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Significant evolutionary shifts in locomotor behaviour often involve
comparatively subtle anatomical transitions. For dinosaurian and avian evol-
ution, medial overhang of the proximal femur has been central to discussions.
However, there is an apparent conflict with regard to the evolutionary origin of
the dinosaurian femoral head, with neontological and palaeontological data
suggesting seemingly incongruent hypotheses. To reconcile this, we recon-
structed the evolutionary history of morphogenesis of the proximal end of the
femur from early archosaurs to crown birds. Embryological comparison of
living archosaurs (crocodylians and birds) suggests the acquisition of the greater
overhang of the femoral head in dinosaurs results from additional growth of the
proximal end in the medial-ward direction. On the other hand, the fossil record
suggests that this overhang was acquired by torsion of the proximal end, which
projected in a more rostral direction ancestrally. We reconcile this apparent con-
flict by inferring that the medial overhang of the dinosaur femoral head was
initially acquired by torsion, which was then superseded by mediad growth.
Details of anatomical shifts in fossil forms support this hypothesis, and their bio-
mechanical implications are congruent with the general consensus regarding
broader morpho-functional evolution on the avian stem.

1. Introduction

Dinosauria is one of the most anatomically distinctive clades in Archosauria,
which is today represented by extant dinosaurs (birds) and their closest
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relatives (crocodylians). Dinosaurian evolution and diversifi-
cation have long been discussed with special attention given
to locomotion (e.g. erect posture, parasagittal gait and gigant-
ism/miniaturization), in which the hip musculo-skeletal
system played a central role [1-19]. The tetrapod hip joint con-
sists of an acetabular cavity/foramen in the pelvis and the
proximal end of the femur articulating with each other. Ances-
trally in Archosauria, the proximal end of the femur was only
slightly offset from the femoral shaft; this state is retained in
crocodylians (see below for discussion on the evolutionary
polarity of the character state) (figure 1a). In later dinosaurs,
including birds, the prominent femoral head overhangs the
shaft mediad (figure 1b), which has long been recognized as
an unusual characteristic for reptiles (e.g. [22]) and has been
considered to be the key feature for dinosaurian locomotor
specializations (so-called ‘buttress erect posture’ [2,3,6]).

There are two conflicting hypotheses for the derivation of
the prominent overhang of the dinosaurian femoral head.
One hypothesis is that the medial region of the femur
simply extended mediad towards the acetabulum without
torsion (‘growth hypothesis’, figure 1c). The exact region
that is hypothesized to have undergone inward extension
varies; the region around the insertion site of ligamentum
capitis femoris (the fovea) [6,9]; or a region called the
postero-medial tuber (PMT) [23] (figure 1ab). Another
hypothesis is that the antero-medially projected proximal
end of the femur became more medially oriented through
femoral body torsion (‘torsion hypothesis’, figure 1d)
[13,23-25]). This conflict in interpretation stems mainly
from an exclusive emphasis on either neontological or
palaeontological evidence of adult morphology.

Similar disputes between neontology and palaeontology
have been resolved successfully by the detailed integration
of data from both sources, considering the evolution of mor-
phogenesis (i.e. the developmental process of form), through
which morphological evolution necessarily occurs (e.g. hand
digit homology of birds and other theropods; [26-29]). Thus,
we reconstructed the evolutionary history of femoral head
morphogenesis on the line to crown group birds (Neornithes)
with the goal of reconciling these apparently incommensur-
able hypotheses. There are two key data sources to infer
morphogenesis: embryos of extant clades closely related to
the targeted group as well as outgroups, and fossils informa-
tive for its morphogenesis. Hence, to take a total-evidence
approach, we draw from both sources and construct a
reconciling hypothesis.

2. Material and methods

Embryos were harvested and staged according to [30] (chicken
Gallus gallus and quail Coturnix japonica), [31] (alligator
Alligator mississippiensis), [32] (turtle Pelodiscus sinensis) and [33]
(gecko Paroedura picta). Embryonic skeletons were three-
dimensionally visualized by modified CLARITY protocol [34]
except for electronic supplementary material, figure S5, which
was visualized by section-based reconstruction with Avizo. Dye
labellings were performed with CM-Dil (whole embryo, quail)
or PKH-26 (organ culture on chorio-allantoic membrane, chicken).

Femoral head angle of osteological specimens was defined
as the one between the ‘distal end axis’ (see electronic sup-
plementary material) and the long axis of the proximal end.
The angles were measured in orthographic distal views of
three-dimensional data. The angle values, if available, were

averaged between left and right femora from each individual, n

then within each species, and finally within each genus.
Measurements are summarized in electronic supplementary
material, table S1.

See the electronic supplementary material for the full details.

3. Result and discussion

(a) Embryology (neontology) supports the growth
hypothesis

We first examined the embryonic morphology of hindlimb
skeletons among extant saurians (electronic supplementary
material, figure S2; figure 2). All individuals were aligned
with similar orientations with respect to the fibulae (lower
limb element), the distal end of the femora, and the acetabula
(figure 2i). Thus aligned, we compared the orientation of the
proximal end of the femora among developmental stages and
among species.

In the incipient stage of alligator femoral head morphogen-
esis (FG 15), a small structure appears at the centre of the
proximal end of the femoral anlagen which presumably corre-
sponds to the postero-medial tuber (PMT; figure 2a). In the
following stages, two additional condensations appear in ros-
tral and caudal positions; these correspond to the antero-
medial tuber (AMT) and the ‘greater trochanter” (GT; cf. not
homologous with mammalian GT) (figure 2b). Once these
formed, the femur’s overall shape is similar to the adult
condition (figure 2c). Turtle femora develop in a similar way
with respect to these features (electronic supplementary
material, figure S2d-f, electronic supplementary material,
S1.2). Thus, this condition can be interpreted as the ancestral
embryonic state from Archelosauria to Archosauria nodes,
the clade including crocodylians and dinosaurs.

In the incipient stage of quail femoral head morphogenesis
(HH 26), similarly, a small structure appears at the centre of the
proximal end of the femoral anlagen (figure 2d). At the follow-
ing stage (HH 28; figure 2¢), an additional condensation
appears on the caudal side of the proximal end. This conden-
sation becomes the trochanter minor (TI). In addition, a
second, faint condensation appears on the rostro-lateral side
of the proximal end. This condensation subsequently expands
to become the trochanter major (TA) (figure 2¢f). From HH
stage 28 on, the definitive avian femoral head begins to form:
between HH 28 and 30, the proximo-medial portion of the
proximal end grows directly towards the acetabulum, which
is a similar orientation of the adult femoral head (cf.
figure 4o, chicken); no torsion of the femoral anlagen was
apparent. We confirmed the lack of torsion using ink-labelling
experiments (figure 3a). Well prior to femoral head morpho-
genesis (HH stage 21-22), we labelled hindlimb mesenchyme
with parallel lines of fluorescent ink and let the embryos con-
tinue developing (figure 3a1). The ink lines remained parallel
as the femoral head offset developed (figure 322—4). In well-
labelled specimens, they ascended from the distal half of the
femur, penetrated the trochanter major (TA), then turned
medially above the femoral head (figure 324). To examine con-
tinued femoral morphogenesis after HH stage 30, we used a
different system: femoral anlagen were isolated from chicken
embryos, labelled with fluorescent ink, and cultured in a
host egg (figure 3b1). In such a culture system, isolated chicken
femoral anlagen develop almost normal femoral heads with a
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Figure 1. Archosaur femoral head: comparison of the medial-ward overhangs and ‘conflicting” hypotheses to derive the apomorphic state. The left femora highlighted;
(a) the plesiomorphic state seen in early diverging archosaurs such as extant crocodylians and (b) the apomorphic state seen in extant birds, traced from specimens of
figure 4 (a) and (h), respectively. Red brackets indicate the degree of the femoral head overhang towards the body (i.e. medial-ward). The left bottom panels are
magpnified in the right bottom ones with the proximal ends highlighted. aFH: ‘avian’ femoral head offset, AMT (blue): antero-medial tuber, cl: condylus lateralis,
«m: condylus medialis, f (red): fovea, GT: ‘greater trochanter, PMT (green): postero-medial tuber, TA: trochanter major, TI: trochanter minor, 4tr: 4th trochanter.
Grey shading represents areas within synovial capsules [20,21]. (¢d) Two hypotheses have been proposed for the evolutionary transition from plesiomorphic to apo-
morphic state (i.e. acquisition of the greater medial overhang of the proximal end). The growth hypothesis (c) proposes the mediad growth of the medial region of the
proximal end. The torsion hypothesis (d) proposes the twist of the proximal end against the more distal region. The cladogram is simplified from electronic supplementary
material, figure S1 with locomotory modes; quadru-/bi-pedal (g/b), sprawling~intermediate~erect posture (s/i/e), hip-/knee-driven (h/k). t" indicates extinct taxa.
Silhouettes are from Phylopic (copyrights, from left to right; Zdenek CN, Farke AA, Hartman S, Chévez C, Vladimir W, Hartman S and Traver S). (Online version in colour.)

short/small size [35]. Ink distribution after culture indicates in the change in angle between lines connecting points 1&3
that the differential growth of the fibular (i.e. lateral) side and 4&5 in figure 3b2,3). This suggests that such mediad
enhances the medial overhang of the femoral head (evident deflection is underlain by a differential elongation of the
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Figure 2. Neontology: comparison of femoral head morphogenesis in extant archosaurs. Cartilaginous skeletons of embryonic hindlimbs are visualized in alligator
(Alligator mississippiensis, a—c) and quail (Coturnix japonica, d—f), with the youngest stage on the top. All the skeletons are left ones or mirrored right ones. Blue,
pelvis; Golden, femur; Green, tibia; Purple, fibula. All of these are in pseudo-colours. Skeletons are aligned according to orientations in (g). 3—5 of each panel (e.g.
a3, a4, a5 and so on) shows proximal views with the strictly same orientation within each individual. 3 s show only the proximal end of the femora (approximately
distal two-thirds are not displayed). 4 s show the distal end of the femora (approximately proximal two-thirds are not displayed) and the zeugopods (tibiae and
fibulae) to demonstrate that fibular orientations are aligned among all individuals with different developmental stages. 5 s show the proximal end of the femora
and translucently visualized pelves. figure 1a,b for the details of anatomical landmarks captioned in (h). (i) schematizes the common positional relationship for
saurian embryonic skeleton (including gecko and turtle, electronic supplementary material, figure S2) with conservative orientations among the fibula (fi-axis), the
lateral condyle of the distal end of the femur (cl-axis; cf. ‘dist-axis’ is defined as perpendicular to it), and the acetabulum, which can be recognized with the
positions of the ventral (+) and rostral (*) margins. Note that the presumptive site of ligamentum capitis femoris insertion (red) faces the acetabular ventral
margin (+). The middle of the diaphysis is invisible due to chondrocyte maturation/ossification (f1,2). Scale bars, 0.5 mm for 1, T mm for 2's, 0.25 mm for
3 s=55s. (Online version in colour.)

growth plate. Long bone elongation, in general, is mediated by the apomorphic dinosaurian/avian femoral head from the
mechanical stimuli from muscle contraction (e.g. [36]), which plesiomorphic state, although subsequent morphogenesis
thus explains why mechanical stimuli are necessary to may affect the femoral head/neck shape slightly. These
elongate the chicken femoral head offset to the normal considerations are consistent with the growth hypothesis.

length in further development [37].
These embryological results suggest that the medial
overhang of the avian femoral head develops owing to the
medial-ward growth of the proximal end and this morpho- We examined the archosaurian fossil record to understand
genetic process is the main difference-maker to differentiate the detailed morphological transformations associated with
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the origin of the greater overhang of the dinosaur-type
femoral head.

We began with a comparison of the morphology of the
proximal end of the femur (figure 4a-h). In crocodylians
(figure 4a), the ‘greater trochanter’ (GT) is on one side of
the proximal end, the antero-medial tuber (AMT) on the
opposite side, and the postero-medial tuber (PMT) between
them. The osteological correlate for the ligamentum capitis
femoris attachment (the fovea) is located between the AMT
and the PMT. We traced the homologues of these bony tuber-
cles and scar, maintaining the same relative positions to each
other and with the long axis of the proximal end up to non-
pygostylian maniraptorans (figure 4a—d, schematized in e)—
that is, long after the apomorphic femoral overhang evolved.
This indicates that the gross morphology of the proximal
end of the femur was conservative for a phylogenetic
period sufficiently wide enough to capture the acquisition
of dinosaurian femoral head overhang (see below).

Next, we analysed the evolutionary transition of femoral
head long-axis orientation relative to the distal end (electronic
supplementary material, table S1). Previous studies (e.g.
[13,15,19,25,39-48]) described the evolutionary transition of
the femoral head orientation as follows. The femoral head
of plesiomorphic saurians (grade ‘I" in figure 4) had a small
angle with the distal end reference (the intercondylar line).
Among early archosauriforms (grade ‘II), the angle increased
(i.e. anteverted); this state is present in archosaurs as well
among crocodylian-line one (pseudosuchians; up to extant
crocodylians; clade ‘III') and among early bird-line one (ave-
metarsalians; grade ‘IV’). Near the origin of Tetanurae (close

to node ‘VI'), the angle decreased (i.e. retroverted; to be
nearly parallel with the intercondylar line and more medially
oriented in reconstructed post-hatching posture); this state
is retained in living birds. Our results were consistent with
these studies. In non-theropod archosauriforms (grade
‘1I'-"V’; e.g. Euparkeria, pseudosuchians including extant cro-
codylians, Marasuchus, silesaurids and sauropodomorphs),
the orientation of the proximal end long axis ranged 30-90°
(figure 4ij) against the ‘distal end axis’ (a more reliable
distal end reference; see Material and Methods). This angle
gradually decreased to 5-65° in non-coelurosaurian theropods
(around node ‘VI’; figure 4ik,1), and to —5-40° in coelurosaurs
including neornithines (clade ‘VII’; figure 4i,m—0). Such an
evolutionary transition of the head
is consistent with the previous assumption that the femoral
head of early avetheropods (near ‘VI') articulated with a
more rostro-medial orientation during locomotion, versus
fully medial in early coelurosaurians (near ‘VII') (e.g. [16]).
Additionally, this assumption is biomechanically consistent

femoral angle

with the transformation of the supra-acetabular crest’s extent
in lateral view, from the rostro-dorsal acetabular margin in
early dinosaurs to more dorsal acetabular margin in early
coelurosaurs [49,50].

In summary, during the transition from early archosaurs to
early maniraptorans, the angle of anteversion gradually
decreased (figure 4i-0) with the gross morphology of the
proximal end conserved (figure 4a—¢) in adults, which derived
the mediad overhang. During this transition, evolutionary
torsion is interpreted to have occurred proximal to the
diaphyseal insertions of Mm. caudofemorales (CF) and Mm.
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Figure 4. Palaeontology: the morphological transformation of the archosaurian femur. (a—d, g—h) Left is caudo-medial to caudal view (depending on their post-
hatching posture). Middle is proximal view. Right is proximo-medial to proximo-medio-caudal view (ditto). (a) Crocodylus niloticus (YPM HERR 010809), (b) Mbir-
esaurus raathi (NHMZ 2222 [38]), (c) Tyrannosaurus rex (FMNH PR 2081), (d) Velociraptor mongoliensis (IGM100.986), (g) Hesperornis regalis (YPM VP 001476,
mirrored), (h) Gallus gallus (SE). (e) and (f), schematic generalized morphologies of the proximal end for non-pygostylians and pygostylians, respectively. Corre-
sponding evolutionary grades are indicated by grey bars right to the cladogram for each type. Scale bars, 2 cm for (a), (b), (d), (g), (h); 20 cm for (c). Roman
numerals (I-VII) represent evolutionary grade/clade for easier readability of the main text. Arrowheads are: green with dotted frame, PMT; blue, AMT; red, fovea;
grey, GT; yellow with red frame, ‘avian’ (pygostylian-type) femoral head. (i) shows measured angles between the proximal and distal end of the femora (See
Material and Methods for the definition) averaging each genus except for those with ontogenetic series (C. niloticus, M. patagonicus, T. bataar). Captions: specimen
age, palaeontological/neontological (p/n); locomotory modes; quadru-/bi-pedal (q/b), sprawling~intermediate~erect posture (s/i/e), hip-/knee-driven (h/k). In (j—
0), orthographic distal view of the right (or mirrored left) femora, in which femoral head orientations are comparable to the proximal view of the left femora. The
proximal ends are depicted in orange with dotted lines showing their long axis, and the distal ends in grey with their axis (not shown) set strictly horizontally. ()
Crocodylus johnstoni (QMJ 47916, mirrored left), (k) Masiakasaurus knopfleri (MAD-05467-2, right), (/) Allosaurus fragilis (UMNH VP 7884, mirrored left), (m) Ter-
atophoneus curriei (UMNH VP 16690, right), (n) Falcarius utahensis (UMNH VP 14666, right), (o) Gallus gallus (PJB, mirrored left). Scale bars, 1 cm for (), (k), (n);
5cm for (/), (m); 0.5 cm for (0). (Online version in colour.)

pubo-ischio-femoralis internus (PIFI), because the positional
relationship is nearly constant among the distal end of the
femur and these insertions [13,24]. The mediad overhang
would be enhanced by femoral neck elongation (electronic
supplementary material, SI.3.2).

On the basis of these results, we reconstructed femoral
head morphogenesis of non-pygostylian theropods. In this
evolutionary grade, based on the position of ligament capitis
femoris, the relative positions among parts of the incipient
embryonic hindlimb skeleton would have remained similar
to that of alligators (figure 5a,c; see electronic supplementary
material, SI.3.1 for rationales). However, in adults, the AMT
must be oriented more or less towards the acetabulum (i.e.
medially) for functional articulation. This orientation has
been convincingly reconstructed (e.g. in coelurosaurs) on the
basis of trabecular bone orientation inside femoral head,
which is remodelled in reaction to mechanical stimuli in
post-hatching locomotion [51]. Therefore, the proximal end

of the femur must have re-oriented during ontogeny, from
more rostrally directed to more medially directed (figure 5c,
d). However, such a femoral head re-orientation could not be
accomplished by an internal rotation of the whole femur
alone, because, if so, the resultant deviation of the lower leg
from parasagittal planes would abnormally disrupt bipedal
locomotion. Instead, femoral head re-orientation must have
been brought about by femoral torsion during ontogeny
(figure 5c¢,d). Empirically, femoral torsions can be partially
observed in post-hatching stages [19] (figure 4i). Given that
the positional relationship was conservative in the incipient
embryonic hindlimb skeleton (electronic supplementary
material, S.3.1), the extent of ontogenetic twisting reached a
maximum in early coelurosaurs (peramorphism; figure 4i).
We infer that this torsion was brought about by mechan-
ical stimuli of muscle contraction during ontogeny. The
analogous retroversion of the mammalian femoral head
(e.g. [52-57]) and the twist of avian metatarsal I [58] are
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respectively. (Online version in colour.)

regulated by mechanical stimuli from muscular contraction abducted (certainly caused by spatial constraints on two
during late-stage morphogenesis. We suggest that the orien- bodies within one egg) and its femoral head orientation
tation of the archosaur femoral head is similarly susceptible was exceptionally anteverted (electronic supplementary
to mechanical stimuli. We found that one of four femora of material, figure S8). Since all four femora must have shared

a conjugated twin embryo of a crocodylian was abnormally the effectively same backgrounds in physiology and

0v£0220T 687 § 205 Y 20id  qdsi/jeunol/bio-buiysijgndAiaposiesos H



genotype, it is reasonable to attribute this angular difference
to mechanical factors.

The fossil record demonstrates muscle attachment evol-
ution, indicating changes in mechanical stimuli which would
bring about twisting morphogenesis (i.e. retroversion) of
non-pygostylian theropods’ femoral head. The region where
evolutionary torsion occurred (i.e. immediately proximal to
Mm. CF and Mm. PIFI insertions; see above) is inserted by
M. iliotrochantericus caudalis (ITC). From early archosaurs to
early coelurosaurs, this muscle increased torque on the femoral
neck region towards protracting and medially/internally rotat-
ing direction (electronic supplementary material, SI.3.3). Such a
contrast is evident in the embryonic muscle shape between
non-dinosaur archosaurs (alligator) and coelurosaurs (quail)
[59], thus the biomechanical condition of adults in this regard
would have been established in embryonic stages. Conse-
quently, the actions of this muscle would apomorphically
promote femoral twisting (i.e. retroversion) during ontogeny
of non-pygostylian theropods, as do the similarly acting muscles
in human ontogeny [56]. This hypothesis explains homoplastic
covariation from a morphogenetic viewpoint: the combination
of femoral head retroversion and M.ITC-related skeletal changes
appeared several times independently in major archosaurian
clades [14,19,25,60]. We infer that the evolution of the M.ITC's
configuration, consequent femoral twisting in ontogeny, and
other musculo-skeletal changes accompanying them was func-
tionally advantageous for (thus would have been ‘least-
resisted’ by) their locomotory biomechanics (hip-driven erect
posture) especially to theropods” plesiomorphic one (hip-
driven bipedalism) (electronic supplementary material, SI1.3.4).

These considerations suggest that the medial overhang of
the femoral head in more crownward theropods developed
owing to an ontogenetic twisting of the proximal end of the
femur (i.e. retroversion in ontogeny) which plesiomorphically
projected more rostrad, and this morphogenetic process is the
main difference-maker to differentiate the apomorphic dino-
saurian/avian femoral head from the plesiomorphic state.
This is consistent with the torsion hypothesis, but apparently
contradicts the growth hypothesis. Therefore, there is a conflict
between neontology- and palaeontology-derived hypotheses.

(c) Reconstruction of morphogenetic evolution: an
integrative solution

To reconcile these apparently disparate hypotheses, we pro-
pose a scenario in which the mode of morphogenesis shifted
from twisting to mediad growth while the adult phenotype
remained effectively constant (figure 5¢,i) during avialan
evolution, as originally implied by ref. [23] in early manirap-
torans—however, aspects of our scenario differ (electronic
supplementary material, SI. 7.2). Canonically, reconstructions
of morphogenetic evolution have been hypothesized by extra-
polating that (apparently) homologous states develop in the
same manner among extinct and extant taxa (for this study,
mediad overhang of the femoral head). However, morphogen-
esis can change while adult phenotypes remain static [61-68].

Potentially, the same developmental processes among
different species can be misinterpreted as disparate, especially
when they occur in different situations (e.g. different timings;
heterochrony). Hence, in the following sections, we test
this scenario in more detail, highlighting the difference in
the morphogenetic mechanisms of these two processes

(retroverting torsion of non-pygostylians and mediad
growth of pygostylians).

(d) Additional evidence and narrowing of the
phylogenetic window of morphogenetic shift

In embryos, the presumptive insertion sites of the ligamentum
capitis femoris (face the ventral margin of the acetabulum
during femoral head morphogenesis in gecko, alligator and
quail (electronic supplementary material, figure S2, figure 2,
figure 5a,b,e,f). Therefore, this embryonic state can be inferred
as continually present from the saurian common ancestor to
crown-group birds. In extinct non-pygostylian archosaurs,
the osteological correlate for this ligament (the fovea) is
located between the AMT and the PMT off the tip of the
femoral head long axis [15], whereas it is at the centre of the
femoral head apex since early pygostylians (Confuciusornis
[69]; enantiornithines [70-73]; and early euornithines
[74,80,81] ) (figure 4a—h). Thus, during the evolution to pygos-
tylians, the fovea seemingly relocated to the centre of the
femoral head [82] as though the ligament itself shifted its inser-
tion (figure 4e versus f; electronic supplementary material,
SI.4). However, instead of ligamentous repositioning, it is
more consistent to attribute this change to the evolutionary
shift of femoral head morphogenesis from torsion to mediad
growth: the proximal end including the fovea changed its
orientation during ontogeny in the former but not in the
latter (figure 5¢,d versus e,f).

The articulation of the pelvic antitrochanter is also consist-
ent with this scenario. The antitrochanter typically articulates
with GT homologues (electronic supplementary material,
SI.7.1.1) in crocodylians and neornithines (figure 2c5,f5)
whereas it does not in non-pygostylian theropods [15,51,83]
(compare figure 5b,d f). This contrast is best explained by onto-
genetic twisting only in non-pygostylian theropods, resulting
in a greater distance between GT and antitrochanter.

(e) Possible triggers for evolutionary change in
morphogenesis—muscular contraction

We infer that the femoral twisting in non-pygostylian thero-
pods’ ontogeny was brought about by mechanical stimuli
from the M.ITC’s contraction (see above). For the M. ITC to
effectively exert mechanical stimuli, other muscles would
need to stabilize the distal portion of the femur. Otherwise,
not only the proximal end but also the embryonic femur as a
whole would rotate medially. To prevent this, Mm. iliotibiales
(IT) and Mm. CF would work most antagonistically as stabil-
izers (i.e. exert a laterally rotational moment) (see [17] for
adult moment arms).

Early in maniraptoran evolution, gaits transformed from
more hip-driven to more knee-driven with numerous anatom-
ical changes in the hip musculoskeletal system and this
evolutionary trend continued up to the base of Pygostylia
(e.g. craniad expansion of pre-acetabular ala of the ilium;
electronic supplementary material, SI.6). However, evolution
to such a more ‘knee-driving’ locomotory system would gradu-
ally attenuate the stabilizing effect (e.g. of the cranial part of
Mm.IT) against ‘twisting muscle’” (M.ITC) [17], becoming
lesser compatible with the ontogenetic twisting in morphogen-
esis (electronic supplementary material, SI.6). Therefore, the
evolutionary shift in morphogenetic mechanism (from ‘stabi-
lizing musculature’-dependent to -independent) would be a
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‘solution’ allowing a shift to more knee-driven locomotion
while keeping mediad overhang of the femoral head and the
buttress erect posture necessary for theropod-style locomotion.

(f) Possible triggers for evolutionary change in

morphogenesis—acetabular size

For the ontogenetic twisting to occur during morphogenesis,
the acetabulum of embryo to juvenile stages must be wide
enough for the AMT to rotate within it. As expected, we
find the archosaurian acetabulum to be much wider relative
to the proximal end of the femur in the plesiomorphic state
than in the derived state in alligator and quail embryos,
respectively (electronic supplementary material, figure S3).
Additionally, in adults of extinct dinosaurs the relative
size of acetabular perforation gradually diminished in size
towards ornithurans [11]. Embryonic joint spaces have special
mesenchymal layers called the interzone (IZ), which spans
the acetabulum in embryonic saurian hip joints, and IZ-
expressed molecules (canonical Wnt ligands) cause the per-
foration of the avian acetabulum [84]. Therefore, that the
evolutionary reduction of adults’ acetabular size probably
reflects a reduction of the IZ range and thus, that of the acet-
abulum of embryos. This evolutionary reduction of relative
size in the embryonic acetabulum could require the evol-
utionary change of morphogenetic mode, and/or the latter
could allow the former.

The attenuation/loss of femoral ontogenetic twisting had
to be compensated by another morphogenetic process to pro-
duce a medial overhang of the femoral head to maintain the
buttress-erect hip joint. Size reduction of the embryonic acet-
abulum could have produced the derived morphogenetic
mechanism; mediad growth. As mentioned above, IZ distri-
bution in the embryonic hip joint would have decreased in
evolution and consequently would result in a change of IZ
coverage of the proximal end of the femur; from almost the
entire epiphysis to the medial region exclusively (electronic
supplementary material, figure S7a,b,e,f). IZ layers in general
secrete several molecules that regulate long bone elongation
at the growth plate (e.g. [85-87]). Such a change in IZ cover-
age would have resulted in a deflected expansion of the
growth plate towards IZ (electronic supplementary material,
figure S7 b versus f), which can be seen in extant pygosty-
lians (figure 3b), thereby bringing about pygostylian-type
femoral head foramtion. If this scenario is true, gradual size
reduction of the embryonic acetabulum was a prerequisite
for the evolutionary shift of femoral head morphogenesis.
We infer that the acetabular size reduction was more feasible
(i.e. ‘less-resisted’) in maniraptorans because of their knee-
driven locomotory biomechanics over their hip-driven
ancestors (electronic supplementary material, SI.6.2).

4. Concluding remarks

By analysing embryos of extant relatives and the fossil record,
we have reconstructed the complex evolutionary history of
the dinosaurian femoral head—a history in which evolu-
tionarily continuous (i.e. apparently homologous) adult
morphology was reconstructed to be underlain by differing
morphogenetic processes. This highlights the general impor-
tance of reconstructing morphogenetic evolution in extinct

grades invoking not only neontological embryos but also
the fossil record.

Specifically, we hypothesize that coelurosaurian morpho-
genesis shifted from a peramorphic twisting to mediad
growth, while adult phenotype (medial-ward overhang of
the femoral head) and general function (enabling buttress
erect) remained effectively constant (figure 5). In other
words, we suggest that whereas non-pygostylian coelurosaur-
ians developed the femoral head overhang recapitulatively,
pygostylians do not (i.e. caenogenetically; sensu [61]). Our
evidence and considerations suggest that the avian lineage
first acquired the derived phenotype along an evolutionary
line of least resistance for the ancestral developmental/
locomotory system (peramorphic twisting), and secondarily
in a more demanding but direct way (mediad growth). Specifi-
cally, we posit that the derived morphogenesis likely needs
more developmental and locomotory apomorphies as prere-
quisites (obligate parasagittal gait [6,9]; fully perforated
acetabulum, electronic supplementary material, SI.5; acetabu-
lar size reduction and more knee-based locomotor system,
electronic supplementary material, SI.6). This indicates the
importance of considering integrity among morphogenetic
and functional circumstances (electronic supplementary
material, figure S9)—just as Goethe [88] and Piaget [89]
embraced ceaseless reciprocal influences and resultant
congruency among organismal parts.
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