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ABSTRACT

The genetic code is degenerate—most amino acids
can be encoded by from two to as many as six
different codons. The synonymous codons are not
used with equal frequency: not only are some
codons favored over others, but also their usage
can vary significantly from species to species and
between different genes in the same organism.
Known causes of codon bias include differences in
mutation rates as well as selection pressure related
to the expression level of a gene, but the standard
analysis methods can account for only a fraction of
the observed codon usage variation. We here
introduce an explicit model of codon usage bias,
inspired by statistical physics. Combining this
model with a maximum likelihood approach, we
are able to clearly identify different sources of bias
in various genomes. We have applied the algorithm
to Saccharomyces cerevisiae as well as 325 prokar-
yote genomes, and in most cases our model
explains essentially all observed variance.

The degeneracy of the genetic code affords organisms a
wide range of options on how to encode their proteins.
Actual codon usage is often far from neutral, and not only
are there large variations between species, but also genes
within the same organism can exhibit very different
patterns of codon usage. In fast-growing organisms,
highly expressed genes tend to show a clear preference
for a small set of codons, which often correspond to the
codons for which the concentration of tRNAs is the
highest, or that match their tRNAs well, allowing efficient
translation of those codons (1–4). Many genomes also
show substantial variation in the nucleotide composition
of genes: the GC content can vary considerably (5,6), and
in prokaryotes there is often a clear GT versus AC

asymmetry between the leading (continuously replicated)
strand and the lagging strand (7–9). These variations are
particularly evident from the average nucleotide content at
the third codon position, which is relatively free of
constraints from coding for specific amino acids (5).
A number of indices have been introduced that seek to

relate the expression level of a gene to its codon usage
(2,3,10,11). The Codon Adaptation Index (CAI) is widely
considered the most successful of these (12)—indeed, it
has often been used as a substitute for expression data
(13–15). However, as CAI is based on the codon usage
within a selected set of highly expressed genes, it must be
defined separately for each organism, and it only accounts
for codon bias directly related to the expression level of a
gene.
With the availability of complete genome sequences, a

number of unsupervised methods have been presented,
which aim to discover patterns in the codon usage within
a genome de novo. Most of these algorithms are based on
principal component analysis (PCA) or correspondence
analysis (CA)—correspondence analysis on relative
synonymous codon usage (CA/RSCU) is widely used—
and share many of the same limitations (16): they
generally do not take into account the length of each
gene and most also ignore the number of times each amino
acid appears in a gene. Thus, statistically uncertain values
are given the same weight as more reliable values, which
both limits the accuracy and can give rise to artifacts.
A recent paper (17) introduced an explicit model of

codon usage by assigning genes to clusters with different
codon usage probabilities. While this approach allows for
use of stringent statistical methods, such discrete cluster-
ing cannot account for general codon usage biases that
affect different genes at different levels, and that may
combine in many different ways.
We here introduce a new algorithm for analysis of

codon usage that we believe avoids these weaknesses. The
algorithm is based on an explicit probabilistic model of
codon usage for a genome—or other set of genes—similar
to that in ref. (17), but allows for a continuous
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parameterization of expected codon usage in a low
number of dimensions. The dimensions that best explain
the observed codon usage of the gene set are determined
by maximum likelihood estimation (MLE). While this
approach is similar in principle to PCA, our probabilistic
model captures expected nonlinearities between expression
levels and codon usage, and the use of MLE provides
good statistical performance and reduces the risk of
artifacts. The algorithm performs well when applied to the
yeast genome and to a large number of prokaryote
genomes: for every genome, a model with only a few
independent biases can explain most of the observed
variation in codon usage.
The method of within-block correspondence analysis

(WCA) (18,19), although not widely used to analyze
codon usage, does appear to overcome many of the
problems associated with the common approaches.
However, WCA is at some risk for artifacts itself, and it
suffers from nonlinearities in the presence of strong biases
(see Supplementary Material; below). For ease of compar-
ison, we have included both WCA and CA/RSCU
(somewhat different from the version in CodonW; see
Supplementary Material) in the implementation of our
algorithm, which is available at (NAR website URL).

METHODS AND ALGORITHMS

Probabilistic model of codon usage

We assume that within gene g, each codon is selected
independently and randomly from the codons encoding the
amino acid a at the corresponding position, with prob-
ability P(c|a, g) of selecting codon c. As each codon has
nonzero probability only for the correct amino acid, we can
specify the model more compactly by pc(g)=P[c|a(c), g],
where a(c) is the amino acid encoded by c.
In analogy with the canonical ensemble of statistical

physics, we can express this probability as

pcðgÞ ¼
exp½Eðc; gÞ�P

c 0:aðc 0Þ¼aðcÞ exp½Eðc
0; gÞ�

; 1

where E(c, g) is the effective advantage of using codon c in
gene g. Tomodel multiple sources of codon usage bias in an
organism, or ‘trends’, we further parameterize E(c, g) as

Eðc; gÞ ¼ E0ðcÞ þ �1ðgÞE1ðcÞ þ �2ðgÞE2ðcÞ þ � � � 2

The different ‘preference’ functions Ei specify how trend
number i favors or disfavors each codon, where E0

corresponds to the overall codon bias in the whole
genome. The ‘offset’ �i represents to what extent each
gene is affected by trend number i. The number of terms in
the equation is given by the number of different biases we
wish to model. (In the analogy with statistical physics, the
Es and �s correspond to energies and inverse tempera-
tures, respectively.)
This parameterization is very natural in the context of

codon usage bias: if the only source of bias is selection on
the cost of translating all the proteins in the organism,
then this exponential form follows directly from
the fixation probability given by basic evolutionary

theory (20)—Equation (2) would contain a single trend,
with E1 proportional to the cost of translating each codon
and �1(g) proportional to the expression level of gene g.
The exponential form also allows us to accurately para-
meterize varying mutation pressure that acts on individual
nucleotides (see Supplementary Material).

The additive form of Equation (2) corresponds to
independent biases: a given term will change the relative
frequency of two synonymous codons by a fixed factor,
independent of any other terms. While our assumptions
may not hold exactly in real organisms, they are likely to
be good first approximations.

To estimate the parameters of the model—the off sets �i
and the preference functions Ei—we use a customized
maximum likelihood approach, SCUMBLE (pseudo-
acronym for synonymous codon usage bias maximum
likelihood estimation), which is described below. The pre-
ference functions are normalized such that the magnitude
of an offset corresponds directly to the strength of the bias,
and can be compared between different models/species.

MLE of model parameters

According to our model, the probability of using a specific
codon is P(c|a, g). Since the amino acid sequence is
determined by the real codon sequence, the likelihood of
an actual codon is simply P(c|a(c), g)= pc(g), and the
likelihood of a gene is

PðgÞ ¼
Y
c

½pcðgÞ�
ncðgÞ; 3

where nc(g) is the number of times codon c is used in the

gene. Similarly, the likelihood for the entire genome—or a
given set of genes we wish to consider—is

P ¼
Y
g

PðgÞ: 4

P is here an implicit function of all the parameters of our

model—the offsets �i (g) and the preferences Ei(c). We
now apply the principle of MLE (21): we take as our
estimate for the �s and Es the values that maximize the
total likelihood P. To avoid the risk that the MLE will
attempt to tune a probability exactly to zero, we introduce
a small additional cost for large offset values: P0(g)=P(g)
exp[�

P
i 0.01�

2
i ðgÞ]. This improves algorithm convergence

without affecting results significantly.
There are many different values of the �s and Es that

yield the same codon likelihoods pc(g), and thus the same
total likelihood. For instance, setting � 0

i (g)= k�i(g) for
all g and E 0

iðcÞ ¼ EiðcÞ=k for all c leaves all pc(g)
unchanged, for any nonzero value of k. To limit this
degeneracy, we require that the Ei are centered:
X

c:aðcÞ¼a 0

EiðcÞ ¼ 0 8a 0; i; 5

normalized:

h½EiðcÞ�
2
ic ¼ 1 8i4 0; 6
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with the average taken over all codons that have
synonymous codons; and orthogonal to each other:

X
c

EiðcÞEj ðcÞ ¼ 0; 8i4 j4 0: 7

Even with these contraints, there are many ways to
decompose a given preference function E(c, g) into the
different terms of Equation (2)—any rotation between two
terms will leave the full preference function unchanged. To
specify a unique solution, we use an iterative approach: we
first find the best model with a single trend—in this case,
there are no other terms to rotate with; thus, the solution
is unique up to the overall signs of �1 and E1. To find the
model with nþ 1 terms, we first perform the MLE
optimization while keeping the first n preference functions
E1–En constant, ensuring a unique solution for Enþ 1 (up
to the overall sign). We then find the full MLE optimum
closest to this constrained optimum.

This approach is very good at assigning different biases
to different trends, if the biases have significantly different
strength: the strongest bias is assigned to the first trend,
then the next strongest is assigned to the next trend, etc.
The approach can work well even when there are several
biases of similar strength, as the nonlinear properties of
the probability function disfavor mixing of biases, unless
there are strong correlations.

An alternative approach would be to resolve the
degeneracy post factum: once a model with the desired
number of trends has been found, one could rotate
between the different terms to improve the model. A
problem here is to define what constitutes a good versus a
bad model—one option is to consider the statistics of the
offsets, which should ideally match the statistics of the
biases [e.g. selection on codon usage for improved
translation is thought to be unidirectional (22)].
However, the statistics of the biases are not well known
and are likely different for different types of biases.

When using MLE, one has to be careful not to over-fit
the data. Each preference function contains 61 para-
meters—the number of nonstop codons—and is limited by
20+1 constraints, for a total of 40 free parameters. For a
model with T trends, there are T �s per gene, for a total of
TN free parameters, where N is the number of genes in the
genome.

The data set consists of the codon counts for each gene,
i.e. 61 values with 20 constraints (amino acid counts) per
gene, for a total of 41N independent data points. As long
as the number of data points is much larger than the
number of parameters, the risk of overfitting is small. As
there are many hundred or thousand genes in most
organisms, we can ignore the number of parameters in the
preference functions. Thus, overfitting should not be a
major problem as long as T is much less than 41.

We use T=10 as a practical maximum number of
terms—this is far more than the number of independent
biases we expect to find in any single genome, and it
approaches the limit of what is computationally con-
venient. For genomes with very strong biases, the effective
number of independent data points can be far smaller than

41N, and for such genomes we may have to limit the
number of trends well below 10.

Model validation and testing

Since we assumed that all codons in a gene are selected
independently, we can check the validity of the resulting
model through various statistical tests. One particular
simple measure of model quality is the normalized
variance—the square deviation from the expected codon
number, divided by the expected variance:

NVðgÞ ¼
X
c

½ncðgÞ � naðcÞðgÞpcðgÞ�
2

naðcÞðgÞpcðgÞ½1� pcðgÞ�
; 8

where na(g) is the count of amino acid a in gene g. For a
true model—with correct preferences Ei and offsets �i—
the normalized variance should average 1 per codon,
i.e. 61 total for every gene (when the numerator and
denominator are both zero for a codon, we count that as
1). As we fit the model parameters for maximum
likelihood, the average variance should be somewhat
lower, depending on the number of trends. The normal-
ized variance corrects for the different lengths and amino
acid ratios in different genes, thus we can simply compare
the distribution of NV (g) for the real genome to the
distribution of NV (g) for a genome randomly generated
from our model, where we re-estimate the offsets (but not
the preference functions) for the randomized genome
before we calculate the normalized variance. The excess
variance—the difference between the average or median
normalized variance of the real genome and the rando-
mized genome—indicates how much variance is not
explained by the model, and the reduction in this value
upon adding a trend shows how much variance is
explained by the new trend.
Another way of evaluating the results is to compare the

estimated offsets and preference functions to expected
types of bias. For instance, the ‘ideal’ preference function
corresponding to GC bias is simply

E 00
GCðcÞ ¼ # ðG or CÞs in codon c; 9

centered and normalized:

E 0
GCðcÞ ¼ E 00

GCðcÞ � hE 00
GCðc

0Þic0:aðc0Þ¼aðcÞ 10

EGCðcÞ ¼
E0
GCðcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h½E 0
GCðc

0Þ�
2
ic0

q : 11

The squared Pearson correlation between EGC and an
estimated preference function Ei — r2PðEi; EGCÞ—is then a
good measure of to what extent the corresponding offset �i
corresponds to GC bias. As each preference function
is required to be orthogonal to previous preference
functions, except for the constant offset E0, the
cumulative correlation r2PðE1...i;EGCÞ ¼ r2PðE1;EGCÞþ

� � � þ r2P ðEi; EGCÞ is also of interest, as is represents the
total fraction of the GC preference signal captured by the
first i trends.
For expression-related bias, we can similarly use

correlation of an offset with experimentally measured
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expression levels, or more qualitative measures such as to
what extent genes expected to be highly expressed (e.g.
ribosomal genes) have offsets distinct from those of the
bulk of genes.

Data sets

Data files were downloaded from the GenBank database
in GenBank flat file format. The prokaryote genomes
analyzed are listed in the Supplementary tables. Only
chromosomal genes were used—as plasmids can be
inherited independently of the chromosomes, they could
potentially exhibit very different codon usage.
We ignore all ORFs that are incomplete, code for less

than 100 amino acids, do not have correct start/stop
codons (for the specified translation table), contain
multiple stop codons, are annotated as having transla-
tional exceptions, are annotated as pseudogenes or have
excessive repeated nucleotide sequence segments. We also
ignore ORFs that contain very few of the 61 possible
amino acid-encoding codons—specifically, genes for
which the number of different codons minus the number
of different amino acids is less than 10—as these would
likely suffer from (potentially very severe) overfitting.
We use the Saccharomyces cerevisiae expression data

collected by Lu et al. (23), which includes protein
expression measurements by western blotting (24), flow
cytometry of GFP-tagged fusion proteins (25) and 2D gels
(26), and mRNA measurements by single channel DNA
microarrays (27), SAGE (28) and microarrays using
genomic DNA as reference (29). The 2D-gel data set
contains very few data points, and thus correlations with
this set have very large error bars.

RESULTS

As detailed in Methods and Algorithms section, our
algorithm SCUMBLE finds a codon usage model in which
each gene is assigned a given number of ‘offsets’ �i(g) that
indicate to what extent gene g is affected by estimated bias
(‘trend’) number i. Each trend is described by a ‘preference
function’ Ei(c) that indicates how much trend i favors/
disfavors codon c.

Codon usage of budding yeast

We first applied our Algorithm to the genome of the
budding yeast S. cerevisiae. The synonymous codon usage
of this genome has been extensively studied (3,10–
12,14,30). The main bias present in the yeast genome is
strongly correlated with expression level (3,10), while a
secondary axis identified by CA/RSCU is correlated with
GC content (30).
To reduce noise from pseudogenes, we initially used

only the named genes in the GenBank data file, but using
all the genes gives very similar results. Elimination of
genes that were too short or had other problems left 4351
acceptable genes. For this dataset, we used SCUMBLE to
find models with from 0 to 10 trends.
The genes’ normalized variance, NV(g), is a good

measure of how well a model explains the genome (see
Methods and Algorithms section). The cumulative

histograms of NV (Figure 1a) indicate that at least two
trends are required to explain the data, whereas using
more than three trends seems to give little or no
improvement. While the first trend only explains about
26.5% of the total variation in codon usage, it explains
>60% of the excess variation, compared to the random-
ized genome (Figure 1b). Together, the two first trends
explain an impressive 84% of excess variation.

Not surprisingly, the first offset �1 is strongly correlated
with measured expression levels of genes (Figure 2). As
there is an abundance of data available for S. cerevisiae,
we compared �1, as well as CAI and the first axes of WCA
and CA/RSCU (WCA1 and RSCU1), to a number of
experimental measurements of cellular mRNA and
protein levels (see Methods and Algorithms section).
�1 has significantly higher Pearson correlations with the
experimental data than CAI for essentially all the data
sets, and even more so compared to WCA1 or RSCU1

(Supplementary Figure S1). Notably, �1 seems to be
roughly linearly related to mRNA concentration, whereas
there is not a good linear relation between mRNA
concentration and the other three descriptors, which
tend to saturate for highly expressed genes (Figure 2 and
Supplementary Figure S2).

To test whether the improved performance is entirely
due to correction of nonlinearities, we compared the
Spearman rank correlations. Also here, �1 does have the
highest average correlation with experimental data
(Supplementary Figure S3), although the differences are
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Figure 1. (a) Cumulative histogram of the normalized variance for
named genes in S. cerevisiae for models with various numbers of trends;
actual genome (solid lines) compared to randomized genome (dotted
lines). Models with 0 or 1 trend explain the data poorly, as the curve
for the real genome is very different from that of a randomized genome,
and there are many genes with very high normalized variance.
(b) Average (black) and median (red) normalized variance for models
with up to 10 trends.
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much smaller. Figure 2 shows results for the model with
four trends, which is the model for which correlations with
experiments are maximal, but the models with 1–5 trends
all give very similar results. For models with six or more
trends, however, �1 is significantly less correlated with
experiments, which is likely a sign of overfitting.

The second trend corresponds to GC content of the
codons, as do WCA2 and RSCU2. While �2 correlates well
with the fraction of GC in the third codon position within
genes—r 2P (�2, GC3)=0.716—the correspondence is even
more clear from the preference function E2: the correlation
between E2 and the ideal preference function correspond-
ing to GC content, EGC (see Methods and Algorithms
section), is r 2P (E2,EGC)=0.895. This is even more
impressive considering that E2 is required to be ortho-
gonal to E1: the cumulative correlation for E1 and E2 is
r 2P (E1. . .2,EGC)= r 2P (E1,EGC)+r 2P (E2,EGC)=0.947. The
relatively low correlation between �2 and GC3 (lower than
for WCA2 and RSCU2) is due to the nonlinearities in our
model and the strong expression-related bias. Removing
the 500 genes with the highest values of �1, the correlation
for the remaining genes is r 2P (�2,GC3)=0.960, which is
slightly higher than the correponding correlation for
WCA2 and substantially higher than the correlation for
RSCU2.

The third trend has a significant signal corresponding
to the GT content of the codons [r2P (E3, EGT)=0.552,
with cumulative correlation r2P (E1. . .3, EGT)=0.605],
and the fourth trend has an even higher signal for CT
content of the codons [r2P (E4, ECT)=0.726, with r2P
(E1. . .4, CT)=0.896].

To check how robust these results are, we applied
SCUMBLE to the genes on each individual chromosome
and compared the preference functions for the various
four-trend models (Supplementary Figure S4). E0 and E1

are essentially identical for all the chromosomes, and E2

only shows minor variations. E3 and E4, however, are
highly variable—for almost every chromosome there are

significant cumulative correlations with EGT and ECT, but
the exact match between a specific trend and a given
nucleotide bias is not well conserved. Most of these
differences are probably due to noise.
To determine whether our models can explain not only

the variation within a genome, but also the overall codon
bias of the yeast genome, we set E0 to zero for each model
and—keeping all the other preference functions the same
as before—re-estimate the offsets. Again, the model with
two trends explains > 80% of the excess variance (Supple-
mentary Figure S5)—indeed, 62% of the signal in the
original E0 is along E1 (see E0 and E1 in Supplementary
Figure S4), with an additional 25% along E2. Correspond-
ingly, the new offsets � 0

1 and � 0
2 differ from the old by

almost constant values: � 0
1 (g)� �1(g)þ 0.452 and � 0

2 (g)
��2(g)� 0.288. As a consequence, � 0

1 is positive for
essentially all genes—despite significant statistical noise
for short genes—suggesting that all genes experience
considerable selection for efficient translation, even if
their expression level is low. Although this bias is not
always statistically significant for individual genes, the
combined statistics of all the genes indicate a bias of �1
� 0.2 for weakly expressed genes (Supplementary Figure
S6). The preferred codons, given by E1, agree with the
known ‘optimal codons’ (4).

Codon usage of prokaryotes

To test how general the results for budding yeast are, we
applied SCUMBLE to 325 prokaryote genomes—these
include many closely related strains and species, so results
should be interpreted with care. For each genome, we
found models with from 0 to 10 trends. The normalized
variances for these models (Figure 3) indicate that for
every prokaryote genome, a model with four trends is
sufficient to explain most of the variance in codon usage—
the median (average) normalized variance is on average
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Figure 2. Experimental values for cellular mRNA/protein levels plotted
against the first offset/CAI value of each gene for S. cerevisiae. Several
groups of highly expressed genes are plotted in different colors.
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25% (50%) higher than expected for a genome with no
internal biases, and the models with four trends explain
>80% of this excess variance. For more than four trends,
the variance decreases only slowly with the number of
trends. While the variances of most genomes decrease with
the same slope, both the observed and expected variance
decrease faster for genomes with extremely biased nucleo-
tide content; most of all for Anaeromyxobacter dehalo-
genans, which has �97% G or C at codon position 3.
The algorithm’s ability to detect weak biases is well

illustrated by the genome of Helicobacter pylori, which has
been claimed to contain no codon bias for highly
expressed genes (31). SCUMBLE identifies three clear
biases (Figure 4). The first two trends correspond to GC
content and GT content, respectively. Notably, ribosomal
genes have average offsets for both of these trends. For the
third trend, however, ribosomal genes are clearly biased
towards high offsets, and we identify this trend as a bias
related to the expression level of the genes. This bias is not
limited to ribosomal genes: of 57 nonribosomal genes
from the most abundant proteins in soluble and/or
structure-bound fractions (32), 22 of the �3s are in the
top 10%, and only seven are below the median. While the
bias is clear, it is indeed quite weak: the average value of
�3 for the ribosomal genes is 0.2, about a 12th of the
strength of the expression-level bias in S. cerevisiae. The
largest relative preferences are for AUC versus AUA,
AUU versus AUA, UUC versus UUU, CCG versus CCC,
CUC versus UUA and GGU versus GGG, with
magnitudes of about 4 (Supplementary Table S3). For
�3 � 0.2, this corresponds to a change in relative frequency
of e0.24� 2. Most of these preferred codons are relatively
rare even in highly expressed genes, and we cannot say for
sure that these are translationally optimal codons—the
bias could also be (partially) due to increased mutation
rates during transcription.

While CA/RSCU fails to detect the ribosomal codon
usage bias in H. pylori, WCA gives very similar results to
SCUMBLE (data not shown). However, WCA does not
perform as well in the presence of strong nucleotide biases.
Figure 5 shows the results from SCUMBLE, WCA and
CA/RSCU for the genome of A. dehalogenans. All three
methods yield a strong correlation between the first axis
and the GC content of the genes, but while �2 shows a
clear bias for ribosomal genes—all 33 ribosomal genes are
in the top 35%, which has a P-value of510�14—WCA2

and RSCU2 show no such bias: RSCU2 depends almost
entirely on the codon usage for cysteine, while WCA2

seems unrelated to any of our indicators. None of the
method show any bias for ribosomal genes along the first
axis.

For both WCA and CA/RSCU, there is a clear
correlation between the GC content of the gene (i.e. the
first axis) and the magnitude of WCA2 or RSCU2. In
correspondence analysis, variances are scaled according to
the expected variance given by the average codon usage of
all genes. In the presence of strong nucleotide bias, the
actual nucleotide content of a gene can differ substantially
from this average, and this scaling of the variance is then
not appropriate. This problem does not occur for
SCUMBLE (see Supplementary Material).

Almost all the 325 prokaryote genomes studied show
clear evidence of variable GC bias (Figure 6a): For >90%
of the genomes, the first three trends capture more than
half the GC preference signal, and for almost half the
genomes, the very first trend captures more than half the
GC preference signal. GT bias is almost as prevalent as
GC bias (Figure 6b), but does not dominate the first trend
nearly as often, suggesting that it is usually the weaker
bias—indeed, GT bias is found most often at the third
trend, while expression bias is more common at the second
trend (Supplementary Tables S1 and S2). These signals for
GC and GT bias tend to be significantly higher for
SCUMBLE than for WCA and CA/RSCU (see
Supplementary Figure S8).

For both GC and GT bias, the graph for the first trend
shows bimodality—both ends have steeper slope than the
center—indicating that the algorithm usually separates the
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biases fairly well. There does not seem to be a strong CT
bias in many prokaryote genomes, however (Figure 6c):
although there is clearly more signal than expected by
random (Figure 6d), it is rarely if ever the dominant signal
amongst the first few trends. In most cases, where there is
a strong signal for CT bias, this is highly correlated with
expression bias, but not always: for Methanopyrus
kandleri, each trend in the four-trend model corresponds
well to a separate bias—�1 is GC bias, �2 is CT bias, �3 is
expression bias and �4 is GT bias.

DISCUSSION

The standard methods used to analyze the codon usage of
genomes are typically only able to account for a small
fraction of the total variation (31,33). With our probabil-
istic model of codon usage, we are able to accurately
ascribe a large part of the variation to expected random
fluctuations, and we can capture most of the remaining
(excess) variation with only a few ‘trends’.

For S. cerevisiae, well above half the excess variation is
captured by a single offset �1, which—due to its high cor-
relation with expression data—we identify as the strength
of selection for translational efficiency/accuracy. Accord-
ing to basic evolutionary theory, selection on the overall
rate of protein synthesis would cause a selective pressure
on codon usage proportional to the expression level of a
gene (20). In our model, offsets corresponding to selective
pressures are direct estimates of the strengths of these
pressures, and we indeed find that �1 is roughly linearly
related to the expression level, unlike WCA1 and RSCU1.
Given experimental uncertainties of the expression-level
measurements, statistical uncertainties of the offsets (see
Supplementary Material), and the caveat that expression
levels measured in standard experiments may differ
from the typical (in nature) levels that affect the codon

usage (12), the correspondence is quite good. However,
though the relationship is close to linear, it is not
proportional: even genes with very low expression level
show a substantial bias in codon usage along this trend.
This suggests that either this selection can—somehow—be
fairly effective even for very weakly expressed genes or
there are several causes of this bias, at least one of which
does not depend strongly on the expression level.
Our approach to separating the codon usage variation

into distinct sources of bias appears to work well for real
genomes. SCUMBLE successfully separates different
known sources of codon bias for many of the genomes
we have analyzed. Additionally, for S. cerevisiae the
correlation between �1 and mRNA expression level—
which is higher than the correlation between CAI and
expression level even for the model with only one trend—
keeps improving as we add up to three additional trends,
each of which corresponds to a different mutational bias.
Such improvement is all the more remarkable as the third
and fourth trends correspond to very weak biases in yeast.
This suggests that our model’s nonlinear relationship
between codon frequencies and bias strengths is substan-
tially correct, and that different biases affect codon usage
fairly independently.
A key feature of our model is that different genes are

affected by the same biases but with different strengths.
This seems to explain most genomes far better than
assigning genes to clusters with different codon usage, as
was done in ref. (17): Figure 7 shows a scatter plot of the
first two offsets for Bacillus subtilis, color coded according
to the cluster identity given in (17). The five clusters
correspond almost exactly to compact regions of the
two offsets, and we can immediately give the clusters
appropriate annotations: Clusters 4, 5 and 2 contain genes
with low expression level and respectively high, inter-
mediate and low GC levels, while clusters 3 and 1 contain
genes with moderate and high expression levels. There
are, however, organisms for which discrete clusters
provide a very good description: Codon usage in
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Borrelia burgdorferi appears to depend only on whether a
gene is on the leading or lagging strand during replication,
and can thus be described by two clusters (see
Supplementary Material).
Yeast seems to have a much cleaner GC bias than most

prokaryotes: only one of the 325 prokaryote models has a
higher combined correlation for the first three preference
functions than yeast has for the first two. This is
reasonable in light of the different sources of GC bias in
prokaryotes and eucaryotes: in prokaryotes, variation of
GC content within a genome is related to import of genes
from organisms with different natural GC content (34,35).
However, the codon usage of such imported genes may
also differ from that of the new host organism in other
ways, which would be reflected in the preference function
estimated for this bias. For yeast, the main source of GC
variation is thought to be regional variation in mutation
patterns, possibly related to recombination or timing of
replication (6,33). Since this is a purely mutational, strand
symmetric effect, it is indeed likely to be a pure GC bias.
This would also explain why, while models with around
four trends tend to explain the vast majority of codon
usage variation, there are very few prokaryotes for which
the models explain all the variance: import of genes from
different species will likely introduce small levels of many
different biases that can not all be captured by a simple
model. The few prokaryotes for which the models can
explain all the codon usage variation are mostly prokar-
yotes with no significant GC bias, such as B. burgdorferi.
For both Burkholderia mallei and Pseudomonas

aeruginosa, genes with relatively low GC content have
been claimed to have inhomogeneous codon usage, as they
are widely scattered along the second axis of CA/RSCU
(15,36). However, as for A. dehalogenans, this appears to
be an artifact of the scaling used in CA/RSCU (and in
WCA); the results from SCUMBLE do not indicate
increased inhomogeneity in this group of genes (Supple-
mentary Material; data not shown).
We found that SCUMBLE performs better than WCA

or CA/RSCU in detecting GC or GT biases in prokaryote
genomes. SCUMBLE is also able to detect far more biases
in prokaryote genomes than a variety of other approaches
using PCA (37) (Supplementary Tables S1 and S2). Unlike
PCA, SCUMBLE shows a clear signature for the strength
of the different biases: GC bias is most often the dominant
bias, followed by expression bias and GT bias.
Our model only captures the average codon usage

for each gene. While there exist highly localized codon
biases, such as for codons used for translational regulation
(38), codon bias has also in several cases been shown
to increase along the length of the genes (39,40). One
possible explanation for this is the effect of codon
choice on the rate of nonsense errors (premature termina-
tion of translation), as recently modeled in ref. (41).
Incorporating such position dependence into SCUMBLE
could further improve its ability to accurately detect
codon bias.
While we were able to identify codon biases that have

been missed by other approaches in those organisms, we
did not find any clear cases of codon bias of new or
unknown origin: essentially, all codon usage variance

could be traced to either selection based on expression
level, different mutational patterns, import of genes from
other species or statistical fluctuations. It remains to be
seen whether any yet unknown biases are present in
multicellular organisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation
(DMR-0313129); Sandler Family Supporting Foundation;
National Key Basic Research Project of China
(2003CB715900). Funding to pay the Open Access
publication charges for this article was provided by NSF.

Conflict of interest statement. None declared.

REFERENCES

1. Ikemura,T. (1981) Correlation between the abundance of
Escherichia coli transfer RNAs and the occurrence of the respective
codons in its protein genes. J. Mol. Biol., 146, 1–21.

2. Ikemura,T. (1981) Correlation between the abundance of
Escherichia coli transfer RNAs and the occurrence of the respective
codons in its protein genes: a proposal for a synonymous codon
choice that is optimal for the E. coli translational system. J. Mol.
Biol., 151, 389–409.

3. Bennetzen,J.L. and Hall,B.D. (1982) Codon selection in yeast.
J. Biol. Chem., 257, 3026–3031.

4. Ikemura,T. (1982) Correlation between the abundance of yeast
transfer RNAs and the occurrence of the respective codons in its
protein genes: differences in synonymous codon choice patterns of
yeast and Escherichia coli with reference to the abundance of
isoaccepting transfer RNAs. J. Mol. Biol., 158, 573–597.

5. Bibb,M.J., Findlay,P.R. and Johnson,M.W. (1984) The relationship
between base composition and codon usage in bacterial genes and
its use for simple and reliable identification of protein-coding
sequences. Gene, 30, 157–166.

6. Bradnam,K.R., Seoighe,C., Sharp,P.M. and Wolfe,K.H. (1999)
G+C content variation along and among Saccharomyces cerevisiae
chromosomes. Mol. Biol. Evol., 16, 666–675.

7. Lobry,J.R. (1996) Asymmetric substitution patterns in the two
DNA strands of bacteria. Mol. Biol. Evol., 13, 660–665.

8. McInerney,J.O. (1998) Replicational and transcriptional selection
on codon usage in Borrelia burgdorferi. Proc. Natl Acad. Sci., 95,
10698–10703.

9. Rocha,E.P.C., Danchin,A. and Viari,A. (1999) Universal replication
biases in bacteria. Mol. Microbiol., 32, 11–16.

10. Sharp,P.M. and Li,W.-H. (1987) The codon adaptation index – a
measure of directional synonymous codon usage bias, and its
potential applications. Nucleic Acids Res., 15, 1281–1295.

11. Wright,F. (1990) The ‘effective number of codons’ used in a gene.
Gene, 87, 23–29.

12. Coghlan,A. and Wolfe,K.H. (2000) Relationship of codon bias to
mRNA concentration and protein length in Saccharomyces
cerevisiae. Yeast, 16, 1131–1145.

13. Bulmer,M. (1990) The effect of context on synonymous codon usage
in genes with low codon usage bias. Nucleic Acids Res., 18,
2869–2873.

14. Fuglsang,A. (2004) Bioinformatic analysis of the link betweeen gene
composition and expressivity in Saccharomyces cerevisiae and
Schizosaccharomyces pombe. Antonie van Leeuwenhoek, 86, 135–147.

15. Zhao,S., Zhang,Q., Chen,Z., Zhao,Y. and Zhong,J. (2007) The
factors shaping synonymous codon usage in the genome of
Burkholderia mallei. J. Gen. Gen., 34, 362–372.

3826 Nucleic Acids Research, 2008, Vol. 36, No. 11



16. Perrière,G. and Thioulouse,J. (2002) Use and misuse of corre-
spondence analysis in codon usage studies. Nucleic Acids Res., 30,
4548–4555.

17. Bailly-Bechet,M., Danchin,A., Iqbal,M., Marsili,M. and
Vergassola,M. (2006) Codon usage domains over bacterial
chromosomes. PLoS Comput. Biol., 2, e37.
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