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Abstract
Precise expression patterns of genes in time and space are essential for proper develop-

ment of multicellular organisms. Dynamic chromatin conformation and spatial organization

of the genome constitute a major step in this regulation to modulate developmental outputs.

Polycomb repressive complexes (PRCs) mediate stable or flexible gene repression in

response to internal and environmental cues. In Arabidopsis thaliana, LHP1 co-localizes

with H3K27me3 epigenetic marks throughout the genome and interacts with PRC1 and

PRC2 members as well as with a long noncoding RNA. Here, we show that LHP1 is respon-

sible for the spreading of H3K27me3 towards the 3’ end of the gene body. We also identified

a subset of LHP1-activated genes and demonstrated that LHP1 shapes local chromatin

topology in order to control transcriptional co-regulation. Our work reveals a general role of

LHP1 from local to higher conformation levels of chromatin configuration to determine its

accessibility to define gene expression patterns.

Introduction
During development of multicellular organisms, early embryonic cells must adopt particular
gene expression patterns to differentiate into a variety of functionally specialized cells in tissues
and organs [1]. Eukaryotic DNA is wrapped in the nucleus around histone octamers into
nucleosomes conforming chromatin structure in association to other proteins and RNA. Cova-
lent modifications of DNA and histones may recruit protein complexes to remodel chromatin,
altering its compaction and shaping the three-dimensional topology of the genome. Chromatin
structure and genome topology are sensitive to regulatory cues and determine the accessibility
of DNA to transcription factors in order to dynamically modulate gene transcription and other
genome functions [2].
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Polycomb group (PcG) proteins participate in one of the earliest epigenetic regulatory
mechanisms identified, the repression of Hox genes in Drosophila melanogaster [3]. PcGs
form multi-subunit Polycomb Repressive Complexes (PRCs), first described in Drosophila as
PRC1 and PRC2. Traditionally, PRC2 and PRC1 complexes were thought to function sequen-
tially on their target genes, PRC2 being recruited first to promote H3K27me3 deposition and
thereby forming a docking site for PRC1 that would subsequently induce further histone mod-
ifications and repress gene expression. However, a number of reports have challenged this
model and relationships between PRC1 and PRC2 components are probably far more com-
plex than initially anticipated. Indeed, some PRC1 complexes can be recruited independently
of H3K27me3 deposition and there is evidence for PRC1-dependent PRC2 recruitment on
some loci, suggesting that PRC1 and PRC2 can be recruited independently on chromatin and
generate binding sites for each other [4–6]. Since their identification, PcG proteins have been
found to exert key roles in epigenetic memory in various biological processes, such as X-chro-
mosome inactivation [7], prevention of senescence [8–10] and stem cell maintenance [11], as
well as imprinting in plants [12] and mammals [13]. In addition to their role in the establish-
ment of stable gene expression patterns during development, we now know that PRC-medi-
ated epigenetic modifications also participate in the dynamic response to developmental and
environmental cues [14].

In Arabidopsis, three distinct PRC2s can be found, based on the characteristic presence of
one of the three animal Suppressor of zeste 12 (Su(z)12) homologs: Embryonic Flower 2
(EMF2, [15]), VeRNalisation 2 (VRN2, [16]), or Fertilization Independent Seed 2 (FIS2, [17]).
Arabidopsis has three Histone Methyltransferases: Curly LeaF (CLF, [18]), SWiNger (SWN,
[17]), and MEDEA (MEA/FIS1, [19]). CLF and SWN play partly redundant roles within the
EMF and VRN complexes [17, 20], whereas MEA is part of the FIS complex [21]. As in ani-
mals, plant PRC2 can introduce the repressive mark H3K27me3 [22–27], which is mostly lost
in the Arabidopsis clf/swn double mutants [28].

LIKE HETEROCHROMATIN PROTEIN 1 (LHP1 also known as TERMINAL FLOWER
2, TFL2) was identified as the homolog of animal HP1 based on the presence of a chromodo-
main and a chromoshadow domain [29]. However, HP1 is capable to bind to heterochro-
matic regions of the genome, whereas LHP1 localizes to euchromatin, controlling actively
transcribed genes [30, 31], and is now recognized as a plant specific PcG member [2, 32].
LHP1 occupancy co-localizes with H3K27me3 across the Arabidopsis genome [33, 34], and
common genes are up regulated in the lhp1 and clfmutants [25, 30]. LHP1 can directly inter-
act with members of both the PRC1 and the PRC2 complexes [35–38] suggesting that LHP1
may act as a bridge between them [39, 40]. In the context of DNA replication, LHP1 binds to
H3K27me3 [32] and interacts with PRC2 [39] and with the DNA polymerase ε catalytic sub-
unit EARLYINSHORTDAYS7 (ESD7; [41]). In addition, LHP1-mediated repression requires
the DNA polymerase α catalytic subunit INCURVATA 2 (ICU2; [42, 43]). LHP1 thus likely
mediates the reestablishment of H3K27me3 in dividing cells [39, 40], by interacting with spe-
cific partners. More recently, it was shown that LHP1 interacts with the APOLO long non-
coding RNA during the dynamic regulation of chromatin three-dimensional conformation in
response to auxin [14]. However, the role of LHP1 in the control of genome topology remains
unclear. In this work, we show that LHP1 controls the spreading of the H3K27me3 repressive
mark, impacting the transcription of euchromatic genes using genome-wide approaches.
Moreover, Hi-C analyses revealed that global genome topology is altered in the lhp1 back-
ground and a high correlation of gene transcription between loci positioned at both ends of a
same chromatin loop was established. This work challenges the current model of LHP1 in
chromatin remodeling and integrates the action of PRC complexes in all levels of genome
organization.
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Results

Genome-wide LHP1 occupancy correlates positively with H3K27me3
and negatively with RNA Pol II
Previous studies based on ChiP-chip [33] and tilling arrays [34] showed that LHP1 occupancy
correlates with the H3K27me3 repressive mark predominantly in euchromatic regions of the
Arabidopsis genome. Hence, we analyzed LHP1 binding sites via ChIP-Seq, as well as the distri-
bution of H3K27me3 and Pol II to assess occupancy correlations and expand previous results to
the complete genome. We identified 13,890 peaks for LHP1, corresponding predominantly to
genic regions. Clustering the normalized tag-density of LHP1-targeted genes showed a specific
enrichment profile highly correlated with H3K27me3 and negatively correlated with RNA Pol II
(Fig 1A). According to this set of clusters, read map density is high in the gene-body and spreads
along the 2kb flanking region. Comparison of the enrichment profiles of LHP1 and the repres-
sive mark H3K27me3 showed co-occupancy with a specific common pattern of enrichment
over the genes. Our analysis identified 8,882 genes recognized by LHP1, most of which not cor-
related with RNA Pol II occupancy (Fig 1B). Notably, in contrast to RNA Pol II, LHP1 co-local-
izes with H3K27me3 in a large number of the target genes (Fig 1C). When we assessed the
distribution of LHP1 along the genes and their flanking regions, we observed a significant
enrichment across the gene body, along with H3K27me3 (Fig 1D). Furthermore, both for LHP1
and H3K27me3 signals were stronger at the TSS and gradually diminish towards the TES.

In order to correlate LHP1 binding with the transcriptional activity of its target genes, we
assessed their behavior fromWild Type (Col0, WT) RNA-seq dataset. Stratifying the LHP1 tar-
geted genes as quantiles based on their expression level (higher expression as higher quantile),
showed that LHP1 occupancy increases inversely with expression level (Fig 1E). On the whole,
the repressive effect of LHP1 in terms of transcription can be appreciated when the distribution
of the expression levels of LHP1-marked genes is compared (Mann–Whitney–Wilcoxon test
p-value< 2.2e-16) with the one of LHP1-unmarked genes (Fig 1F).

Dual role of LHP1 on transcriptional regulation is context-dependent
To better understand the role of LHP1 in gene expression regulation, the behavior of
LHP1-target genes was assessed in lhp1mutant plants. Globally, those target genes exhibit a
higher expression level in the lhp1mutant compared to WT (S1 Fig and S1 Appendix). How-
ever, the differential expression analysis of LHP1-target genes in lhp1 versus WT (p-value
<0.05) suggests that LHP1 could be both an activator and a repressor of transcription (Fig 2A).
Indeed, more than one third of LHP1 target genes that were mis-regulated in the lhp1mutant
were down-regulated (282 genes; Fig 2B; S2 and S3 Appendices). LHP1 Down-Regulated Tar-
gets (DT) in lhp1 were preferentially involved in functions related to auxin response and envi-
ronmental stimuli (S2 Fig). In contrast, Up-Regulated Targets (UT) are not particularly
involved in any of these functions, but in the regulation of flower development, including sev-
eral transcription factors, such as CRABS CLAW (CRC, AT1G69180), FLORAL TRANSITION
AT THE MERISTEM6 (FTM6, AT1G53160), PETAL LOSS (PTL, AT5G03680), REPRODUC-
TIVE MERISTEM 35 (ATREM35, AT4G31615), REPRODUCTIVE MERISTEM 1 (ATREM1,
AT4G31610), SEPALLATA3 (SEP3, AT1G24260), SEPALLATA 4 (SEP4, AT2G03710), AGA-
MOUS-LIKE 42 (AT5G62165), PISTILLATA (PI, AT5G20240),MATERNAL EFFECT
EMBRYO ARREST 24 (MEE24, AT2G34830) (Fig 2C and S3 Appendix). To determine how
LHP1 could function both as a repressor and as an activator of gene expression, we asked
whether its spatial distribution could differ between UT and DT genes. Interestingly, a compar-
ison of the binding profiles of DT versus UT genes shows a lower global occupancy of LHP1 on
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DT with a more pronounced difference around the +1 nucleosomal position downstream of
TSS (Fig 2D and S3 Fig), LHP1 being more present on this region of the UT genes. This differ-
ential and higher binding signal around the TSS of UT genes supports the idea that LHP1 rec-
ognizes its targets in a context-dependent manner. In addition, to that we also observed
difference at the proximal promoter part suggesting a role of LHP1 in the chromatin accessibil-
ity of this specific region.

Fig 1. LHP1 occupancy across the Arabidopsis genome. (A) Correlation between the genome-wide distribution of H3K27me3, RNA Pol II and LHP1.
Tag density distribution of LHP1 in WT along with H3K27me3 and RNA Pol II across the genes with 2kb flank, as indicated in the scheme below de graph,
gene in grey, flanking regions as black lines. Regions are clustered using K-means linear clustering according to tag density profiles. Density profiles were
generated using density array method in seqMINER. Darker red indicates higher density of reads. On the Y-axis there is the list of all genes in TAIR10
annotation. Ten clusters are shown here, revealing the co-occupancy of LHP1 and H3K27me3 and a negative relationship between LHP1 and RNA Pol II.
(B) Density plot showing overlap of LHP1 and RNA Pol II using Hexagonal binning routine. As large number of data points may overlap, Hexagonal binning
gives additional dimension of differentiation of overlapping points based on count. Each point represents the distance of midpoint of peak to nearest gene.
On the Y-axis is location of midpoint of LHP1 peak in comparison to gene position; X-axis is location of midpoint of RNA Pol II in comparison to mid-point of
gene. This reveals peaks of RNA Pol II and LHP1 do not co-occur physically in the genome. (C) Hexagonal binning plot showing the association of LHP1
peak region to that of H3K27me3. Each point represents the distance of midpoint of peak to nearest gene. Most of the peaks overlap on the coding region.
Large number of points occurs along the positive correlation line, showing the co-occurrence pattern of LHP1 and H3K27me3. (D) Average ChIP-seq
enrichment profiles plot of H3K27me3 and LHP1 in WT, stratified by gene length. Normalization of coverage using spline algorithm was performed over the
genes and flanking 2 kb region. (E) Average enrichment profile of LHP1 is correlated with gene expression variations. Gene expression is categorized from
low (first quantile) to high expression (fourth quantile). Mean-normalized ChIP-Seq densities of equal bins along the gene and 2-kb region flanking the TSS
or the TES were plotted. Highly expressed genes show lower enrichment for binding of LHP1. (F) Boxplot showing the comparison of expression levels in
RPKM of LHP1-targeted genes and non-targeted genes in WT. LHP1 targeted genes show lower expression levels. (*) represents Mann–Whitney–
Wilcoxon test between LHP1 target and non-target with a p-value < 2.2e-16.

doi:10.1371/journal.pone.0158936.g001

Role of LHP1 in H3K27me3 Spreading and Genome Topology

PLOS ONE | DOI:10.1371/journal.pone.0158936 July 13, 2016 4 / 25



Fig 2. Relationship between the level of LHP1 binding and the magnitude of gene expression. (A) Heatmap showing fold change of expression level
of LHP1-targeted and LHP1 unmarked genes in the lhp1mutant compared to WT (Genes with a log2 fold change of -1 or lower are coloured in green and
genes with a log2 fold change of +1 or above are coloured in red). Only genes which are mis-regulated in lhp1 are shown here. LHP1-targeted genes are
predominantly up-regulated in the mutant lhp1. (B) Venn diagram showing the relationship of LHP1-targeted genes to gene expression. A higher number
of LHP1-targeted genes are up-regulated in the mutant lhp1, compared to non-target genes. (C) Functional annotation of LHP1 targets which are up-
regulated in the lhp1mutant (UT). (D) Average tag density profile of LHP1 on targeted and differentially regulated genes. Mean-normalized ChIP-Seq
densities of equal bins along the gene and 2-kb region flanking the TSS or the TES were plotted. Up and down regulated genes are categorized with a p-
value cutoff of 0.05 and fold change of one.

doi:10.1371/journal.pone.0158936.g002
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To better characterize the context-related binding of LHP1, we performed de novomotif
analysis of DT and UT bound regions, in comparison to a prediction of all targets. The binding
motif prediction of DT versus UT shows alternative consensus (S4 Fig). According to the JAS-
PAR and AthaMap database of conserved motifs [44], DT genes exhibit a so-called core bind-
ing factor motif (CBF), which is part of the promoters of actively expressed genes. On the other
hand, UT genes show an enrichment of the GATC tetranucleotide motif specific for HD2 bind-
ing (through HOX homeodomain). A second motif enriched in UT genes corresponded to the
AC (Donor-acceptor splice site) in Arabidopsis. If we consider all LHP1 targets together for a
prediction of consensus motifs, an alternative canonical motif (p value = 1e-35) can be found,
although more degenerated (S4 Fig). According to JASPAR, this sequence corresponds to the
element recognized by the ABI3 (ABSCISIC ACID-INSENSITIVE 3) transcription factor,
involved in plant growth and development. It is worth noting however, that although the
enrichment of these motives was highly significant, it was observed in only a relatively small
subset of LHP1 target genes, indicating that additional factors play a prominent role in LHP1
recruitment. Altogether, our results suggest that LHP1 is recruited on these sequences but in a
context-dependent manner to induce different outputs.

Opposite profiles of H3K27me3 deposition in LHP1 targets can be
identified in lhp1mutants
It is known that LHP1 binds H3K27me3 through its chromodomain [32–34], although the
contribution of LHP1 to the genome-wide distribution of H3K27me3 remains unclear. There-
fore, we performed two biological replicate of an H3K27me3 ChIP-Seq in both WT and lhp1
mutant plants. Strikingly, our results show that the knock-out of LHP1 causes both a decrease
and an increase of H3K27me3, among LHP1 targets. Considering a q-value cutoff of 0.05 and a
fold change of 0.5 to identify significantly differentially marked genes in lhp1 compared to WT,
we determined that 64.29% (886/1347) of hyper-methylated genes (higher level of H3K27me3
in lhp1 compared to WT) correspond to LHP1 targets (Fig 3A), whereas up to 91.52% (1285/
1404) of hypo-methylated genes are targets of LHP1 (S4 and S5 Appendices). The number of
TOM genes (TOM = LHP1 Targeted and H3K27me3 hypO-Methylated genes) are statistically
significantly higher (Binomial test p-value< 2.2e-16) than TRM genes (TRM = LHP1 Targeted
and H3K27me3 hypeR-Methylated genes). Our analyses indicate that the lack of LHP1 impacts
H3K27me3 deposition on most loci harboring this histone mark, but unexpectedly leads to a
dual effect on H3K27me3 deposition and/or maintenance. Two examples of crucial genes for
flower development are given by FLOWERING LOCUS C (FLC) and AGAMOUS (AG), exhibit-
ing a decreased deposition of H3K27me3 across their gene bodies in the lhp1 background (S5
and S6 Figs). Importantly, H3K27me3 deposition was restored at the FLC locus in comple-
mented mutant lines (S5 Fig), confirming the direct role of LHP1 in this process. On the other
hand, four genes from the YUCCA family (YUC5, 6, 8 and 9), involved in the biosynthesis of
auxin, show an enhanced deposition of H3K27me3 in the lhp1mutants (S7 Fig). Remarkably,
this effect on H3K27me3 correlates with their transcriptional behavior in the mutant back-
ground (S4 and S5 Appendices).

LHP1 controls H3K27me3 spreading across the body of target genes
To determine the relationship between LHP1 binding, H3K27me3 levels and gene expression,
we compared LHP1 targeted-H3K27me3 modified genes (TRM and TOM genes) with their
expression levels in lhp1 versus WT. We observed that hyper-methylated genes (TRM) are
mainly down regulated (68 genes against 26; Exact Binomial test p-value = 8.658e-06), whereas
hypo-methylated genes (TOM) are mostly up regulated (98 genes against 18; Exact Binomial
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Fig 3. H3K27me3 spreading is affected in the lhp1 and clfmutants. (A) Venn diagram showing differential marking of H3K27me3 deposition
and LHP1 binding. Hyper (Higher enrichment) and Hypo-H3K27me3 (lower enrichment) refers to differential marking of H3K27me3 in the lhp1
mutant compared to WT. (B) Venn diagram showing that Hyper-methylated (H3K27me3) genes are predominantly down-regulated in lhp1 and
Hypo-H3K27me3 genes are up-regulated in lhp1, as highlighted by the red boxes. (C) H3K27me3 distribution pattern (tag density) over the CDS
and flanking regions for WT and lhp1. Mean-normalized ChIP-Seq densities of equal bins along the gene and 5 kb region flanking the TSS or the

Role of LHP1 in H3K27me3 Spreading and Genome Topology

PLOS ONE | DOI:10.1371/journal.pone.0158936 July 13, 2016 7 / 25



test p-value = 8.246e-15) (Fig 3B). Altogether, LHP1 regulates H3K27me3 levels in opposite
manners on different targets, impacting gene expression accordingly.

We then focused our analysis on TOM genes in lhp1, to elucidate the role of LHP1 in
H3K27me3 deposition and/or maintenance. The comparison between H3K27me3 depositions
in this sub-set of genes in lhp1 versus WT revealed that H3K27me3 was not modified on the
first nucleosomes after the TSS but was clear on the rest of the gene body (Fig 3C and S8 Fig).
Furthermore, the differential deposition of H3K27me3 in lhp1 turns more pronounced towards
the 3’ end of the gene. This difference in H3K27me3 spreading was measured also by compar-
ing the peak broadness in lhp1 versus WT in TRM (Fig 3D) and in TOM (Fig 3E): the peak
length did not differ on TRM between WT and lhp1 (Two-sample t-test p-value = 0.81),
whereas it was severely reduced on TOM genes in lhp1 (Two-sample t-test p-value = 3.4e-12),
suggesting that this effect is characteristic of TOM genes. Our results indicate that LHP1 is
involved in spreading of H3K27me3 in plants, in a context-dependent manner.

We then asked which methyl-transferase could be responsible for the spreading of
H3K27me3 on LHP1 target genes. The floral transition is induced by the PRC1 RING-finger
protein AtRING1A, via its interaction with LHP1 and CLF [45] and AtRING1A interaction
with LHP1 affects its binding to H3K27me3. In the same way, CLF-containing PRC2 com-
plexes were shown to participate in the deposition of H3K27me3 [23]. Also, it was found that
Multicopy Suppressor of IRA1 (MSI1), a PRC2 component necessary for H3K27me3 deposi-
tion, interacts with LHP1, triggering a positive feedback loop to recruit PRC2 to chromatin
that carries H3K27me3 [39]. Hence, we performed two biological replicate of a ChIP-Seq of
H3K27me3 in the PRC2-deficient clfmutant and compared the results with data described
above. Profiling of H3K27me3 in clf revealed altered enrichment patterns across the gene body,
similar to the ones observed in lhp1 (Fig 3F), although the difference of H3K27me3 deposition
in the TSS was more pronounced. Moreover, the effect on the peak broadness in clf in hyper-
methylated genes and hypo-methylated genes (Student t-test p-value = 2.12e-229) is also com-
parable to lhp1 (Fig 3E, 3G and 3H). The altered spreading in lhp1 and clf is clearly illustrated
in the example of Fig 3I. Furthermore, a high correlation could be established between hyper
(Binomial test p-value< 2.2e-16) and hypo methylation (Binomial test p-value<2.2e-16) in
the lhp1 and clfmutants of LHP1 target genes (Fig 3J). Thus, our findings indicate the spread-
ing of the mark towards the 3’ end of the gene is dependent on both CLF and LHP1.

LHP1 shapes chromatin conformation in Arabidopsis
LHP1 has been recently implicated in the dynamic conformation of a chromatin loop fine-tun-
ing the promoter activity of a protein-coding gene, regulated by long noncoding transcription
[14]. Using genome-wide chromatin conformation capture (Hi-C), we mapped the spatial con-
tacts and distribution of genes in chromatin between different parts of the Arabidopsis genome
for WT and lhp1 plants. Digestion of the Arabidopsis genome byHindIII restriction enzyme
produces fragments which range from small (< 1-kb) to large (> 10-kb) in size (S9 Fig). The

TES were plotted. (D) Boxplot showing differential peak lengths of H3K27me3 in WT and lhp1 over Hyper-H3K27me3 region (Higher enrichment
of H3K27me3 in lhp1, compared to WT). (E) Boxplot showing differential peak lengths of H3K27me3 in WT and lhp1 over Hypo-H3K27me3
region (Lower enrichment of H3K27me3 in lhp1, compared to WT). (F)H3K27me3 distribution pattern (tag density) over the CDS and flanking
regions for WT and clf. Normalizaton of coverage densities of equal bins using spline algorithm was performed over the genes and flanking 5 kb
region. (G) Boxplot showing differential peak lengths of H3K27me3 in clf andWT over Hyper-H3K27me3 region (Higher enrichment of
H3K27me3 in clf, compared to WT). (H) Boxplot showing differential peak lengths of H3K27me3 in clf andWT over Hypo-H3K27me3 region
(Lower enrichment of H3K27me3 in clf, compared to WT). (I) LHP1 binding andH3K27me3 deposition in WT, lhp1 and clf across two genes.
Decreased level of H3K27me3 towards the 3’-end of both genes is observed in lhp1 and clf compared to WT. (J) Venn diagram showing
differential H3K27me3 deposition in lhp1 and clf. A high overlapping of Hypo and Hyper-methylated genes can be observed between lhp1 and clf,
as indicated in the red boxes.

doi:10.1371/journal.pone.0158936.g003
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differences of chromosome architecture were then correlated with LHP1 binding and gene
expression. In general, we observed small local interactive domains across the genome, as
described earlier [46]. We identified 50,230 interacting regions in the WT genome, based on
1-kb resolution binning and using binomial test with p-value cut-off of 0.05 (S7 Appendix). In
lhp1, the total number of loci interactions with the same criteria was higher than in the WT,
reaching a total of 70,830 (S7 Appendix). Our further analyses are based on 1-kb binning,
although to depict as a 2D graph, we used a 100-kb resolution (Fig 4A). According to our Hi-C
analysis, the chromosomal contact maps at 100-kb resolution show significant changes
between WT and lhp1 (Fig 4A and 4B). Also the changes in the interactions were seen in the
pericentromeric regions distal to the centromere, as well as in telomeres (Fig 4B). Analysis of
the intra chromosomal interactions reveal short distance (< 10kb) chromatin loops in both
WT and lhp1 plants, although the knockout of LHP1 impacts the global interaction pattern
(Fig 4C and S10 Fig). Interestingly, both gain and loss of LHP1-dependent intra- and inter-
chromosomal interactions can be detected (S7 Appendix). We found that 17,006 interacting
pairs are specific to WT.

Interestingly, 76.8% (13,069) of interacting regions that were significantly lost in the mutant
background, are associated to LHP1 (in WT) and displayed a hypo-methylation of H3K27me3
in lhp1mutant (Fig 4C). Several gene pairs, including the known case of the APOLO-PID
region [14], show an altered pattern of chromatin interactions (Fig 5A, 5B and 5C). The
involvement of LHP1 in loop formation was further confirmed by demonstrating that it was
restored in complemented mutant lines (S11 Fig). Altogether, these results suggest that LHP1
is a major determinant of chromatin architecture.

In order to evaluate the effect of LHP1-dependent chromatin interaction on gene transcrip-
tional regulation, we profiled the interacting genes to their expression in WT versus lhp1 lines.
We considered all chromatin loops for which at least one of their ends is an LHP1 target, and
we compared their transcriptional behavior in the lhp1mutant of the two genes, one at each
end of the loop. Out of 887 loop-associated pairs in WT (LHP1 chip-marked and significantly
expression-regulated), 667 pairs are affected in lhp1. Strikingly, the interacting pairs of genes
exhibited a segregated co-expression pattern in the lhp1 plants (Fig 5D and S12 Fig). Either the
pairs are highly expressed or lowly expressed in the lhp1 background compared to WT, sug-
gesting a co-regulation of gene expression mediated by LHP1-dependent chromatin 3D con-
formation. Therefore, LHP1 acts at different levels on chromatin organization, thus shaping
Arabidopsis genome topology and modulating gene expression.

Discussion
Both in plants and animals, H3K27me3 constitutes a characteristic mark of developmental
genes expressed in specific cell types [33, 34, 47]. In Arabidopsis seedlings, over 20% of protein-
coding genes are marked by H3K27me3, including an important number of hormone and
stress response genes [25, 34], suggesting a role of Polycomb complexes in plant developmental
plasticity.

Genome-wide maps of H3K27me3 and/or the occupancy of PRC1 and 2 subunits are avail-
able in animals [48–51] as well as in plants [25, 33, 34, 52–58]. Two previous studies have
addressed the characterization of LHP1 distribution across the Arabidopsis genome. First,
Turck and coworkers (2007) performed a ChIP followed by the hybridization to an Arabidopsis
Chromosome 4 tiling array (ChIP-chip), showing that LHP1 associates with hundreds of small
domains, mostly corresponding to genes located within euchromatin. Furthermore, the authors
showed that LHP1 association with chromatin highly correlates with domains marked by
H3K27me3. A genome wide approach using a LHP1 tagged with a DNAmethylation enzyme
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Fig 4. Genome topology is globally altered in the lhp1 backgorund. (A) 2D interaction map showing significant interactions in WT and lhp1.
Highly significant interactions are marked as red dots in their corresponding boxes. The color scale represents log2 (interaction) values. Lower
panel in red (marked “LHP1”) are peaks from the LHP1WT ChIP-seq. The two LHP1 panels are identical as they correspond to LHP1 binding
in WT. The second LHP1 panel is shown here to correlate this dataset with the Hi-C in the mutant. (B) A screenshot of zoomed 2D interaction
map showing intra-chromosomal interaction and LHP1 binding region for Chromosome 1. Centromeric interactions in those regions are
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masked. WT specific interactions are marked as black dots and lhp1 specific interactions are marked as purple dots. The color scale
represents the log2 (interaction), which is calculated against the background (taken as lhp1mutant). Lower panel in black (marked “LHP1”)
shows the peaks of LHP1 deposition in WT ChIP-seq. (C) 2D interaction map showing the loss of interaction in lhp1when compared to the
same region in WT (top panels). Lower panels show the loss of H3K27me3 in the same region. In red it is highlighted the region in WT where
LHP1 and H3K27me3 co-occur, exhibiting interaction changes in lhp1mutants, along with the loss of H3K27me3.

doi:10.1371/journal.pone.0158936.g004

Fig 5. Global changes in chromatin interactions are observed in lhp1, impacting gene transcription. (A)Gene pairs showing
altered chromatin interactions and reduced levels of H3K27me3 in lhp1 compared to WT. (B) Hi-C interactions between the pair of gene
loci PID and APOLO (chr2:14588900–14599067). Several interactions can be detected between these two loci in WT. These
interactions are diminished and even lost (the one in dark blue) in the lhp1mutant. (C) Genome browser screenshot showing gene pairs
revealing loss of chromatin interactions and reduced levels of H3K27me3 in lhp1 compared to WT. For A to C, colors indicate different
interactions (red to blue) in cis and in trans (not adjacentHind III sites). (D) Expression level changes inl hp1 compared to WT of
significantly interacting pairs of genes which are LHP1-targeted. Colors were attributed according to the fold-change (FC) observed in
the expression level: genes with a log 2 fold change of 2 or above are coloured in red while genes with a log 2 fold change of -2 or lower
are coloured in green and genes with a log 2 fold change between -2 and 2 are in black. Interacting pairs show similar transcriptional
behavior in the lhp1 background.

doi:10.1371/journal.pone.0158936.g005
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and tilling arrays was performed at the same time by Zhang and coworkers (2007), confirming
that LHP1 co-localizes with H3K27me3 and that they interact in vitro. Based on this method,
2,354 regions bound by LHP1 genome-wide were identified. Since these findings, suggesting
that LHP1 represents an equivalent of a component of PRC1 in plants, novel technologies have
been developed. In our work, LHP1 ChIP followed by high throughput sequencing (ChIP-Seq)
served to identify almost 14,000 peaks, corresponding to over 8,800 genes expanding previous
datasets. Furthermore, by comparing these data to our H3K27me3 and RNA Pol II ChIP-Seq
results, we could not only confirm the high correlation between LHP1 and H3K27me3 deposi-
tion, but also showed a clear anti-correlation between their presence and Pol II occupancy (Fig
1A–1C). Furthermore, we could establish the relationship between gene transcriptional activity
and LHP1 binding (Fig 1E). Consistent with previously described function of LHP1 as a tran-
scriptional repressor, we found that the majority of LHP1 targets were hypo-methylated in the
lhp1mutant. This finding indicates that LHP1 not only recognizes H3K27me3 but can also
influence the deposition of this mark. Previously, Turck and coworkers (2007) reported that
H3K27me3 deposition was not modified in the lhp1 background using a ChIP-chip analysis
with the Chromosome 4 tiling microarray. This apparent discrepancy may be attributed to the
approaches used: our results show a global reduction of H3K27me3 deposition, and fine map-
ping of H3K27me3 using ChIP-seq clearly reveals a specific reduction of H3K27me3 spreading.
These differences would have been difficult to detect using ChIP-chip since the DNA fragments
present on the micro-array are relatively large (between 0.3 and 1.2kb). Furthermore, our
results are consistent with the work of Derkasheva and coworkers (2010) who observed a
reduction of H3K27me3 at specific loci in roots of the lhp1mutant. It is known that the
H3K27me3 repressive mark can often spread from the nucleation center into flanking regions
[20, 23, 59]. In this work, we demonstrate that the spreading of this mark towards the 3’ end of
the gene body is a common feature of LHP1 targets, depending on LHP1 and the PRC2 subunit
CLF, whereas the deposition of H3K27me3 around the TSS is likely to recruit CLF (Fig 3C and
3F). Remarkably, an independent approach recently published by Wang and coworkers (2016),
based on H3K27me3 ChIP-Seq and the previous reports of ChIP-chip [33], served to demon-
strate that LHP1 and CLF participate in elongation of H3K27me3 mark. Furthermore, accord-
ing to this work, the spreading of H3K27me3 is independent from the PRC1-catalytic core
subunits BMI1 and RING1.

Crossing our LHP1 ChIP-Seq results with those of our RNA-Seq of lhp1 seedlings vs WT,
we determined that 772 genes out of the 8882 LHP1-targets are deregulated in the mutant (Fig
2B). This does not necessarily indicate that LHP1 binding exerts no function on gene expres-
sion regulation for the majority of its targets. It means that in control conditions, the transcrip-
tional effect is detectable only for a subset of them, what would likely change in particular
developmental contexts or in response to certain external stimuli, impacting the expression of
different subsets of target genes, in particular cell types. Unexpectedly, transcriptional analyses
of the lhp1mutants together with the H3K27me3 ChIP-Seq in the same background revealed
that a subset of LHP1-targeted genes became hyper-methylated and down-regulated in lhp1
mutants, suggesting that LHP1 can function as a positive regulator of a sub-set of genes. Con-
sidering that lhp1mutants have strong pleiotropic phenotypes, the downregulation of genes
could be a consequence of secondary effects rather than a direct role of LHP1 as transcriptional
activator. However, it has been shown by Rizzardi and coworkers (2011) that LHP1 exerts a
positive role in transcriptional activation of the YUCCA genes, suggesting that LHP1 is globally
a repressor of transcription but in some cases it can be an activator. Notably, the sub-set of
down regulated genes in the lhp1mutant is enriched in genes involved in functions related to
auxin response and environmental stimuli (Fig 2C). It was shown that an enrichment of
H3K27me3 characterizes an important number of genes implicated in the biosynthesis,
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transport, perception, and signal transduction of auxin, suggesting a common control involv-
ing this mark of the entire signaling pathway [25]. Interestingly, lhp1 plants exhibit a reduced
rate of auxin biosynthesis, which correlates with the down-regulation of specific genes involved
in this pathway, a sub-set of the YUCCA genes [60]. It was shown that LHP1 can dynamically
target a number of the YUCCA genes in an auxin-dependent fashion affecting their transcrip-
tional activity, demonstrating the role of LHP1 in auxin signaling. Here, we show that this
deregulation is correlated with enhanced deposition of H3K27me3 across their gene bodies (S7
Fig). In addition, LHP1 binding to the APOLO noncoding RNA locus is modulated by exoge-
nous auxin, impacting the transcription of its neighboring gene [14]. However, in the latter
case, LHP1 functions as a transcriptional repressor, as expected. The molecular mechanisms
underlying its dual role on gene expression remain to be elucidated.

A classification of up and down-regulated targets in the lhp1mutants allowed us to identify a
differential LHP1-binding pattern for each of them, being more abundant on the first nucleo-
somes on genes that it negatively regulates (Fig 2D). Moreover, alternative consensus motifs
were found for each subset of target genes, suggesting that a context-dependent mechanism
involves LHP1 and can lead to regulate gene expression in different ways (S4 Fig). So far, the
identification of one single consensus sequence associated to the general recruitment of PRC
has not been achieved. However, it was recently shown that PRC2 binding sites in Arabidopsis
could contain putative GAGA factor binding motifs within the gene body, which may serve as
recruiting elements or to strengthen the interaction of PRC2 at the target [53]. For some genes
in particular, it was shown that the initiation of H3K27me3 deposition is regulated by cis-ele-
ments required and sufficient to recruit PRC2. This is the case of FLC [53, 59, 61, 62],
WUSCHEL (WUS) [50] and AGAMOUS (AG) [23, 63], among others [21, 64–66]. Very
recently, Wang and coworkers searched for consensus of H3K27me3 marked genes, whose
expression is affected in the lhp1 and clfmutants. Coincident to our results, a conserved motif,
also enriched among all H3K27me3 marked genes, is the ABI3 element (S8 Appendix). Here,
we identified alternative consensus motifs based on a more comprehensive list of LHP1 targets
and depending on the sub-set of target genes considered (S4 Fig), i.e. transcriptionally up and
downregulated in the lhp1mutant. Although not extensively present in each sub-set of genes,
some of these motifs are found in up to 4.51% of DTs (the CBF motif) and 11.65% of UTs (the
ACmotif). Even though little is known about these motifs, which have been linked to various
molecular mechanisms not necessarily related to LHP1 [44], the observation that alternative
motifs are enriched depending on the sub-set of genes differentially regulated by LHP1, strongly
suggests that the positive or negative regulation of gene expression by LHP1 depends on specific
protein partners. Several LHP1 interactors have already been identified. For instance, we can
mention the ribonucleoprotein LHP1-INTERACTINGFACTOR2 (LIF2) [67] and the cyclophi-
lin protein AtCYP71 [68], although it remains unclear how these proteins affect LHP1 function
and activity, and whether the interaction with these factors could modulate the outcome of
LHP1 binding and its effect on gene expression. Also the plant-specific protein EMF1 interacts
with LHP1 and a group of H3K4me3 demethylases [69]. Genome-wide localization of EMF1
coincides with H3K27me3, which is strongly affected in the emf1mutants. Furthermore, EMF1
is required for the repression of many PRC2 targets but also of other genes [70–72]. It has been
shown that EMF1 and LHP1 interact with both PRC1 (AtRING1/AtBMI1) and PRC2 subunits
[39, 69], suggesting the close cooperation of plant PRCs.

In addition to unraveling a role of LHP1 as a potential activator of gene expression, our work
reveals a role in the modulation of global chromatin architecture. A number of previous studies
provide evidence for a role of interactions between PRC components and long noncoding RNAs
in the modulation of epigenetic regulation of gene expression [73]. For example, the Arabidopsis
PRC2 subunit CLF binds the lncRNA COLDAIR in the repression of FLC after vernalization

Role of LHP1 in H3K27me3 Spreading and Genome Topology

PLOS ONE | DOI:10.1371/journal.pone.0158936 July 13, 2016 13 / 25



[74]. Likewise, it has recently been shown that LHP1 recognizes in vivo the long intergenic non-
coding RNA (lincRNA) APOLO in the modulation of a dynamic chromatin loop encompassing
the promoter of the APOLO neighboring gene, PINOID (PID) [14]. In lhp1mutants, the chro-
matin loop suffers a delayed formation after auxin-triggered opening, affecting PID transcrip-
tion. Other animal chromodomain-containing proteins have been shown to bind ncRNAs,
including the LHP1 closest homolog, HP1 [75, 76]. However, the global impact of LHP1 on the
determination of chromatin topology was not yet elucidated. Here we made use of a Hi-C
approach to show at genome-wide scale that the conformation of short-range loops is affected
in lhp1mutants. Consistent with our previous work, the chromatin loop between APOLO and
PID was also detectable in our Hi-C approach (Fig 5B), and we detected a significant alteration
of the interacting chromatin profile across the whole locus in lhp1, thereby validating our previ-
ous gene-specific results. Both gain and loss of LHP1-dependent intra- and inter-chromosomal
interactions have been detected. Several regions where significant loss of interactions was found
in lhp1 plants are associated with LHP1 targets and a decrease of H3K27me3. Strikingly, the cor-
relation of the regulation of genes located in each end of the loop indicates that LHP1 plays a
major role in all levels of genome organization to coordinate gene expression. In animals, grow-
ing evidence suggests that Polycomb complexes control spatial genome organization establish-
ing regulatory contacts between distant loci, such as promoters and enhancers or functionally
related genes [77–81]. It has been proposed that higher-order genome organization mediated by
Polycomb complexes, notably PRC1, can maintain genes in three-dimensional interaction net-
works in a silent state, and the selective release of sub-sets of genes may determine cell fate deci-
sions leading to organogenesis and development [80]. Genome-wide analyses of chromatin
conformation in ArabidopsisWT and mutant lines have recently begun to shed light on plant
genome topology features [46, 69, 82, 83]. Remarkably, Feng and coworkers (2014) showed by a
Hi-C approach on the clf-swn double mutant that the interaction of domains consisting of clus-
tered H3K27me3 genes was dramatically reduced or eliminated in the double mutant back-
ground, suggesting that H3K27me3 may act directly or indirectly to regulate the interactivity of
these regions. In our work, we show not only that the LHP1-dependent interactions correlate
with a decrease of H3K27me3, but remarkably that there exists a co-regulation of transcription
of distant genes brought together by LHP1-dependent chromatin interactions. Hence, LHP1
determines proper expression patterns in plant development through the control of genome
topology. Future work on the interactions between LHP1, CLF and other PRC subunits and
long noncoding RNAs will allow gaining a comprehensive understanding of the determination
of dynamic chromatin compaction and genome topology.

Materials and Methods

Plant material and growth conditions
Arabidopsis thalianaWild Type (WT) were Columbia-0 (Col0), and seeds of lhp1
(SALK_011762 line) and clf (SALK_N521003) mutants were in the same background. Arabi-
dopsis lhp1mutant plants complemented with the ProLHP1:LHP1:GFP have been previously
described [31]. Plants were grown in chambers at 20°C on sterile half-strength MS medium
and 0.8% agar under long-days (16h of light at 20°C, 8h of darkness at 18°C). Seeds were sur-
face-sterilized by treatment with bayrochlore for 20 min, washed, and imbibed in sterile-water
for 2–4 days at 4°C to obtain homogeneous germination.

RNA-seq assay
Total RNAs were extracted from 180 mg of shoots of 12-day-old seedlings with the ZR Plant
RNAMiniPrep kit (Zymo Research), according to the manufacturer's instructions. HiSeq 50bp
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singleton reads from RNA-Seq were first adaptor trimmed and then analyzed using the TopHat
and Cufflinks software. TopHat v2.0.9 [84] was utilized for alignment of short reads to the Ara-
bidopsis thaliana genome TAIR10, Cufflinks v2.2.0 [85] for transcript assembly and differential
expression, and cummeRbund v2.0.0 for visualization of differential analysis. Default parame-
ters (p-value: 0.05; statistical correction: Benjamini Hochberg; FDR: 0.05) were used. A cutoff
of 0.5 fold up- or down-regulation has been chosen to define differential expression.

ChIP-seq assay
ChIP-seq assays were performed on 14-day-old shoot seedlings grown in plates using anti-GFP
(Clontech 632592), anti-H3K27me3 (Millipore 07–449) or anti-RNA Pol II (Abcam ab817),
modified from [86]. Five grams of shoot plantlets were cross-linked in 1% (v/v) formaldehyde
at room temperature for 15mn. Crosslinking was then quenched with 0.125 M glycine for 5
min. The crosslinked plantlets were ground and nuclei were isolated and lysed in Nuclei Lysis
Buffer (1% SDS, 50mM Tris-HCl pH 8, 10mM EDTA pH 8). Cross-linked chromatin was soni-
cated using a water bath Bioruptor UCD-200 (Diagenode, Liège, Belgium) (15s on/15s off
pulses; 15 times). The complexes were immunoprecipitated with antibodies, overnight at 4°C
with gentle shaking, and incubated for 1 h at 4°C with 40 μL of Protein AG UltraLink Resin
(Thermo Scientific). For anti-GFP and anti-RNA Pol II immunoprecipitations, the beads were
washed for 6 × 5 min in ChIP Dilution Buffer (1,1% Triton X-100, 1.2 mM EDTA pH 8, 16.7
mMTris-HCl pH 8 and 167 mMNaCl) and twice in TE. For anti-H3K27me3 immunoprecipi-
tation, the beads were wash 2 × 5 min in ChIP Wash Buffer 1 (0.1% SDS, 1% Triton X-100, 20
mMTris-HCl pH 8, 2 mM EDTA pH 8, 150 mMNaCl),2 × 5 min in ChIPWash Buffer 2 (0.1%
SDS, 1% Triton X-100, 20 mMTris-HCl pH 8, 2 mM EDTA pH 8, 500 mMNaCl), 2 × 5 min in
ChIPWash Buffer 3 (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate,10 mMTris-HCl pH 8,
1 mM EDTA pH 8) and twice in TE (10 mMTris-HCl pH 8, 1 mM EDTA pH 8). ChIPed DNA
was eluted by two 15-min incubations at 65°C with 250 μL Elution Buffer (1% SDS, 0.1 M
NaHCO3). Chromatin was reverse-crosslinked by adding 20 μL of NaCl 5M and incubated
over-night at 65°C. Reverse-cross-linked DNA was submitted to RNase and proteinase K diges-
tion, and extracted with phenol-chloroform. DNA was ethanol precipitated in the presence of
20 μg of glycogen and resuspended in 50 μL of nuclease-free water (Ambion) in a DNA low-
bind tube. 10 ng of IP or input DNA was used for ChIP-Seq library construction using NEB-
Next1 Ultra DNA Library Prep Kit for Illumina1 (New England Biolabs) according to manu-
facturer’s recommendations. For all libraries, twelve cycles of PCR were used. The quality of
the libraries was assessed with Agilent 2100 Bioanalyzer (Agilent), and the libraries were sub-
jected to 1 x 50 bp high-throughput sequencing by HiSeq2500 (Illumina) at IGBMCMicroar-
ray and Sequencing Platform (Illkirch).

Hi-C assay
Five grams of 14-day-old shoot seedlings were cross-linked in 1% formaldehyde at room tem-
perature for 15 min. Crosslinking was then quenched with 0.125 M glycine for 5 min. The
cross-linked plantlets were ground and nuclei were isolated, washed with 1.2 x CutSmart1

Buffer (New England Biolabs) and resuspended in 500 μL of 1.2 x CutSmart1 Buffer. Then,
7.5 μL of 20% SDS was added and incubated at 65°C for 30 min followed by 30 min at 37°C
with occasional mixing. SDS was sequestered by adding 50 μL of 20% Triton X-100 and incu-
bating at 37°C for 60 min with occasional mixing. Next, 400U of HindIII-HF (New England
Biolabs) was added and incubated at 37°C for overnight. To label the digested DNA ends,
1.5 μL of 10 mMdCTP, 1.5 μL of 10 mMdGTP, 1.5 μL of 10 mMdTTP, 37.5 μL of 0.4 mM bio-
tin-14-dATP (Invitrogen) and 50 U of Klenow (New England Biolabs) were added and
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incubated at 37°C for 45 min with occasional mixing. To inactivate enzymes, 105 μL of 10%
SDS were added and incubated at 65°C for 30 min with occasional mixing. Digesting chroma-
tin mixture was transferred in ligation mix (750 μL of 10x T4 DNA ligase reaction buffer (New
England Biolabs), 75 μL of 100 x BSA (New England Biolabs), 5.2 mL of nuclease-free water)
and SDS was sequestered by adding 750 μL of Triton X-100 and incubating at 37°C for 60 min
with occasional mixing. To ligate the biotin-labelled DNA ends, 50 U of T4 DNA ligase
(Thermo Scientific) were added and incubated at 16°C for 4 hours. Crosslinks were reversed
and proteins were degraded by adding 500 μg of proteinase K (Invitrogen) and incubating
overnight at 65°C. Then, DNA was purified by performing twice phenol/chloroform extrac-
tions and precipitated using ethanol. Ethanol precipitated DNA samples were resuspended in
nuclease-free water and RNAs were digested by adding 100 μg RNAse A (Qiagen) and incubat-
ing at 37°C for 30 min. To remove biotin from the unligated ends, 5 μg of DNA was mixed
with 10 μg of BSA, 10 μL of 10x NEBuffer 2 (New England Biolabs), 1 μL of 10 mM dGTP and
5 U of T4 DNA polymerase (New England Biolabs) and incubated at 12°C for 2 hours. The
reaction was stopped by adding 2 μL of 0.5 M EDTA pH 8. DNA was purified by performing
phenol/chloroform extraction and ethanol precipitation. Then, DNA was resuspended in
100 μL of nuclease-free water and was sheared to a size of 300–500 basepairs using Bioruptor
Plus (Diagenode). Sheared DNA ends was repaired by adding 14 μL of 10x ligation buffer
(New England Biolabs), 14 μL of 2.5 mM dNTP mix (Invitrogen), 5 μL of T4 DNA polymerase
(New England Biolabs), 5 μL of T4 polynucleotide kinase (New England Biolabs) and 1 μL of
T4 Klenow (New England Biolabs) and incubating at room temperature for 30 min. DNA was
purified with QiagenMinElute column (Qiagen) according to manufacturer’s recommenda-
tions and was eluted twice with 15 μL of TLE (10 mMTris pH 8, 0.1 mM EDTA). Then, a
dATP was attached to the 3’ ends of the end-repaired DNA by adding 5 μL of NEBuffer 2,
10 μL of 10 mMdATP and 3 μL of Klenow (exo-) (New England Biolabs) by incubating at 37°C
for 30 min. Then DNA was loaded in a 1% agarose gel and DNA fragments between 300 and
500 base pairs were purified with a Qiagen gel extraction kit (Qiagen). Biotin-labeled Hi-C
DNA was bound to Dynabeads M-280 Streptavidin (Lifes Technologies) magnetic beads by
incubating in 1 x No Tween Buffer (NTB: 5 mMTris H-Cl pH 8, 0.5 mM EDTA pH 8, 1 M
NaCl) at room temperature for 45 min. Beads were washed twice in 1 x NTB and resuspended
in 50 μL 1 x ligation buffer with PEG (Invitrogen). To ligate Illumina Paired End adapters to
biotin-labeled Hi-C DNA bound beads, 6 picomoles of Paired End adapters (Illumina) and
1200 U T4 DNA Ligase (New England Biolabs) were added to a tube and incubated at room
temperature for 2 hours. Hi-C DNA bound beads were washed three times with NTB and 0.1%
Tween and resuspended in 23 μL of nuclease-free water. Then, Hi-C DNA libraries were ampli-
fied by adding 1 μL of PCR Primer PE 1.0 (Illumina), 1 μL of PCR Primer PE 2.0 (Illumina)
and 25 μL of Phusion1 High-Fidelity DNA Polymerase (New England Biolabs) with the fol-
lowing program (98°C for 30 sec, 18 cycles of [98°C for 10 sec, 65°C for 30 sec, 72°C for 30 sec],
72°C for 5 min). After amplification, streptavidin-coated beads were removed and Hi-C librar-
ies were purified with AgencourtAMPure XP magnetic beads (Beckman Coulter) and eluted in
21 μL of nuclease-free water. The quality of the libraries was assessed with Agilent 2100 Bioa-
nalyzer (Agilent), and the libraries were subjected to 2 x 50 bp paired-end high-throughput
sequencing by HiSeq 2500 (Illumina) at IGBMCMicroarray and Sequencing Platform
(Illkirch).

Computational analysis of ChIP-seq
Single-end sequencing of ChIP samples was performed using Illumina GAIIx with a read
length of 50 bp. Reads were quality controlled using FASTQC (http://www.bioinformatics.
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babraham.ac.uk/projects/fastqc/). Trimmomatic was used for quality trimming. Parameters for
read quality filtering were set as follows: Minimum length of 36 bp; Mean Phred quality score
greater than 30;Leading and trailing bases removal with base quality below 3; Sliding window
of 4:15. The reads were mapped onto the TAIR10 assembly using Bowtie [87] with mismatch
permission of 1 bp. Unique mapping of reads was adopted. To identify significantly enriched
regions, we used MACS2 [88]. Parameters for peaks detection were set as follows: Number of
duplicate reads at a location:1; Bandwidth:300; mfold of 5:30; q-value cutoff:0.05. Visualization
and analysis of genome-wide enrichment profiles were done with IGB. Peak annotations such
as proximity to genes and overlap on genomic features such as transposons and genes were
performed using HOMER. SeqMINER was used for quantitative clustering based on tag den-
sity using a Density Array method with a wiggle window of 50 bp. NGSplot was used to profile
the enrichment of this mark at transcriptional start sites (TSSs) and along the gene [89]. To
identify regions that were significantly enriched in the histone modification H3K27me3, we
used SICER [90] with parameters of W:200, G:600 for H3K27me3. RNA Pol II occupancy and
shift between the WT and the lhp1mutant were deduced from the sequencing data using
MACS2. DiffReps (settings: Window size 1kb; step size:100bp; P-value: 0.0001; Statistical test-
ing method: Chi-square method) was used to find the differential marking between two histone
modifications [91]. Spatial binding of the two peaks of LHP1 and H3K27me3 were done by
Position-wise comparison using binning approach and plotted in hexplot. De novomotif analy-
sis of LHP1 binding regions were screened for specific DNA motifs using HOMER [92]. The
binding regions of the significantly up-regulated genes and down-regulated genes were ana-
lyzed. These significantly enriched motifs were compared with motif databases JASPAR [44].

Computational analysis of Hi-C data
The Illumina paired end raw data was quality checked using FASTQC. The raw reads with
adapter sequences and low quality bases were removed. Genome was split into compartments
of Hind III fragments and further reads are mapped around the fragment end-points (S9 Fig).
The processed high quality reads with more than 70% bases having Phred score greater than 30
were considered significant for further downstream analysis. The processed reads were then
aligned against the reference database using HICUP [93]. HICUP receives processed FASTQ
data which is then mapped against a reference genome and filtered to remove frequently
encountered experimental artifacts. It produced paired read files in SAM/BAM format, each
read pair corresponding to a putative Hi-C di-tag. The sam file generated was further used for
analysis using HOMER [92]. HOMER searched for pairs of loci that have a greater number of
Hi-C reads that is expected by chance, referred to as a significant interaction with p-value less
than 0.2 and z-score greater than>0. The reads statistics related to truncation, filtration, map-
ping, deduplication are in S6 Appendix. These interacting loci are annotated with gene if it lies
within 2kb region. Intra-chromosomal and inter-chromosomal interactions were analyzed and
circos plots were drawn using CIRCOS tool.

Supporting Information
S1 Appendix. List of LHP1 target genes. TAIR10 Gene accession list marked by LHP1.
(XLSX)

S2 Appendix. List of up- and down- regulated genes in lhp1. Up and down regulated
TAIR10 Gene accession list.
(XLSX)
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S3 Appendix. List of LHP1 target genes deregulated in lhp1. TAIR10 Gene accession list
marked by LHP1 and de-regulated by expression.
(XLSX)

S4 Appendix. List of genes that are H3K27me3 hypo- and hyper- methylated in lhp1.
TAIR10 Gene accession list which are methylated (hypo and hyper-methylated).
(XLSX)

S5 Appendix. List of LHP1 target genes that are H3K27me3 hypo- and hyper-methylated in
lhp1. TAIR10 Gene accession list marked by LHP1 and methylated (hypo and hyper-methyl-
ated).
(XLSX)

S6 Appendix. The reads statistics, truncation, filtration, mapping, deduplication results
from Hi-C experiments. Sequencing information of Hi-C data.
(XLSX)

S7 Appendix. A. WT and B. lhp1 interacting loci. Genome co-ordinate pairs representing the
interacting loci derived from Hi-C analysis.
(XLSX)

S8 Appendix. Full list of motifs found based on all LHP1 target genes. Sequence motifs
detected from HOMER analysis of LHP1 target genes.
(PDF)

S1 Fig. LHP1 targets behavior in lhp1 versus WT. Box plot representing the expression level
of LHP1 targeted genes in WT and lhp1mutant. Expression levels are depicted in RPKM (Read
Per Kilobase per Million reads) that was derived using RNA-Seq.
(EPS)

S2 Fig. Functional annotation of genes which are LHP1-targeted and down-regulated in
the lhp1mutant (DT). Scatterplot (generated from Revigo) showing the functional categories
of Down-regulated LHP1-targeted genes (DT). Biological process terms from GO are posi-
tioned in the semantic space. Semantic space refers to the closeness of the function (cluster of
GO terms). This two dimensional space derived by multidimensional scaling to a matrix of the
GO terms' semantic similarities. Highly enriched terms include Auxin biosynthesis, chromatin
assembly and defense response to environmental stimuli. Enrichment of particular terms is
given as color within the bubble. Size of bubble indicates the frequency of the GO term in the
underlying TAIR10 gene ontology.
(EPS)

S3 Fig. Average tag density profile of LHP1 on targeted and differentially regulated genes.
The blue line represents the position of the first nucleosome after the TSS.
(EPS)

S4 Fig. Enriched nucleotide motifs in LHP1-binding regions across the Arabidopsis
genome. (A) HOMER nucleotide motif enrichment in the peaks overlapping the down-regu-
lated LHP1-targeted genes (DT), using a significant p-value of 0.05. These motifs are later
annotated against a known motif database (JASPAR). Motifs derived (JASPAR:POL008.1)
from DT peaks are annotated DCE (Downstream core element) elements which are transcribed
by RNAp PolII. (B) Nucleotide pattern in LHP1 peaks associated with the up-regulated
LHP1-targeted genes (UT). UT peaks shows DCE motif; AC motif (JASPAR:SD0002) which
are specific to genomic splice sites; TRP(MYB) motif: transcription factor binding site.
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(C) De novomotif discovery identifies CGTTCATG in genome-wide LHP1 binding site. This
pattern is found exactly in the midpoint of the LHP1 ChIP-Seq peaks (LHP1 ChIPseq peaks
are broad and this candidate sequence pattern is at their center).
(EPS)

S5 Fig. Co-marking of LHP1 and H3K27me3 across the FLC locus; Reduced levels of
H3K27me3 in lhp1 and clf. (A) Genome browser screenshot showing tag density of LHP1, as
well as H3K27me3 over the FLC gene in WT, lhp1 and clf. (B) Schematic representation of the
regions of the FLC locus analysed in C. Black boxes correspond to exons, the arrow indicates
the site of translation initiation, numbers indicate the position of primer pairs used (S13 Fig)
[94] (C)Quantification data of the chromatin immunoprecipitation results. Nuclei were
extracted from 10-day-old seedlings grown under LD and immunoprecipitation was per-
formed with antibodies specific for H3K27me3. Average relative quantities ± sd are shown for
each sample.
(EPS)

S6 Fig. Co-marking of LHP1 and H3K27me3 across the AG locus; Reduced levels of
H3K27me3 in lhp1 and clf. Genome browser screenshot showing tag density of LHP1, as well
as H3K27me3 over the AG gene in WT, lhp1 and clf.
(EPS)

S7 Fig. Profiles of LHP1 binding and H3K27me3 deposition across YUCCA genes. Genome
browser screenshot showing profile patterns of LHP1, H3K27me3 over the YUCCA genes
YUC5, 6, 8 and 9 in WT and lhp1.
(EPS)

S8 Fig. H3K27me3 distribution pattern (tag density) over the TSS for WT and lhp1. The
green line represents the position of the first nucleosome after the TSS.
(EPS)

S9 Fig. Fragment length histogram generated from the Arabidopsisgenome, byHind III
restriction enzyme digestion.Histogram showing that 1-kb fragments are large in number,
validating that 1-kb resolution based binning is possible usingHindIII as a restriction enzyme
for Hi-C.
(EPS)

S10 Fig. Hi-C interactions are diminished in lhp1 compared to WT.HiC interaction differ-
ences in a region (chr1:16mb– 17.5mb). Several interactions can be detected along the loci in
WT. These interactions (highlighted between red dotted lines) are reduced and even lost (the
one in blue) in the lhp1mutant. The color code in the interactome (blue to red) represents the
number of significant interactions.
(EPS)

S11 Fig. LHP1 regulates gene loop formation. Relative loop conformation measured by
BglII-3C-qPCR, considering the WT level as 100% [14]. Error bars represent the standard devi-
ation of three biological replicates.
(EPS)

S12 Fig. Positive correlation of gene expression between two LHP1-targeted genes from the
same interacting pair in WT. Scatterplot showing positive correlation of gene expression
between two LHP1-targeted interacting pairs of genes in WT. These are significantly interact-
ing pairs derived from the Hi-C experiment in WT.
(EPS)
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S13 Fig. List of oligonucleotides used for qPCR. Sequences used for qPCR analysis.
(EPS)
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