples and not sufficient to make reliable
estimation of the diagnostic accuracy in the general
population but rather focused on the differential diag-
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nosis of early AD and old age depression. Taken
together, these findings argue against the direct use of
the probabilities for diagnostic decisions, but indicate
measurable differences between the population of old
age depression and dementia that may aid individual
diagnosis.

The focus of the study was on differentiating early
AD from depression based on structural MRI. To bet-
ter understand and optimize the classification system
it would be useful to include an independent data
set of healthy controls and possibly other types of
dementias in order to clarify if the multi-class classi-
fier confuses subjects with depression with controls
or indeed can identify multivariate structural differ-
ences between elderly healthy controls and elderly
subjects with major depression.

Compared to a separation based on the perfor-
mance in a cued recall task [6], our results perform
in the same range but require an MRI scan. Since
imaging is part of the recommended clinical workup
of cognitive decline [43—46], has no known adverse
effects if the safety rules are respected, and as our
methods rely on routine MPRAGE sequences that
become increasingly available, the application of
machine learning in the routine is becoming feasible.
Larger training sets tend to produce more accurate
results [47] but the addition of the relatively small
group of patients with depression was not sufficient
to correctly classify the test data set in the realistic
multi-class prediction scenario that was investigated
in this study.
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