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ABSTRACT
Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the
clinical success of multi-drug combination therapies to treat cancer. To this end, we used three differ-
ent anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin
(HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic effi-
cacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs’
release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and
IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal
centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated
with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form
HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA–NAMI-
A–Cu(BpT)Br–DOX complex not only increases the targeting ability compared with a combination of
the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-
resistant breast cancer cell lines.
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1. Introduction

Increasing evidences have revealed that a single anticancer
drug that inhibits a pathway is not sufficient to achieve
tumor recession due to several reasons: (1) cancers are com-
plicated diseases that involve multiple pathways (Hanahan &
Weinberg, 2011); and (2) cancer cells often have intrinsic and
acquired resistance to chemotherapeutic agents (Baguley,
2010; Gandin et al., 2013; Santini et al., 2014). Currently,
multi-drug combination therapy has been adopted to over-
come the deficiency of a single anticancer drug since several
agents can simultaneously modulate different signaling path-
ways in diseased cells (Aw et al., 2013; Ma et al., 2013;
Qi et al., 2016b; Huang et al., 2017).

Although the use of a combination of drugs has been
promising for cancer therapy, major challenges accompany
multi-drug combination therapy, including bioavailability,
pharmacokinetics, and cellular uptake (Greco & Vicent, 2009;
Parhi et al., 2012). These obstacles have limited the clinical
success of combination therapy (Parhi et al., 2012).

To overcome these challenges, several drug delivery systems
have been explored to simultaneously deliver multiple drugs
at the site of action and improve anti-tumor activities
(Kurapati & Raichur, 2012; Liu et al., 2012; Parhi et al., 2012;
Yan et al., 2012; Bao et al., 2016; Qi et al., 2016b; Li et al.,
2017; Yang et al., 2018). Among them, human serum albumin
(HSA)-based multi-drug systems are promising owing to
HSA’s unique properties relative to other drug carriers
(Furukawa et al., 2011; Kratz & Elsadek, 2012; Kratz, 2014;
Yang & Liang, 2015). Interestingly, to avoid possible mutual
interference of several anticancer drugs within a single car-
rier, Yang group designed HSA-based multidrug delivery sys-
tems by rational regulating their spatial distribution in HSA
(Qi et al., 2016b).

The previous studies have revealed that the HSA carrier is
helpful to overcome cancer cells’ resistance to a single agent
(Garmann et al., 2008). Thus, we not only designed HSA-
based multi-drug systems to improve the efficiency of multi-
drug combination therapy in vivo, but also to enhance the
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capacity of overcoming cancer cells’ resistance to a single
agent. We needed to consider two potential problems: (1) if
the drug that is conjugated or bound to HSA is weak, the
drug will be released from the HSA carrier into the blood-
stream, leading to unexpected side effects in vivo; and (2) if
the drug that is conjugated or bound to HSA is tight, the
drug will not be released from the HSA carrier into the can-
cer cells. Thus, while we need rational designed HSA-based
multi-drug systems to increase drugs’ delivery efficiency, we
should regulate their release from HSA in vivo.

Breast cancer, which is very common, is responsible for a
large number of cancer deaths among women worldwide
(Torre et al., 2015). Although doxorubicin (DOX) is the first-
line drug used to treat breast cancer, cancer cells have
acquired resistance to it (Wong et al., 2006; Cao et al., 2015).
Ruthenium and copper agents have been promising next-
generation metal agents for the treatment of various cancer
with unique anticancer mechanisms (Ruiz-Azuara & Bravo-
Gomez, 2010; Santini et al., 2014; Bergamo & Sava, 2015).
Interestingly, NAMI-A (imidazolium trans-imidazoledimethyl-
sulphoxide-tetrachlorido ruthenate) in combination with
many drugs shows more effective than individual treatments
(Bergamo & Sava, 2015; Bergamo et al., 2015). In addition, Cu
agents containing thiosemicarbazide ligands offer a different
spectrum of anticancer activity and the prospect of non-
cross-resistance (Beraldo & Gambino, 2004; Santini et al.,
2014; Park et al., 2016). Taking into consideration the above
factors, based on HSA’s binding properties for the drugs, we
used three different anticancer agents, 2-benzoylpyridine

thiosemicarbazone copper(II) [Cu(BpT)Br], NAMI-A, and DOX,
which work on different target sites (Sava et al., 1998;
Mizutani et al., 2003; Sava et al., 2003; Santini et al., 2014), to
build a mice model of HSA-based multi-drug combination
therapy by conducting the following studies: (1) we con-
structed HSA delivery systems for a combination of three
agents (Figure 1); (2) we regulated the release behavior of
the three agents from HSA; and (3) we confirmed the feasibil-
ity of the combination of the three agents and HSA multi-
drug delivery systems to overcome cancer cells’ resistance to
DOX in vivo.

2. Materials and methods

HSA and DOX were purchased from the Sigma Chemical
Company (St. Louis, MO). Cu(BpT)Br and NAMI-A were syn-
thesized according to reported methods (Adigun et al.,
2014; Qi et al., 2016b). All of the other solvents and chemi-
cals used were of high purity and available from commer-
cial sources. Culture medium DMEM, fetal bovine serum
(FBS), antibiotice–antimycotic and phosphate-buffered saline
(PBS) came from E.U. Gibco BRL (Carlsbad, CA). Normal
lung fibroblast cells WI-38, human breast cancer cell line
MCF-7, and drug-resistant MCF-7/ADR cells were purchased
from the American Type Culture Collection and the German
Collection of Microorganisms and Cell Cultures. The cells
were maintained in DMEM supplemented with 50mg/mL of
streptomycin, 10% FBS, and 50U/mL of penicillin at 37 �C
and 5% CO2.

Figure 1. Hypothesis of establishing HSA co-deliver three anticancer agent based on the nature of HSA and agents.
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2.1. X-ray crystallography of HSA–NAMI-A–Cu(BpT)Br
complex

HSA was purified according to a previous method (Curry
et al., 1998). To prepare the HSA complex, we mixed 100mL
HSA (100mg/mL), 380mL 2.5mM palmitic acid (PA), 45 mL
Cu(BpT)Br (10mM), and 45 mL of NAMI-A (10mM) overnight.
Then, the mixtures were concentrated to 100mg/mL with a
Millipore spin filter (10,000Da cutoff). HSA complex crystals
were grown using sitting drop vapor diffusion according to
the following procedures (Gou et al., 2015a; Qi et al., 2016c;
Gou et al., 2017). We mixed 1 mL HSA complex with an equal
volume of reservoir solution containing 28–32% (w/v) poly-
ethylene glycol 3350, 50mM potassium phosphate (pH 7.5),
5% glycerol, and 4% DMSO. HSA complex crystals were fro-
zen in liquid nitrogen when the crystals were picked from
solution.

We used the beamline BL17U in the Shanghai
Synchrotron Radiation Facility to collect X-ray diffraction data
at 100 K (Wang et al., 2015). The HSA complex data were
integrated and scaled by HKL2000 (Otwinowski & Minor,
1997) (Table S1). HSA complex structures were resolved by
molecular replacement in CCP4i (Krojer et al., 2017), and they
were refined in the PHENIX program according to the
reported procedure (Adams et al., 2010) (Table S1). The HSA
complex structure figures were depicted by PyMOL software
(DeLano, 2004).

2.2. Synthesis and characterization of HSA–DOX or
HSA–NAMI-A–Cu(BpT)Br–DOX complex

The conjugation of DOX to HSA or the HSA–NAMI-
A–Cu(BpT)Br complex using a cis-aconityl bond was prepared
as previously reported (Shen & Ryser, 1981; Yoo et al., 2002;
Du et al., 2013). In brief, doxorubicin hydrochloride (7mg) was
dissolved in water (4mL), and then a 1,4-dioxane (200 mL)
solution of cis-aconitic anhydride (5mg) was slowly added to
the doxorubicin hydrochloride solution with stirring. The reac-
tion mixture was immediately adjusted to pH 9.0, and then
the mixture carried out in an ice bath. After 30min, the pH
was adjusted to 7.0 and the mixture was stirred for another
30min. We slowly added 1M HCl to the mixture until the cis-
aconitic anhydride-doxorubicin heavy precipitate was formed.
After 30min on ice, the precipitate was recovered by centrifu-
gation (8000 rpm, 15min). Next, the cis-aconitic anhydride-
doxorubicin (4.2mg, 6mM), N-hydroxy-succinimide (NHS,
2mg), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDCI, 3.5mg) were dissolved in distilled water (3mL) and
stirred at room temperature in the dark for 12 h. Finally, the
solution was mixed with HSA or the HSA–NAMI-A–Cu(BpT)Br
complex (20mL of 17mg/mL in distilled water, 5mM), and
stirred for another 24 h at room temperature in the dark. After
the reaction, the solution was purified and separated from the
free cis-aconitic anhydride-doxorubicin using Sephadex G-25.
The coupling ratio of cis-aconitic anhydride-doxorubicin to
HSA or the HSA–NAMI-A–Cu(BpT)Br complex was determined
by UV–vis spectrometry.

Matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF-MS) was used to determine

whether DOX was conjugated to HSA or the HSA–NAMI-
A–Cu(BpT)Br complex. The samples of HSA, HSA–DOX,
HSA–NAMI-A–Cu(BpT)Br, and HSA–NAMI-A–Cu(BpT)Br-DOX
were prepared using the dried droplet method with fresh
10mg/mL sinapinic acid as the matrix solution. The protein
sample solution (100 lL, a series of 1:10 dilutions) was mixed
on the target with the matrix solution (100 lL) and allowed
to air-dry. The MALDI-TOF-MS data were recorded in the m/z
30,000� 100,000 range in a positive linear mode.

2.3. Release behavior of three agents from the HSA
complex

To evaluate the release behavior of the three agents from
the HSA complex, in vitro release profiles of the three agents
from the HSA–NAMI-A–Cu(BpT)Br-DOX complex were tested
at different pH levels (4.7 and 7.4). In brief, 5mL HSA com-
plex were dialyzed in a tube containing 50mL of pH 4.7 and
pH 7.4 buffers for 48 h. The amount of NAMI-A and
Cu(BpT)Br released from the HSA complex was determined
with a graphite furnace atomic absorption spectrometer (GF-
AAS). The amount of DOX released from the HSA complex
was calculated by UV–vis spectrometry.

2.4. In vitro anticancer activity

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium brom-
ide (MTT) experiment has been performed according to a
published method (shown in Supporting Information)
(Qi et al., 2016a,b).

2.5. In vivo animal studies

The MCF-7/ADR tumor-bearing mice (40) were randomly div-
ided into five groups when the tumor volume was approxi-
mately 80mm3 so they could be used in the antitumor
activity study. The mice in different treatment groups were
intravenously injected with NaCl, DOX (at a dose of 6 mmol
per kg body weight), the three-agent combination [DOX
(2 mmol/kg)þNAMI-A (2 mmol/kg)þCu(BpT)Br (2 mmol/kg)],
HSA–DOX (6mmol per kg body weight), and HSA–NAMI-
A–Cu(BpT)Br–DOX (2 mmol per kg body weight) every 3 d. All
of the mice in all of the groups were earmarked and fol-
lowed individually throughout the experiments. The length
and the width of the tumor and the body weights of the
mice were measured before every injection and at the end of
the experiment. The volume was calculated using the follow-
ing equation: tumor volume (V)¼ 1/2�width2� length. Mice
were killed after 21 d of treatment, and the major organs and
tumor tissues of mice were placed in a Teflon container and
mineralized in a microwave oven under pressure (system
Milestone MSL 1200) in 30% hydrogen peroxide (1mL) and
in the presence of 7mL of concentrated HNO3. Finally,
inductively coupled plasma-atomic emission spectrometry
(ICP-AES) was used to measure the Cu content in the major
organs and tumors. In addition, major organs (heart, kidney,
and liver) and tumor tissues were excised for histopatho-
logical analysis with terminal deoxynucleotidyl transferase
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dUTP nick end labeling (TUNEL) assay hematoxylin and eosin
(H&E) staining.

2.6. Statistical analysis

Statistical analysis was performed using Student’s t test to
compare experiment results. Results were expressed as the
mean± SD and considered to be significant when p< .05.

3. Results

3.1. Feasibility of establishing HSA-based multi-drug
delivery systems

We used X-ray crystallography and MALDI-TOF-MS spectra to
determine whether different drugs could bind to different
areas of the HSA carrier. The electron density map of the
compounds in the HSA complex clearly show one NAMI-A
molecule and one Cu(BpT)Br molecule bound to the IB and
IIA subdomains, respectively (Figure 2(A,B)). The overall

structure of the HSA–NAMI-A–Cu(BpT)Br complex is heart
shaped. In the HSA IB subdomain, NAMI-A binds in a long
and narrow cavity, and has primary hydrophobic interactions
with the surrounding residues, including Ile142, His146,
Phe149, Leu154, Phe157, Tyr161, Arg186, Gly189, Lys190, and
Ser193 (Figure 2(C)). His146 replaces the Cl ligand and coor-
dinates to the Ru(III) center of NAMI-A (Figure 2(A)). In the
HSA IIA subdomain, Cu(BpT)Br binds to a large hydrophobic
pocket delimited by residues, including Ala291, Ser287,
His242, Trp214, Leu260, Arg218, Arg222, Lys199, Leu219,
Phe223, Leu238, Arg257, Ile264, Ile290, and Leu234 (Figure
2(D)). His242 coordinates to the Cu center of Cu(BpT)Br by
replacing the Br ligand of Cu(BpT)Br (Figure 2(B)).

The MALDI-TOF-MS spectrum showed an increase in
molecular weight of approximately 600Da for the
HSA–Cu(II)–NAMI-A–DOX complex relative to HSA–NAMI-
A–Cu(BpT)Br, corresponding to the molecular weight of ca.
one DOX molecule was tethered per each HSA–NAMI-
A–Cu(BpT)Br molecule (Figure 3(A)), implying that the

Figure 2. (A) and (B) Experimental sigmaA weighted 2Fo-Fc electron density map of Ru and Cu compounds at IB subdomain and IIA subdomain of HSA, respect-
ively. (C) and (D) Structural binding environment of Ru and Cu compounds at IB subdomain and IIA subdomain of HSA, respectively. The amino acid chains that are
close to the drug molecules are shown as sticks.
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HSA–NAMI-A–Cu(BpT)Br–DOX complex is established
(Figure 3(B)).

3.2. Release behavior of the three agents from the HSA
complex

The amount of DOX released from the HSA–NAMI-
A–Cu(BpT)Br–DOX complex at pH 4.7 was approximately

90%, and the amount of DOX released from HSA complex
was 16% at pH 7.4 (Figure 4(A)). Approximately 5% of
the NAMI-A or Cu(BpT)Br was released from the HSA–NAMI-
A–Cu(BpT)Br–DOX complex within 48 h in the pH 7.4 buffer,
whereas up to 80% of NAMI-A or Cu(BpT)Br was released
from the HSA-Cu(II)-Ru(III)-DOX complex in the pH 4.7 buffer
(Figure 4(A)).

Figure 3. (A) The MALDI-TOF-MS spectrum of HSA and HSA complexes. (B) The model of HSA–NAMI-A–Cu(BpT)Br–DOX complex.

Figure 4. (A) The profiles of DOX or NAMI-A or Cu(BpT)Br release from HSA–NAMI-A–Cu(BpT)Br-DOX complex at different pH (citric-phosphate buffer). Results are
the mean ± SD (n¼ 3): ��p< .01. (B) Fluorescence microscope images of MCF-7/ADR cells. MCF-7/ADR cells treated with 10 lM three-agent combination (NAMI-A/
Cu(BpT)Br/DOX) and 10 lM HSA–NAMI-A–Cu(BpT)Br–DOX complex for 5 h, respectively.
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3.3. Capacity of the HSA–NAMI-A–Cu(BpT)Br–DOX
complex to overcome cancer cells’ resistance to DOX
in vitro

To evaluate whether the HSA–NAMI-A–Cu(BpT)Br–DOX com-
plex overcome the resistance of MCF-7 breast cancer cells to
DOX, we investigated the cytotoxicity of the HSA–NAMI-
A–Cu(BpT)Br–DOX complex to MCF-7/ADR and MCF-7 breast
cancer cells. The IC50 dose of DOX for the resistant MCF-7/
ADR cells was significantly greater than that of DOX for the
sensitive MCF-7 cells (Table 1). However, the HSA–NAMI-
A–Cu(BpT)Br–DOX complex and the three-agent combination
have high cytotoxicity to MCF-7/ADR and MCF-7 cells, espe-
cially for HSA–NAMI-A–Cu(BpT)Br–DOX complex. Obviously,
in vitro data demonstrated that HSA–NAMI-A–Cu(BpT)Br–DOX
complex can effectively overcome the resistance of MCF-7/
ADR cells compared with DOX.

Interestingly, by incubating of MCF-7/ADR cells with
HSA–NAMI-A–Cu(BpT)Br–DOX complex, the DOX florescence
signals were stronger than that of MCF-7/ADR cells incubated

with three-agent combination, implying that HSA facilitate to
enhance uptake of MCF-7/ADR cells for three-agent combin-
ation (Figure 4(B)).

3.4. Animal studies of the HSA–NAMI-A–Cu(BpT)Br–DOX
complex

To further evaluate the therapeutic efficacy of the
HSA–NAMI-A–Cu(BpT)Br–DOX complex for DOX resistance
(MDR) tumors in vivo, the breast cancer MCF-7/ADR xenograft
mouse model was established.

3.4.1. Capacity of the HSA–NAMI-A–Cu(BpT)Br–DOX com-
plex to overcome cancer cells’ resistance to DOX in vivo
Compared with the control group, the tumor volume after
21 d of treatment was 88.9 ± 9.1% for DOX, 62.8 ± 5.8% for
the three-agent combination, 68.9 ± 7.2% for HSA-DOX, and
49.6 ± 5.3% for the HSA–NAMI-A–Cu(BpT)Br–DOX complex
(Figure 5(A)). Compared with the control group, the tumor
inhibitory rate (TIR) of DOX was ca. 7.2%, HSA-DOX was ca.
21.5%, three-agent combination was ca. 24.6%, and the
HSA–NAMI-A–Cu(BpT)Br–DOX complex was ca. 44.8%.

Furthermore, the TUNEL-stained tissue sections treated
with NaCl, DOX, HSA–DOX, three-agent combination, and
HSA–NAMI-A–Cu(BpT)Br–DOX showed obvious differences in
tumor tissue morphology. The results in Figure 5(B) showed
that the tumor treated with DOX exhibits a similar morph-
ology to that of the control group. However, tumors treated
by HSA–DOX, three-agent combination and HSA–NAMI-
A–Cu(BpT)Br–DOX complex showed increasing apoptosis

Table 1. Inhibition of human cancer cell lines growth (IC50, lM) for agent,
agents combination and HSA–NAMI-A–Cu(BpT)Br–DOX complex.

Antitumor activity IC50 (lM)

Compound MCF-7 MCF-7/ADR WI-38

Cu(BpT)Br 3.91 ± 0.21 4.25 ± 0.41 4.80 ± 0.38
NAMI-A >50 >50 >50
DOX 5.85 ± 0.38 >50 5.17 ± 0.53
DOX/NAMI-A 5.77 ± 0.41 >50 5.11 ± 0.47
DOX/Cu(BpT)Br 2.41 ± 0.22 3.82 ± 0.31 1.89 ± 0.24
Cu(BpT)Br/NAMI-A 3.86 ± 0.33 4.17 ± 0.37 4.69 ± 0.48
NAMI-A/Cu(BpT)Br/DOX 2.32 ± 0.21 3.41 ± 0.24 1.72 ± 0.15
HSA–NAMI-A–Cu(BpT)Br–DOX 1.43 ± 0.09 1.58 ± 0.08 1.67 ± 0.19

Figure 5. In vivo anti-tumor activity of HSA–NAMI-A–Cu(BpT)Br–DOX, three-drug combination, HSA-DOX, free DOX, and NaCl (n¼ 6). (A) Tumor volumes of MCF-7/
ADR-bearing mice as a function of time. (B) Apoptotic cells were evaluated in tumor tissue using a TUNEL assay. (C) Tissue copper of MCF-7/ADR tumor-bearing
nude mice after treatment with saline, three-drug combination and HSA–NAMI-A–Cu(BpT)Br–DOX. Results are the mean ± SD (n¼ 3): �p< .05; ��p< .01.
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compared with tumor treated by control or DOX group
(Figure 5(B)). In particular, HSA–NAMI-A–Cu(BpT)Br–DOX com-
plex was more effective in promoting tumor cell necrosis
than HSA-DOX and three-agent combination.

3.4.2. Targeting ability of the HSA–NAMI-A–Cu(BpT)
Br–DOX complex in vivo
To compare the targeting ability of HSA-based multi-drugs
delivery systems with three-agent combination, we used ICP-
AES to determine the Cu content in the tumor tissues and
main organs because HSA-based multi-drugs delivery systems
can deliver three agents into cancer cells at the same time.
Thus, we measured the copper content in the tumors of
mice treated with the three-agent combination and the
HSA–NAMI-A–Cu(BpT)Br–DOX complex. The ICP-AES data
showed that there was more Cu in the MCF-7/ADR tumors
treated by the HSA–NAMI-A–Cu(BpT)Br–DOX complex than in
the tumors treated with the three-agent combination (Figure
5(C)). Furthermore, our data revealed that HSA helps to
decrease the accumulation of drugs in other major organs
(Figure 5(C)).

In addition, agent-related side effects and toxicities to
major organs were examined by H&E staining (Figure S1).
There were no abnormalities observed in any of the heart
sections. Damage to the liver (inflammatory cell infiltration
and hepatocyte edema), and kidneys (renal epithelial cells
vacuolar degeneration) was observed in mice treated with
the DOX and the three-agent combination. This damage was
decreased in mice treated with HSA–NAMI-A–Cu(BpT)Br–DOX
complex.

4. Discussion

For the multi-drug combination therapy for cancer, we
should not only enhance the multi-drug targeting ability, but
also render the drugs able to enter cancer cells at the same
time. HSA-based multi-drug delivery systems may be one of
the most promising strategies to achieve the above objec-
tives because of HSA’s unique properties (Qi et al., 2016b).
Thus, how to rationally construct HSA-based multi-drug deliv-
ery systems based on the nature of HSA is a challenge. While
we can design pro-drugs with groups reacting to special resi-
dues of HSA, such as cysteine and lysine, we can form the
HSA complex with drugs that directly bind to HSA (Stehle
et al., 1997; Kratz, 2007; Kratz, 2008; Hanif et al., 2012; Gou
et al., 2015a; Gou et al., 2016a,b; Qi et al., 2016a). HSA has
three main binding sites for various kinds of endogenous
and exogenous compounds: site 1 in the IIA sub-domain, site
2 in the IIIA sub-domain, and site 3 in the IB sub-domain
(Zsila, 2013). Among the three binding sites, the endogenous
non-esterified fatty acids (FA) occupy site 2 or displace drugs
to bind to site 2 in vivo because site 2 is the strongest bind-
ing site of FA (Simard et al., 2005, 2006; Yang et al., 2013).
Thus, reasonable consideration of the nature of drugs has
resulted in our development of HSA multi-drug delivery sys-
tems in which two agents, respectively, bind to the IB and
IIA sub-domains of HSA while the third drug is conjugated to
HSA (Figure 1). Based on the structure of HSA–Cu(BpT)Br

complex, Cu(BpT)Br binds to the IIA sub-domain of HSA by
His146 specific coordinated with Cu center. However, Ru
agents may bind to the IB and/or IIA sub-domain(s) of HSA
because the binding site and binding mode of metal agents
to IIA sub-domain depend on their molecular structure
(Webb et al., 2013; Zhang et al., 2014; Ferraro et al., 2015).
Therefore, the optimal strategy for HSA delivering two metal
agents is that Cu(BpT)Br and NAMI-A bind to the IIA and IB
sub-domains of HSA, respectively. Indeed, our results fit well
with our hypothesis. NAMI-A and Cu(BpT)Br bind to the IB
and IIA sub-domains of HSA, respectively, and one DOX mol-
ecule is conjugated to the HSA-NAMI-A-Cu(BpT)Br (Figures 2
and 3). Obviously, the HSA delivery system that we con-
structed can co-deliver three drugs to reach cancer cells at
the same time.

To prevent drugs from being released from HSA into the
blood stream and instead have the drugs released from HSA
inside the cancer cells, determining how to regulate the
drugs’ releasing behavior from the HSA carrier in vivo is
important and necessary. Thus, we designed two metal com-
pounds that bind to the IB and IIA sub-domains of HSA,
because N-donor residue can replace a leaving group of
metal compounds that coordinate to the metal ions (Figure
2), and then we tethered the third agent to HSA by design-
ing a chemical linker that is sensitive to the acidic environ-
ment so that it reacts to lysine residues (Figure 3). Our
results showed that a small amount of DOX was released
from HSA, and a limited amount of metal compounds was
released from the HSA carrier at pH 7.4 (Figure 4). In contrast,
up to 90% of DOX was released from HSA, and ca. 80% of
metal compounds were released from the HSA complex in
pH 4.7 buffer (Figure 4). The releasing profile suggested that
the HSA multi-drug delivery systems would be stable in the
blood during in vivo circulation and that the three agents
would be released after accumulating in the acidic lysosomes
of cancer cells.

Our results revealed that HSA–NAMI-A–Cu(BpT)Br–DOX
can overcome cancer cell resistance to DOX to some extent,
which again confirmed previous studies in which a multi-
drug combination overcome cancer cell resistance to a single
drug (Chen et al., 2017; Kayani et al., 2018; Wang et al.,
2017). Importantly, the tumor inhibitory rate of HSA–NAMI-
A–Cu(BpT)Br–DOX (ca. 44.8%) is about two-fold that of the
three-agent combination (ca. 24.6%) and HSA-DOX (ca.
21.5%). Obviously, HSA improved the efficacy of three-agent
combination for overcoming cancer cells’ resistance to DOX
in vivo. Indeed, the mechanism of resistance of cancer cells
against drug is complicated (Seebacher et al., 2016). Such as,
the efflux pump is an important mechanism (Huang et al.,
2014; Seebacher et al., 2016). P-glycoprotein can use the
energy from ATP-hydrolysis to pump free small-molecule
anticancer drug out of tumor cells, resulting in a reduction of
the drug accumulation in tumor cells (Gottesman et al.,
2002). Therefore, we speculated that the HSA, as a nanocar-
rier, may bypass the P-glycoprotein efflux pump and accumu-
late HSA complex into MCF-7/ADR cancer cells (Chavanpatil
et al., 2007; Iversen et al., 2011; Huang et al., 2014).

Importantly, our results showed that HSA–NAMI-
A–Cu(BpT)Br–DOX complex decrease side effects relative to
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three-agent combination, because HSA facilitates more
agents targeting accumulating into tumors via the enhanced
permeability and retention (EPR) effect confirmed by other
groups (Maeda et al., 2001; Iyer et al., 2006; Torchilin, 2011)
(Figure S2 and 5(C)). In addition, the tumor endothelium
expresses two albumin-binding proteins SPARC and gp60
receptor, which may facilitate the uptake and retention of
the HSA complex in the tumor interstitium (Kratz, 2014; Gou
et al., 2015b). Together, our results provide a novel approach
for optimizing the capacity of overcoming cancer cell resist-
ance to a single anticancer agent through the rational design
of multi-drug delivery systems.

5. Conclusions

Based on the nature of anticancer agents and HSA, we pro-
posed and constructed HSA-based multi-drug delivery sys-
tems, regulated the drugs’ releasing behavior from HSA, and
overcame MCF-7/ADR cancer cells’ resistance to DOX in vivo.
The HSA–NAMI-A–Cu(BpT)Br–DOX complex can selectively
accumulate at the tumor site relative to the unregulated
delivery of a three-drug combination. An HSA-based multi-
drug delivery system may represent an innovative method to
overcome cancer cells’ resistance to a single agent and target
combination therapy for cancer.
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