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Abstract

The present study evaluated the importance of auxiliary traits of a principal trait based on

phenotypic information and previously known genetic structure using computational intelli-

gence and machine learning to develop predictive tools for plant breeding. Data of an F2

population represented by 500 individuals, obtained from a cross between contrasting

homozygous parents, were simulated. Phenotypic traits were simulated based on previ-

ously established means and heritability estimates (30%, 50%, and 80%); traits were distrib-

uted in a genome with 10 linkage groups, considering two alleles per marker. Four different

scenarios were considered. For the principal trait, heritability was 50%, and 40 control loci

were distributed in five linkage groups. Another phenotypic control trait with the same com-

plexity as the principal trait but without any genetic relationship with it and without pleiotropy

or a factorial link between the control loci for both traits was simulated. These traits shared a

large number of control loci with the principal trait, but could be distinguished by the differen-

tial action of the environment on them, as reflected in heritability estimates (30%, 50%, and

80%). The coefficient of determination were considered to evaluate the proposed methodol-

ogies. Multiple regression, computational intelligence, and machine learning were used to

predict the importance of the tested traits. Computational intelligence and machine learning

were superior in extracting nonlinear information from model inputs and quantifying the rela-

tive contributions of phenotypic traits. The R2 values ranged from 44.0% - 83.0% and 79.0%

- 94.0%, for computational intelligence and machine learning, respectively. In conclusion,

the relative contributions of auxiliary traits in different scenarios in plant breeding programs

can be efficiently predicted using computational intelligence and machine learning.

Introduction

Plant breeding is effective for increasing crop productivity. Its main objective is to increase the

frequency of desirable alleles in plant populations to develop superior crops with high
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productivity, disease and pest resistance, abiotic stress tolerance, and environmental adaptabil-

ity [1, 2]. Quantifying the importance of traits allows the breeder to determine strategies for

increasing selection efficiency (e.g., indirect selection), to perform extensive phenotypic evalu-

ation of the germplasm, and to predict the future performance of traits with low heritability

(h2) and/or difficulties in measurement.

The efficiency of selection can be increased by selecting secondary traits that are easy to

measure, have high h2, and are closely correlated with the principal trait. Indirect selection

through a secondary trait may be more efficient than direct selection if h2 is higher for the sec-

ondary trait than for the primary trait, and if the genetic correlation between the primary and

secondary traits is sufficiently strong [3].

Although the simultaneous evaluation of traits in a plant breeding program provides mas-

sive data, identifying the most important predictive phenotypic trait is a challenge for breeders.

Conventional methods of phenotypic trait selection are based on multiple linear regressions.

For instance, mixed models are often used in plant breeding programs [4]. In principle, these

models evaluate the relationship between a dependent phenotypic trait and two or more inde-

pendent phenotypic traits [6]. However, this method has the ability to analyze multidimen-

sional data and cannot capture complex, multivariate relationships among phenotypic traits

[5–7].

In this context, computational intelligence may serve as an alternative to predict complex

traits from auxiliary traits [2, 8–11]. Artificial neural networks (ANNs) are highly parameter-

ized nonlinear models with sets of processing units called neurons, and they can be used to

predict the relationships between the input and output signals of a complex system [12].

ANNs are powerful prediction tools compared with conventional models, such as linear

regression [13–15]. In addition, these networks can reproduce the importance of each predic-

tive trait, rendering it easily interpretable [16]. Despite their overall high predictive perfor-

mance, ANNs have been neglected in studies of the importance of traits.

Multilayer perceptron (MLP) and radial basis function (RBF) networks are the most com-

monly used ANNs. The MLP classifier has the typical architecture of an ANN with at least one

hidden layer and one output layer, both with nonlinear and differentiable transfer functions

[17–20]. The RBF network has a simpler structure and a faster learning algorithm than other

ANNs [21, 22]. It comprises three layers: an input layer, a hidden layer, and an output layer. A

large amount of nonlinear information is accepted by the input layer and then transmitted

through the hidden layer. Finally, the results are obtained from the output layer [21]. Thus,

RBF networks have been successfully used in genomic selection [23–27] and variable selection

[2, 28].

Other interesting alternatives for predicting and quantifying the importance of auxiliary

traits are machine learning-based methodologies, such as decision trees [2, 7, 19] and their

refinements, such as bagging, random forest, and boosting [2, 29]. These methodologies allow

breeders to predict the importance of traits using measures based on the Gini coefficient and

entropy index [30]. Computational intelligence, machine learning, and multiple regression

have proven to be efficient predictive tools for various agricultural crops. For instance, in soy-

bean, phenotypic characteristics related to seed yield prediction (row spacing and seeding den-

sity) were studied using these methods [7]. Moreover, [5] applied these methodologies to

compare and predict pest population dynamics based on the climatic and phenological factors

of the host plant.

To this end, the present study evaluated the importance of auxiliary traits of a principal trait

based on phenotypic information and previously known genetic structure using computa-

tional intelligence and machine learning to develop predictive tools useful in plant breeding

programs.
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Material and methods

Dataset

A set of simulated data of an F2 population represented by 500 individuals, derived from a

cross between contrasting homozygous parents, was used.

Phenotyping

Eleven phenotypic traits (PTs) were simulated using previously established means and h2 esti-

mates. The h2 values used were 30%, 50%, and 80%, respectively (Table 1). The traits were

established by the action of 40 allele loci based on 1,000 markers in 10 linkage groups (LGs)

with differential additive effects. Previous simulation studies used fewer than 20 quantitative

trait loci (QTLs) [23, 24, 31]; therefore, we explored any number of QTLs in the present study.

The weights of importance of the loci on the total genotypic variability of the traits were estab-

lished from a uniform distribution.

PT1 was used as the principal trait of prediction with 50% heritability and 40 control loci of

the trait distributed in LGs 1, 2, 3, 4, and 5 (Table 1). Ten auxiliary traits with known genetic

control loci were also considered. PT2 was simulated assuming the same complexity as PT1

but without any genetic relationship to PT1 and without pleiotropy or a factorial link between

the control loci of PT1 and PT2. Thus, we hypothesized that PT2 is the least important trait for

prediction.

PT3, PT4, and PT5 in different scenarios represented other important traits (Table 1); they

shared a large number of controlling loci with PT1 but could be distinguished by the differen-

tial action of the environment on them, as reflected in the estimates of heritability. Similarly,

subsets of auxiliary traits, namely PT6, PT7, and PT8, as well as PT9, PT10, and PT11, with

decreasing importance, were tested. The following statistical model was used:

Yi ¼ mþ Gi þ εi ð1Þ

where Yi is the simulated observation of the trait of the ith individual, μ is the general average

of the trait, whose value is specified by the breeder, Gi is the effect associated with the ith indi-

vidual, with Gi � Nð0; s2
gÞ; εi is the random error, where εi~N(0, σ2), and s2 ¼ ð1 � h2

Þs2
g=h

2
.

Table 1. Description of phenotypic traits (PT) in relation to heritability (h2) and the distribution of linkage groups (LG).

PT h2 LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 LG9 LG10

1 0.5 8 8 8 8 8 - - - - -

2 0.5 - - - - - 8 8 8 8 8

3 0.3 4 4 4 4 4 4 4 4 4 4

4 0.5 4 4 4 4 4 4 4 4 4 4

5 0.8 4 4 4 4 4 4 4 4 4 4

6 0.3 4 4 4 - - 8 8 4 4 4

7 0.5 4 4 4 - - 8 8 4 4 4

8 0.8 4 4 4 - - 8 8 4 4 4

9 0.3 4 - - - - 8 8 8 8 4

10 0.5 4 - - - - 8 8 8 8 4

11 0.8 4 - - - - 8 8 8 8 4

Phenotypic traits (PT) were simulated using previously established means and heritability (h2). The h2 values used were 30%, 50%, and 80%. The traits were established

by the action of 40 locus alleles based on 1,000 markers in 10 LGs with differential additive effects.

https://doi.org/10.1371/journal.pone.0257213.t001
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The total phenotypic value in the epistatic model, expressed by an individual belonging to

the population, was estimated using the following equation:

Yi ¼ mþ
P40

j¼1
pjaj þ

P39

j¼1
pjajajþ1 þ εi ð2Þ

here, αj = ai+di and
ai
di

= gmd, where μ+aj, μ+dj, and (μ−aj) are the genotypic values associated

with classes AA, Aa, and aa, assumed to be equal to 1, 0, and -1, respectively, when coded; pj is

the contribution of the locus j to the expression of the trait, with a uniform distribution; and di
is average degree of dominance of each trait (di = 0.5).

Genotyping

A total of 1,000 codominant molecular markers, with two alleles per marker, were used. These

markers were distributed in a genome established by 10 LGs, reflecting a diploid species with

2n = 2x = 20. Each LG was 100 centimorgans; thus, 100 markers were evenly spaced. All the

markers are described in Table 2.

Four different scenarios were considered to predict phenotypic traits (PT1). These scenar-

ios differed in terms of the four loci controlling quantitative traits PT3 to PT11 (Table 2). Sce-

narios 1 (10 20 30 40) and 2 (50 60 70 80) represented the first four and the last four loci

controlling the quantitative traits, respectively (Table 2). Scenario 3 (i.e., 10 20 70 80) repre-

sented the first two and last two loci controlling quantitative traits. Finally, scenario 4 (30 40

50 60) represented the central loci controlling the quantitative traits (i.e., the first and last two

loci were excluded).

Indirect selection gain through principal trait

Indirect selection gain through principal traits was estimated as described by [32] using the fol-

lowing equation:

GSyðxÞ ¼ ihxrgsgy

Where GSy(x) is the indirect selection gain in y (x), which is selection intensity (0.9659); x is the

principal trait under selection; hx is the square root of heritability; rg ¼
hx
hy

is the absolute value

of the estimated genetic correlation (estimated from genetic covariances) between the princi-

pal traits x and y; and sgy is the phenotypic standard deviation.

Table 2. Location of markers and control loci of traits.

Linkage group Markers Control loci

1 1–100 10 20 30 40 50 60 70 80

2 101–200 110 120 130 140 150 160 170 180

3 201–300 210 220 230 240 250 260 270 280

4 301–400 310 320 330 340 350 360 370 380

5 401–500 410 420 430 440 450 460 470 480

6 501–600 510 520 530 540 550 560 570 580

7 601–700 610 620 630 640 650 660 670 680

8 701–800 710 720 730 740 750 760 770 780

9 801–900 810 820 830 840 850 860 870 880

10 900–1000 910 920 930 940 950 960 970 980

Eight control loci were used for each link group.

https://doi.org/10.1371/journal.pone.0257213.t002
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Prediction of the importance of phenotypic traits

To predict PT1 and determine the importance of other traits (PT2 to PT11), multiple regres-

sion, computational intelligence, and machine learning were used.

Stepwise multiple regression. Stepwise multiple regression selects a predictor trait at the

expense of the coefficient of determination (R2) between the dependent and independent

traits. For prediction using stepwise multiple regression, PT1 was used as the principal trait

and the others as auxiliary traits. The R2 values were used to verify the extent to which the

independent traits explained the total variation in the dependent trait. The following model

was used to predict PT1:

y ¼ b0 þ b1x1 þ b2x2 þ . . .þ bkxk þ ε ð3Þ

Where y is the response variable (PT1); x1 to xk (PT2 to PT11) are the explanatory variables; β0

represents the intercept; β1 and βk are the coefficients associated with the variables x1 to xk;
and ε is the residual effect.

R2 was calculated using the following equation:

R2 ¼ 1 �

Pn
i¼1
ðyi � ŷiÞ

2

Pn
i¼1
ðyi � �yiÞ

2
ð4Þ

where the actual values are indicated by y and predicted values by ŷ.

Pearson’s correlation analysis was used to evaluate the relationship between PT1 and other

traits [33]. The first and second groups constituted the phenotypic traits PT1 and PT2, respec-

tively. According to the number of shared control loci with the principal trait, the third group

was composed of PT3, PT4, and PT5; the fourth group comprised PT6, PT7, and PT8; and the

fifth group comprised PT9, PT10, and PT11.

Computational intelligence

MLP and RBF neural networks were used for information processing and prediction of the

importance of phenotypic traits, as described below.

MLP. The MLP networks are characterized by having at least one intermediate (hidden)

layer located between the input and output layers. For the best efficiency of this network,

before training, the data were normalized by an interval between − -1 and 1. The maximum

number of training periods was set to 5,000, and the minimum mean square error (MSE), to

stop processing the network, was set at 1.0 × 10−3. All trained networks included one neuron

in the output layer and a single hidden layer with 30 neurons. The sigmoid tangent activation

function was used in the hidden layer, and Bayesian regulation backpropagation was used as
the training algorithm.

To quantify the importance of phenotypic traits using the MLP network, two methodolo-

gies were used, namely Garson’s algorithm (1991) and modified by Goh [34]. In this approach,

the neural network connection weights are partitioned to determine the relative importance of

each input variable in the network. This function was implemented using the method

described by [34]. In this method, the relative importance of each variable was determined as

the absolute magnitude. For each input node, all weights connecting an input through the hid-

den layer to the response variable are identified to return a list of all weights specific to each

input variable. In the second methodology, the importance of traits (inputs) was evaluated

through the impact of de-structuring or disturbance of information on a given input on the R2

estimates. This importance was estimated by exchanging information on or making the phe-

notypic value of each trait constant and verifying the changes in the R2 estimates. When the
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values of a trait are disturbed, the value of R2 decreases, indicating that the trait is important

relative to the others for the purpose of prediction.

The relative importance of the variable, measured by the reduction in R2 and obtained by

permuting its values, was quantified using the following equation:

pVRxi
¼ R2

obs �
�R2

perm;xi
ð5Þ

where R2
obs is the R2 of the ANN topology obtained using the original predictor variables and

established by the square of the correlation between the predicted and observed values, and

R2
perm;xi

is the R2 of the same topology as the ANN and was obtained from a dataset in which the

values of xi were altered by the permutation procedure.

RBF. RBF network is characterized by having only one hidden layer and using a Gaussian

activation function. The structure of the RBF that best predicted PT1 was established with 10

to 30 neurons (increased by 2 at each processing step) and a radius of 5 to 15 (increased by 0.5,

at each processing step). The efficiency of prediction was measured based on R2, and the rela-

tive importance of each trait was measured by de-structuring the information on each explana-

tory phenotypic trait, as described for MLP above.

Machine learning

Machine learning is one of the techniques used in artificial intelligence, and it allows for the

detection of patterns in large datasets and the development of predictive models [35]. Learning

algorithms based on decision trees are considered one of the most efficient and most used

methods of supervised learning [36] to build predictive models of high precision, stability, and

ease of interpretation. To predict PT1 and determine the importance of phenotypic traits

through machine learning, decision trees with bagging, random forest, and boosting refine-

ments were used. The quality of the predictive model fit was determined based on R2, and the

MSE was used to quantify the importance of phenotypic traits.

The importance of the explanatory trait was determined by estimating the percent increase

in MSE (%IMSE). %IMSE was derived for each predictor variable from the difference in MSE

between the predictive measure based on the original dataset and that based on a permuted

dataset, where the predictor in question was randomized [37]. To improve the predictive effi-

ciency for the importance of traits, 5,000 trees were generated.

The relative importance of the variable (IV) was obtained by permuting its values and quan-

tified using the following equation:

IVxi
¼ MSEperm;xi

� MSE; ð6Þ

where MSEperm;xi
is the mean quadratic error of the methodology obtained from the use of a

dataset in which the xi values were changed by the permutation procedure. MSE is the mean

square error of the same methodology obtained from the original predictor variables and is a

function of the square of the deviations between the predicted and observed values.

Training and validation sets

The dataset was divided into two parts: a training and validation set. The training set included

the same individuals for modeling using all methodologies and was composed of 80% individ-

uals in each class, selected at random. The remaining 20% of individuals constituted the valida-

tion set. In previous studies, 60% to 90% of individuals constituted the training set [26, 31].

For the training and validation of the algorithms used, cross-validation (k-fold) was performed

with k = 10 partitions [38].
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Data simulation and analysis were performed using the R package NeuralNetTools [15] and

Genes [39].

Results and discussion

Summary of key findings

The R2 estimates for all methodologies, using the explanatory traits for PT1, are shown in

Table 3. Based on these results, the methodologies used were compared and defined, proving

the most efficient approach to PT1 prediction. Higher R2 values indicate that the principal trait

of prediction is more adaptable than the other explanatory phenotypic traits [2, 40].

Stepwise multiple regression provided the lowest estimate of R2 (Table 3), indicating the

existence of non-linear associations among the explanatory phenotypic traits not considered

in the model; in the present study, this result can be attributed to the epistatic action between

the control loci of each trait. In multiple linear regression, the absolute value of the t-statistic is

commonly used as a measure of variable importance. Computational intelligence and machine

learning were superior in extracting nonlinear information from model inputs (Table 3). How-

ever, in all scenarios, R2 was lower for computational intelligence than for machine learning

(Table 3).

The R2 values were 83.03%, 77.89%, 75.49%, and 82.14% for scenarios 1, 2, 3, and 4, respec-

tively, in the MLP network with only one neuron in the output layer and a single hidden layer

(Table 3). The differences in results obtained with different methodologies indicate that the

scenarios influenced the estimation of R2 and, consequently, the prediction of PT1. Similar

results have been reported in studies predicting corn and soybean yield based on climatic con-

ditions using ANNs (R2 = 0.77 for corn, and 0.81 for soybean) and multiple linear regression

(R2 = 0.42, maize and 0.46 for soybean, respectively) [41]; moreover, the development of linear

regression models was time-consuming, and ANN models were superior in terms of accurately

predicting corn and soybean yields under typical climatic conditions. Silva et al. [9] applied

ANNs to simulated traits with 40% and 70% heritability for predicting genetic values and gains

and found more efficient selection using ANNs than using maximum likelihood (genotypic

mean). In addition, several studies have used this parameter (R2) to verify the effectiveness of

methodologies for the prediction or classification of simulated populations [2, 9, 28, 42, 43].

Twenty-five neurons were established for the MLP network, and an R2 of 82.14% was

obtained for scenario 4. For scenarios 2 and 3, 29 neurons were established, and R2 values of

77.89% and 75.49% were obtained, respectively. In scenario 1, 30 neurons were established,

and a maximum R2 value of 83.02% was obtained (Table 3). High (>90%) R2 estimates for all

analyses were obtained using machine learning with random forest and bagging refinements

(Table 3). With boosting, these estimates were>80%, indicating an efficient estimate of R2.

Table 3. Maximum estimate of the coefficient of determination (R2) for all methodologies using the explanatory traits for phenotypic trait 1.

Scenario CI ML MR

MLP (NN) RBF DT RF BA BO Stepwise

1 83.02 (30) 54.42 51.00 94.40 94.64 82.12 41.03

2 77.89 (29) 48.51 49.24 93.82 93.83 79.74 33.88

3 75.49 (29) 44.04 43.66 93.99 93.89 79.86 34.82

4 82.14 (25) 47.06 45.75 93.49 93.32 80.01 38.16

CI: computational intelligence, ML: machine learning, MR: multiple regression, MLP: multilayer perceptron, RBF: radial basis function, DT: decision tree, RF: random

forest, BA: bagging, BO: boosting. NN: number of neurons in hidden layer.

https://doi.org/10.1371/journal.pone.0257213.t003
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Decision trees were not superior to the remaining machine learning methods, and the R2 val-

ues with decision trees were similar to those with RBF and stepwise multiple regression.

Thus, machine learning is indeed more efficient for the selection of phenotypic traits

because it can deal with reduced or redundant information on phenotypic traits [44]. Costa

et al. [45] assessed the importance of variables by bagging, random forest, boosting, decision

tree, PML, and RBF and reported that PML and RBF achieved better results. After verifying

the efficiency of different computational intelligence and machine learning methodologies in

predicting PT1, we sought to identify the explanatory phenotypic traits that should be priori-

tized and established as auxiliary traits for indirect selection, as described below.

Importance of phenotypic traits by Pearson’s correlation

Pearson’s correlation coefficients were calculated between PT1 and other phenotypic traits in

the four scenarios (Table 4).

PT1 showed a positive and significant correlation with PT5 (P < 0.01) in all scenarios,

probably because of the large number of shared control loci and high h2 (80%) of PT5. Mean-

while, the correlation between PT1 and PT2 was not significant (P > 0.05) in all scenarios,

except in scenario 2, which is consistent with the simulation results and the absence of shared

control loci between these two traits. These results were expected because PT2 had no genetic

relationship with PT1 due to the absence of pleiotropy or a factorial link between the loci con-

trolling these phenotypic traits.

The phenotypic correlation network is shown in Fig 1. Consistent with the results in

Table 4, these correlations were considered stronger relative to those among the groups.

Group 2, represented by PT2, was positioned far from the principal trait (PT1) because of the

lack of shared loci or genetic relationships. Group 3, represented by PT3, PT4, and PT5, was

closer to PT1 and represented the most important traits for predicting PT1, particularly PT5,

which had the highest h2 value. The placement of groups 4 and 5 relative to PT1 was consistent

with the simulation of genetic structures, allowing satisfactory prediction of importance, albeit

lower than expected relative to group 3 but higher than expected relative to PT2.

In breeding programs, understanding the meaning and degree of association between traits

plays an important role in the development of selection strategies that facilitate the production

Table 4. Pearson’s correlation coefficients between phenotypic trait (PT) 1 and other traits in the four scenarios.

PT Scenario

1 2 3 4

2 0.08ns 0.10� -0.08ns -0.05ns

3 0.07ns 0.38�� 0.34�� 0.27��

4 0.43�� 0.30�� 0.38�� 0.47��

5 0.47�� 0.43�� 0.39�� 0.47��

6 0.14�� 0.05ns 0.05ns 0.04ns

7 0.25�� 0.19�� 0.26�� 0.14��

8 0.12�� 0.24�� 0.15�� 0.23��

9 0.03ns -0.13�� 0.06ns 0.21��

10 0.03ns -0.04ns 0.03ns 0.12��

11 0.04ns 0.03ns 0.02ns 0.08ns

Significant at ��1% and �5% probability of error by t-test. ns: non-significant. Scenario 1 represents the first four

control loci, scenario 2 represents the last four control loci, scenario 3 represents the first two and last two control

loci, and scenario 4 represents the central control loci (excluding the first and last two loci).

https://doi.org/10.1371/journal.pone.0257213.t004
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of superior genotypes. One of the most used techniques to estimate these associations is the

Pearson correlation, which is interpreted as the strength of the linear association between a

pair of characteristics [46]. When more than two characteristics are considered, this measure

alone does not show the real meaning and magnitude of the interrelations, making it impossi-

ble to determine whether the associations are cause or effect [47]. Therefore, a path analysis is

used when there are dependent (interest) characteristics and other characteristics whose inter-

relationships are of interest to the researcher [48]. This technique has been shown to be very

useful for revealing cause-and-effect associations and providing support in indirect selection.

The estimates of the correlation coefficients can help improve our understanding of a com-

plex character, such as production, but they do not determine the relative importance of the

direct and indirect influences of the other characters on production [48]. This is because the

correlation between two characteristics measures the association between both, but it does not

Fig 1.

https://doi.org/10.1371/journal.pone.0257213.g001
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determine the cause-and-effect relationship between them, which can be determined through

the trail analysis [3]. When the correlation between explanatory characteristics increases, the

difficulty in assessing their relative importance in predicting the dependent characteristic is

greater [49, 50]. Machine learning and computational intelligence are approaches that, even in

the presence of an association between explanatory characteristics and a high degree of multi-

collinearity, are able to make appropriate predictions and classifications.

Indirect selection through principal traits

Table 5 shows percent indirect selection gains between PT1 and the other traits in the four sce-

narios. The highest percent indirect gain was achieved with PT5 (h2 = 80%) in all scenarios. In

scenario 2, the highest indirect selection gain was achieved with PT3 and PT4 (3.94 and 2.12,

corresponding to h2 = 30% and 50%, respectively). Meanwhile, in scenarios 3 and 4, the high-

est selection gain was achieved with PT4 (h2 = 50). Therefore, a greater number of shared con-

trol loci affected indirect selection gain. The success of indirect selection depends mainly on

heritability and genetic correlation between the primary and secondary traits [32]; therefore,

traits closely correlated traits with a greater heritability than the target trait have great potential

for indirect selection.

Importance of phenotypic traits by computational intelligence

MLP. The results of quantification of the importance of phenotypic traits using MLP after

the permutation of traits and assignment of a zero value to the input trait are shown in Table 6.

If R2 shows a great reduction after disturbing the values of a trait, the phenotypic trait is impor-

tant relative to others for prediction. The relative importance of phenotypic traits based on the

reduction in R2 (Table 6), independent of the heritability of each phenotypic trait and LGs, dif-

fered across scenarios. Permutation was efficient in quantifying the importance of PT5, which

was the most important trait in all scenarios except scenario 4, in which PT4 was the most

important trait (Table 6). The R2 values were 83.02%, 77.89%, 75.49%, and 82.14% in scenarios

1, 2, 3, and 4, respectively (Table 3). Furthermore, permutation was efficient in demonstrating

PT2 as the least important trait in scenarios 3 and 4, which was expected based on the number

of markers influencing the principal trait (PT1).

Table 5. Percentage gain of indirect selection between phenotypic trait (PT) 1 and the other traits in the four

scenarios.

PT 1 2 3 4

2 0.06 1.32 -0.06 -1.07

3 0.05 3.94+ 0.25 1.97

4 0.31+ 2.12+ 0.28+ 3.46+

5 0.34+ 2.73+ 0.29+ 3.12+

6 0.1 -0.32 0.04 -0.27

7 0.18 1.05 0.19 1.18

8 0.08 1.63 0.11 1.26

9 0.02 -1.4 0.04 2.51

10 0.02 -0.42 0.02 0.76

11 0.03 0.06 0.02 0.32

+: minor importance in PT1 prediction Scenario 1 represents the first four control loci, scenario 2 represents the last

four control loci, scenario 3 represents the first two and last two control loci, and scenario 4 represents the central

control loci (excluding the first and last two loci).

https://doi.org/10.1371/journal.pone.0257213.t005
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Given the great complexity of interpreting the MLP network to quantify the relative impor-

tance of traits, an alternative is to use Garson’s algorithm (1991) modified by Goh [34]. This

algorithm partitions the ANN connection weights to determine the relative importance of

each input trait. The weights associated with the neurons in an ANN are partially analogous to

the coefficients in a generalized linear model [51]. The combined effects of the weights repre-

sent the relative importance of the predictors for predicting the response variable. The weights

correspond to the relative influence of the information that is processed in the network such

that the input variables that are not relevant are suppressed by the weights.

The method proposed by Garson (1991), modified by Goh [34], identifies the relative

importance of explanatory variables toward specific response variables in a supervised neural

network. The relative importance (or strength of association) of a specific explanatory variable

to a specific response variable can be determined by identifying all the weighted connections

between the nodes of interest. This algorithm has the ability to deal with degrees of association

and multicollinearity between explanatory characteristics and has been shown to be efficient

in quantifying the importance of phenotypic characteristics in studies with known genetic

structures.

The percent relative contributions of the 10 phenotypic traits relative to PT1 in the four sce-

narios estimated by this method are listed in Table 7. In all scenarios, the relative contributions

of PT5 and PT2 in predicting PT1 were quantified as major and minor, respectively. The result

for PT2 was expected because of the lack of shared LGs controlling PT1. Thus, PT5 presented

the highest number of major pleiotropic markers, in addition to the minor markers, but with

major heritability.

ANNs most often exhibit satisfactory performance compared with other machine learning-

based predictive algorithms [17]. The MLP network has been widely used in predictive pro-

cesses [17, 52], and its success has already been demonstrated in several studies, which mathe-

matically showed that networks even with only a single hidden layer with different numbers of

neurons work very well [17, 53].

RBF. The results of quantification of the importance of phenotypic traits using RBF after

the permutation of the traits and assignment of a zero value to the input trait are shown in

Table 8.

The relative importance of phenotypic traits based on the reduction in R2 (Table 8), inde-

pendent of the heritability of each phenotypic trait and LGs, differed across scenarios. The

Table 6. Estimation of the coefficient of determination (R2) for the prediction of phenotypic trait 1 (PT1) using multilayer perceptron (MLP).

PT Zero Permutation

1 2 3 4 1 2 3 4

2 34.13 16.28 17.71 6.69 45.54 36.33 43.89� 44.14�

3 11.33 0.81 11.23 1.47 36.14 29.23 38.78 35.15

4 10.32 3.62 2.72 0.13 19.45 32.84 41.32 12.03+

5 11.93 1.22+ 3.30 0.76 17.83+ 18.72+ 19.09+ 16.29

6 14.52 17.54� 14.86 0.03+ 50.35� 31.42 33.34 21.11

7 8.34 3.80 23.53� 1.87 42.83 37.08 37.47 24.82

8 0.05+ 10.99 1.41+ 0.19 22.30 39.62 32.28 29.26

9 22.52 24 13.1 15.44� 31.26 56.68� 38.01 41.98

10 36.77� 1.83 7.11 14.21 46.71 30.00 30.96 34.12

11 24.94 7.99 7.24 0.06 34.48 32.46 38.42 21.34

Auxiliary traits of +major and �minor importance in the prediction of PT1 Scenario 1 represents the first four control loci, scenario 2 represents the last four control

loci, scenario 3 represents the first two and last two control loci, and scenario 4 represents the central control loci (excluding the first and last two loci).

https://doi.org/10.1371/journal.pone.0257213.t006
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most important traits obtained with the permutation of traits and assignment of a zero value

to the input trait were not consistent. As mentioned earlier, permutation was efficient in quan-

tifying the relative contribution of PT5 as a major based on the reduction in R2 estimate when

the information was disturbed (Table 7). This efficiency could be extended to PT3, PT4, and

PT5, which shared the same number of markers as PT1 and differed only in terms of heritabil-

ity. Using this strategy, PT2 was identified as the least important trait.

Radial basis function networks have the ability to learn from the data used in their training

and provide a unique solution. They are also comparatively faster than perception-type ANNs

[26]. In addition, they have a good ability to handle interactions compared to semi-parametric

and linear regressions [28]. Sant’Anna et al. [28] applied RBF in studies using simulated char-

acteristics with 30% and 60% heredity for variable selection. The authors identified greater effi-

ciency in the selection using RBF when the scenario involved epistatic interactions in the gene

Table 7. Percentage of relative contribution using the Garson’s algorithm (1991) modified by Goh (1995) for 10

phenotypic traits (PTs) relative to PT1 in the four scenarios.

PT Scenarios

1 2 3 4

2 6.12� 5.24� 8.28� 8.77�

3 9.26 8.65 10.63 9.27

4 7.89 11.13 9.47 10.26

5 13.11+ 12.04+ 11.41+ 12.73+

6 9.47 10.16 9.00 9.11

7 9.87 10.49 8.98 9.79

8 11.14 11.96 10.64 10.16

9 10.81 9.85 11.03 10.35

10 10.77 9.96 10.43 11.33

11 11.55 10.53 11.12 11.21

Auxiliary traits of +major and �minor importance in the prediction of PT1 Scenario 1 represents the first four

control loci, scenario 2 represents the last four control loci, scenario 3 represents the first two and last two control

loci, and scenario 4 represents the central control loci (excluding the first and last two loci).

https://doi.org/10.1371/journal.pone.0257213.t007

Table 8. Estimation of the coefficient of determination (R2) for the prediction of phenotypic trait 1 (PT1) using the radial basis function (RBF).

PT Zero Permutation

1 2 3 4 1 2 3 4

2 37.15� 9.38 27.92 37.99� 47.96 32.27 33.27 37.82

3 12.63 23.66 15.44 25.94 27.35 37.66 24.24 37.01

4 19.39 23.39 21.65 18.91 24.96 24.40 36.66 32.15

5 8.40 8.60+ 9.73+ 19.91 9.31+ 16.19+ 14.46+ 16.86+

6 32.37 20.21 15.79 30.83 44.45 29.01 33.78 38.95

7 28.17 19.46 33.69 19.94 44.39 40.89� 31.02 33.63

8 29.26 13.03 11.02 9.79+ 43.74 38.73 33.11 39.69

9 36.10 36.20� 22.62 28.53 33.47 36.65 39.25 28.79

10 39.41 26.63 32.27 19.12 50.79� 39.77 39.40� 40.38�

11 2.01+ 30.15 37.32� 25.23 29.40 40.14 34.84 30.49

Auxiliary traits of +major and �minor importance in the prediction of PT1 Scenario 1 represents the first four control loci, scenario 2 represents the last four control

loci, scenario 3 represents the first two and last two control loci, and scenario 4 represents the central control loci (excluding the first and last two loci).

https://doi.org/10.1371/journal.pone.0257213.t008
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control of the studied characters. González-Camacho et al. [26] observed that it is possible to

improve prediction in non-parametric models when the selection includes markers that are

not directly related to the characteristics of interest.

The results obtained corroborate the expectation about the RBF in quantifying and reveal-

ing the importance of the characteristics using the strategy of causing disturbances based on

the permutations or fixation of the phenotypic values of the input variables.

Our study demonstrates the ability of RNA to quantify the importance of phenotypic char-

acteristics with known genetic structures. Techniques showing the impact of the disruption or

disturbance to the information of a given entry on the estimation of the determination coeffi-

cient and partitioning of the ANN connection weights have been presented. These techniques

were effective in quantifying the true importance of phenotypic characteristics.

Importance of phenotypic traits by machine learning

The importance of phenotypic traits using machine learning and its refinements (bagging, ran-

dom forest, and boosting) in four different scenarios are shown in Table 9. The %IMSE values

were calculated, with the highest value representing the most important phenotypic trait.

PT5 was estimated as the most important phenotypic trait in all machine learning method-

ologies and in all scenarios. This result is consistent with that of the computational intelligence

methods (Tables 6–8). Although machine learning is an efficient tool for quantifying the rela-

tive importance of traits, it does not make any assumptions regarding the distribution of

explanatory variables and is robust in terms of quantity, redundancy, and environmental influ-

ence [19, 54]. In addition, random forest and boosting do not require an inheritance specifica-

tion model and can account for non-additive effects without increasing the number of

covariates in the model or computation time [55]. Random forest and bagging show good pre-

dictive performance in practice; they work well for multi-dimensional problems and can be

used with multi-class output, categorical predictors, and imbalanced problems [56]. Satisfac-

tory results of variable selection using the random forest algorithm in the presence of corre-

lated predictors have been reported for [56].

The discriminatory power, redundancy, precision, and complexity can influence the indices

or statistics used to quantify the importance of auxiliary traits in the prediction of a principal

trait. Thus, the selection of a prediction method and index reflecting the true importance of

Table 9. Average estimate of the relative contribution of explanatory phenotypic traits (PTs) to the prediction of PT1 using machine learning in the four scenarios.

PT Bagging Random forest Boosting

1 2 3 4 1 2 3 4 1 2 3 4

2 8.35� 10.63 16.5 13.14 7.32 13.79 15.71 15.94 1.08� 3.20 11.18 11.42

3 20.50 25.36 18.23 12.70 22.51 25.27 18.39 13.81 11.92 19.22 16.58 9.88

4 29.58 14.72 19.22 23.92 28.7 14.69 20.33 24.85 26.69 6.73 13.04 27.57

5 34.13+ 40.45+ 24.8+ 29.36+ 33.9+ 34.78+ 25.56+ 26.98+ 33.82+ 31.31+ 23.28+ 24.67+

6 10.67 16.48 7.18 9.17 9.98 16.4 7.82� 10.05 3.23 8.89 5.85 5.94

7 12.22 9.45� 12.42 7.75 13.65 8.51� 13.46 8.38 3.89 2.39� 9.35 1.69

8 12.28 11.99 9.34 5.41 12.96 11.89 9.31 6.03 3.64 3.86 3.88 1.68�

9 13.00 14.24 7.55� 11.57 13.63 14.99 8.59 14.11 4.71 7.70 1.82� 6.82

10 4.03 15.59 11.64 4.00� 3.82� 15.92 13.05 5.35� 3.20 10.68 4.96 2.62

11 15.43 11.61 18.6 14.48 15.9 12.62 15.03 16.39 7.82 6.04 10.07 7.70

Auxiliary traits of +major and �minor importance in the prediction of PT1 Scenario 1 represents the first four control loci, scenario 2 represents the last four control

loci, scenario 3 represents the first two and last two control loci, and scenario 4 represents the central control loci (excluding the first and last two loci).

https://doi.org/10.1371/journal.pone.0257213.t009
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each auxiliary trait is imperative. In the present study, we propose some genetic structures that

can allow us to estimate the efficiency of procedures using computational intelligence and

machine learning to quantify the relative contribution of phenotypic traits in different scenar-

ios for the implementation of these techniques in other studies. The lack of information on the

implementation of computational intelligence and machine learning in breeding programs to

predict phenotypic traits is a challenge for breeders. However, with the relevant recent

advances in biotechnology and high-throughput phenotyping, more information can be

obtained for the identification of genetically superior individuals.

Breeding for desired traits in crops has long been a time-consuming, labor-intensive, and

expensive process. Breeders study generations of plants and identify and modify desired

genetic traits, as they assess how traits are expressed in offspring [57, 58]. The application of

computational intelligence and machine learning to identify optimal suites of observable char-

acteristics (phenotypes) can enable informed decisions and achieve outcomes of great rele-

vance in breeding programs. In addition, these methodologies can help predict genetic traits

with the best performance under different agricultural management practices.

Methodologies based on machine learning and computational intelligence do not depend

on stochastic information and tend to be more efficient, whereas conventional methodologies

depend on the normality of the distribution of phenotypic traits. Moreover, machine learning

and computational intelligence methodologies make no assumptions regarding the model and

can capture complex factors, such as epistasis and dominance, in prediction models. In

machine learning, a priori knowledge of prediction is not required if the data produce these

effects, and no assumptions are made regarding the distribution of phenotypic values [59].

Machine learning algorithms have the advantage of modeling data in a non-linear and non-

parametric manner [60]. Unlike many traditional statistical methods, these algorithms are

built with the advantage of dealing with noisy, complex, and heterogeneous data [61–64]

reported that machine learning methods are powerful tools for predicting genetic values with

epistatic genetic control in traits with different degrees of heritability and different numbers of

controlling genes. The results obtained in the present study can be used to select genotypes

and test them in the field. Thus, the proposed model can be validated in practice.

Conclusion

Computational intelligence and machine learning can efficiently predict the relative contribu-

tions of auxiliary traits in different scenarios in plant breeding programs. PT5 was identified as

the most important predictor of PT1.
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Supervision: Antônio Carlos da Silva Júnior, Cosme Damião Cruz.
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Editora UFV, 2014. p. 668.

4. Khaki S, Khalilzadeh Z, Wang L. Predicting yield performance of parents in plant breeding: A neural col-

laborative filtering approach. PLoS ONE 2020; 15(5): e0233382. https://doi.org/10.1371/journal.pone.

0233382 PMID: 32437473

5. Skawsang S, Nagai M, Nitin K and Soni P. Predicting rice pest population occurrence with satellite-

derived crop phenology, ground meteorological observation, and machine learning: A case study for the

Central Plain of Thailand. Appl. Sci. 2019; 9:4846. http://dx.doi.org/10.3390/app9224846.

6. Paswan RP and Begum SA. Regression and neural networks models for prediction of crop production.

Int. J. Sci. Eng. Res.2013; 4:11.

7. Parmley KA, Higgins RH, Ganapathysubramanian B et al. 2019. Machine learning approach for pre-

scriptive plant breeding. Sci Rep 9, 17132. https://doi.org/10.1038/s41598-019-53451-4 PMID:

31748577

8. Ventura RV, Silva MA, Medeiros TH, Dionello NL, Madalena FE, Fridrich AB, et al. Use of artificial neu-

ral networks in breeding values prediction for weight at 205 days in Tabapuã beef cattle. Arquivo Brasi-
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27. González-Camacho JM, Crossa J, Pérez-Rodrı́guez P, Ornella L and Gianola D. Genome-enabled pre-

diction using probabilistic neural network classifiers. BMC genomics. 2016; 17(1), p.208. https://doi.

org/10.1186/s12864-016-2553-1 PMID: 26956885

28. Sant’Anna IC, Silva GN, Nascimento M, Cruz C D. Subset selection of markers for the genome-enabled

prediction of genetic values using radial basis function neural networks. Acta Scientiarum-Agron-

omy2020; 43: e46307. https://doi.org/10.4025/actasciagron.v43i1.46307

29. Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and

omics data sets. Brief Bioinform 2019; 20:492–503. https://doi.org/10.1093/bib/bbx124 PMID:

29045534

30. Hastie T, Tibshirani R, Friedman J. The Elements of Statiscal Learning Data Mining, Inference, and Pre-

diction, 2nd ed. New York, NY: Springer. 2009; p. 745.

31. Gianola D, Okut H, Weigel KA, Rosa GJM. Predicting complex quantitative traits with neural networks:

a case study with Jersey cows and wheat. BMC Genetics. 2011; 12:87. https://doi.org/10.1186/1471-

2156-12-87 PMID: 21981731

32. Falconer D.S. Introduction to quantitative genetics. Oliver e Boyd: Edimburgo, Reino Unido; Londres,

Reino Unido, 1960.

PLOS ONE Importance of auxiliary traits using computational intelligence and machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0257213 November 29, 2021 16 / 18

http://dx.doi.org/10.1371/journal.pone.0210531
http://dx.doi.org/10.1371/journal.pone.0210531
http://www.ncbi.nlm.nih.gov/pubmed/16521432
http://dx.doi.org/10.1016/s0304-3800(96)01913-8
http://dx.doi.org/10.1016/s0304-3800(96)01913-8
http://dx.doi.org/10.1016/s0304-3800(02)00064-9
http://dx.doi.org/10.1016/s0304-3800(02)00064-9
https://doi.org/10.18637/jss.v085.i11
http://www.ncbi.nlm.nih.gov/pubmed/30505247
https://doi.org/10.21037/atm.2018.05.32
http://www.ncbi.nlm.nih.gov/pubmed/30023379
http://dx.doi.org/10.1080/02286203.2018.1558736
https://doi.org/10.1016/j.fuel.2018.02.040
http://dx.doi.org/10.1016/j.geoderma.2017.11.004
http://dx.doi.org/10.1016/j.geoderma.2017.11.004
https://doi.org/10.1016/s0167-7012%2800%2900201-3
http://www.ncbi.nlm.nih.gov/pubmed/11084225
https://doi.org/10.1017/S0016672310000157
http://www.ncbi.nlm.nih.gov/pubmed/20667165
https://doi.org/10.1007/s10709-011-9588-7
http://www.ncbi.nlm.nih.gov/pubmed/21674154
https://doi.org/10.1007/s00122-012-1868-9
http://www.ncbi.nlm.nih.gov/pubmed/22566067
https://doi.org/10.1186/s12864-016-2553-1
https://doi.org/10.1186/s12864-016-2553-1
http://www.ncbi.nlm.nih.gov/pubmed/26956885
https://doi.org/10.4025/actasciagron.v43i1.46307
https://doi.org/10.1093/bib/bbx124
http://www.ncbi.nlm.nih.gov/pubmed/29045534
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1186/1471-2156-12-87
http://www.ncbi.nlm.nih.gov/pubmed/21981731
https://doi.org/10.1371/journal.pone.0257213


33. Mukaka MM. Statistics Corner: A guide to appropriate use of correlation coefficient in medical research.

Malawi Med J. 2012; 24:69-71. PMID: 23638278

34. Goh ATC. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in

Engineering. 1995; 9:143–51. http://dx.doi.org/10.1016/0954-1810(94)00011-S.

35. Mitchell TM. Machine Learning. WCB–McGraw-Hill, Boston, MA. 1997.

36. Mingers J. An empirical comparison of pruning methods for decision tree induction. Machine Learning

1989; 4:227–243.

37. Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random forest permutation-based vari-

able importance measures under predictor correlation. BMC Bioinformatics. 2010; 11:110. https://doi.

org/10.1186/1471-2105-11-110 PMID: 20187966

38. Bengio Y, Grandvalet Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach.

Learn Res. 2004; 5:1089–1105.

39. Cruz CD. Genes Software–extended and integrated with the R, Matlab and Selegen. Acta Scientiarum

2016; 38:547–552. http://dx.doi.org/10.4025/actasciagron.v38i4.32629.

40. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression mod-

els. QSAR Comb Sci 27:302–313. https://doi.org/10.1002/qsar.200710043

41. Kaul M, Hill RL, Walthall C. Artificial neural networks for corn and soybean yield prediction. Agric Syst

2005; 85:1–18.

42. Silva GN, Tomaz RS, Sant’Anna IC, Carneiro VQ, Cruz CD, Nascimento M. Evaluation of the efficiency

of artificial neural networks for genetic value prediction. Genet. Mol. Res. 2016; 15, 1–11. https://doi.

org/10.4238/gmr.15017676 PMID: 27051007

43. Sant’Anna IC, Tomaz RS, Silva GN, Nascimento M, Bhering LL, Cruz CD. Superiority of artificial neural

networks for a genetic classification procedure. Genet. Mol. Res. 2015, 14, 9898–9906. https://doi.org/

10.4238/2015.August.19.24 PMID: 26345924

44. Quinlan JR. Learning decision tree classifiers ACM Comput. Surv. 1996; 28:71–72.

45. Costa WGD, Barbosa IP, de Souza JE, Cruz CD, Nascimento M, de Oliveira ACB. Machine learning

and statistics to qualify environments through multi-traits in Coffea arabica. PLoS One. 2021 Jan 12; 16

(1):e0245298. http://dx.doi.org/10.1371/journal.pone.0245298.

46. Pearson K. Notes on the history of correlation. Biometrika 1920; 13: 25–45. http://dx.doi.org/10.1093/

biomet/13.1.25.

47. Aliyu L, Ahmed MK, and Magaji MD. Correlation and multiple regression analysis between morphologi-

cal characters and components of yield in pepper (Capsicum annuum L.). Crop Res. 2000; 19:318–

323.

48. Olivoto T, Souza VQ, Nardino M, Carvalho IR, Ferrari M, Pelegrin AJ, et al. Multicollinearity in path anal-

ysis: a simple method to reduce its effects. Agronomy Journal 2017; 109: 131–142.

49. Blalock HM. Correlated independent variables: The problem of multicollinearity. 1963; Soc. Forces 42:

233–237. http://dx.doi.org/10.1093/sf/42.2.233.

50. Hoerl AE and Kennard RW. Ridge regression—1980: Advances, algorithms, and applications. Am. J.

Math. Manage. Sci. 1981; 1: 5–83. http://dx.doi.org/10.1080/01966324.1981.10737061.

51. Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data.” Ecological Model-

ling, 178(3–4),389–397. https://doi.org/10.1016/j.ecolmodel.2004.03.013.

52. Gedeon TD, Wong PM, Harris D. Balancing bias and variance: network topology and pattern set reduc-

tion techniques. Berlin, Heidelberg: Springer Berlin Heidelberg. 1995.

53. De Oña J, Garrido C. Extracting the contribution of independent variables in neural network models: a

new approach to handle instability. Neural Comput Appl. 2014; 25:859–869.

54. Tan K, Li E, Du Q, Du P. An efficient semi-supervised classification approach for hyperspectral imagery.

ISPRS Journal of Photogrammetry and Remote Sensing. 2014; 97:36–45. http://dx.doi.org/10.1016/j.

isprsjprs.2014.08.003.
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