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In mammals, both male and female gonads are derived from
the bipotential gonadal primordium, i.e., the genital ridge. Pri-
mordial germ cells (PGCs) are the germ cell progenitors that

arise from the extraembryonic ectoderm, migrate through the
hindgut endoderm, and reach the genital ridge before sex
determination [1]. Both Sertoli cells and granulosa cells are
derived from somatic cells in undifferentiated genital ridges.

The differentiation of germ cells and gonadal somatic cells dur-
ing gonad development is regulated by various factors, includ-
ing transcription factors, epigenetic regulators, and

environmental factors. The interactions between germ cells
and somatic cells also play critical roles in gonad development
and PGC differentiation. The differentiation of PGCs is

affected by the signals derived from the surrounding somatic
environment, indicating that the surrounding gonadal
microenvironments may tightly regulate the behaviors of
PGCs [2–4]. The regulation of PGC and gonadal somatic cell
development in mouse models has been extensively investi-
gated previously [5–7]. Several research groups have described

the developmental transcriptomic landscapes of human fetal
germ cells (FGCs) and spermatogenesis, with studies mainly
focusing on the development of germ cells [8–17]. A variety
of germ cell types and states have been well demonstrated

throughout the development in human fetal, neonatal, infant,
and adult stages [9,11,12,18]. However, the regulation of gona-
dal somatic cell differentiation and the interactions between

germ cells and gonadal somatic cells in humans still remain
incompletely understood.

Recently, Wang et al. [19] systematically analyzed the fetal

germ cells (FGCs) and gonadal somatic cells in human
embryos and fetuses using a time-series single-cell RNA
sequencing (scRNA-seq) strategy. They also analyzed the

development of both germ cells and gonadal somatic cells in
a Turner syndrome embryo (45, XO). This study is the first
to systematically analyze the gene expression patterns and cell
type compositions in monosomy X (45, XO) gonads compared

with normal female (46, XX) and male (46, XY) embryos at
the same developmental stage (7 weeks of gestation; 7 W).
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The results suggest that the lack of one copy of X chromosome
has different influences on germ cells and gonadal somatic
cells. It is proposed that the XO embryo is likely originated

from an XX zygote (specifically losing one copy of X chromo-
some). X chromosome inactivation (XCI) is an essential mech-
anism to compensate for different dosages of the X-linked

genes between female (XX) and male (XY) cells. After specifi-
cation, germ cells in normal female gonads reactivate the inac-
tivated X chromosome, which will remain active during FGC

development. On the other hand, in the gonadal somatic cells,
the inactivated X chromosome will be maintained at the inac-
tivated state permanently. Therefore, X chromosome mono-
somy would cause different outcomes in germ cells and

somatic cells. In germ cells, it leads to the loss of one active
X chromosome (all of the genes on the active X chromosome
are ‘active’, permitting being expressed). However, in gonadal

somatic cells, it leads to the loss of one inactive X chromosome
(majority of the genes on the inactive X chromosome are epi-
genetically silenced with only dozens of genes escaping the

inactivation process and keeping being actively expressed).
This may partially explain the cell type-specific abnormalities
in the gonads of Turner syndrome embryos. Furthermore, X

chromosome monosomy leads to the depletion of Purkinje cell
protein 4-positive and tachykinin precursor 1-negative
(PCP4+TAC1�) cell type in the Turner syndrome embryo.
Alternatively, if the XO embryo is originated from an XY

zygote (specifically losing Y chromosome), the phenotypes
would suggest that the genes on Y chromosome are not essen-
tial for the development of germ cells and some types of gona-

dal somatic cells.
In this study, Wang et al. [19] validated the presence of

some abnormal cells that simultaneously expressed classical

markers of gonadal somatic cells and germ cells at three
different developmental stages (8 W, 16 W, and 21 W) with
three different combinations of antibodies, POU class 5

homeobox 1/delta like non-canonical Notch ligand 1
(POU5F1/DLK1), synaptonemal complex protein 3/WT1
transcription factor (SCP3/WT1), and DEAD-box
helicase/forkhead box L2 (DDX4/FOXL2) [19], which has

not been reported previously. What will be the final fate of
these abnormal cells? Will these abnormal cells gradually
disappear with development, or will they develop into some

teratoma ‘progenitor’ cells in the adult? Follow-up investiga-
tions are needed to answer these interesting questions.

In addition, Wang et al. [19] also identified a new subtype

of germ cells that highly expressed secreted protein acidic and
rich in cysteine (SPARC), a master gene regulating cell
migration. According to previous studies, germ cell migration
occurs from the hindgut along the gut and across to dorsal

mesentery to reach gonads at around 4–5 W in humans, thus
most of the germ cells have already completed the migration
process at around 5 W. However, the SPARC+ germ cells

can be found in the gonads of human fetuses up to 23 W,
suggesting that after entering the gonad, some of the germ
cells may still maintain the migration potential and could

migrate within the gonad to optimize their spatial distribu-
tions there.

Wang et al. [19] have found that the bone morphogenetic

protein (BMP) signaling pathway has developmental stage-
dependent functions for male germ cells, and the BMP signal-
ing activity specifically promotes the expression of ALDH1A2
[a gene encoding a retinoic acid (RA)-synthesizing enzyme] in

male germ cells at relatively late developmental stage (15 W).
Further studies have demonstrated that the BMP signaling
pathway plays vital roles in the gonocyte-to-spermatogonium

transition (GST) process.
This study has also revealed the functional crosstalk

between the BMP signaling pathway and RA signaling path-

way in male gonadal somatic cells. BMP signaling activity inhi-
bits the expression of ALDH1A3 (a gene encoding a RA-
synthesizing enzyme) in all testicular somatic cell types, Sertoli
cells, Leydig cells, and keratin 19-positive (KRT19+) cells, at

both the early (7 W) and late (15 W) developmental stages.
Notably, different gonadal somatic cells exhibit different
responses to BMP inhibition. BMP and RA signaling path-

ways play critical roles in regulating the meiosis of germ cells
[6,20–22]. These results would provide important information
for better understanding the regulation of meiosis initiation

in germ cells.
Furthermore, Wang et al. [19] have also assessed the devel-

opmental origins of the granulosa cells in females and those of

the steroidogenic lineages (Leydig cells in males and theca cells
in females) in both genders. The results indicate that DLK1+

cells in early developmental stages of male and female embryos
may further differentiate into Leydig cells in testes and theca

cells in ovaries. DLK1 was continually expressed in Leydig
cells of the testes, while its expression disappeared in theca-like
cells of ovaries. The origin of steroidogenic cells is a controver-

sial question with a lot of debates in the literature. The results
indicate that DLK1+ cells are probably a new type of progen-
itors of steroidogenic cells. They have also proposed that

TAC1+ cells at 7 W may further differentiate into granulosa
cells in later development stages. However, these conclusions
need to be validated by lineage tracing experiments in other

animal models.
Finally, Wang et al. [19] have found that Sertoli cells, rather

than Leydig cells, express HSD17B3 during fetal and neonatal
periods. Leydig cells do not express HSD17B3 until neonatal

stages and the ratio of cells that express HSD17B3 gradually
increases afterward. These results indicate that the androstene-
dione is produced by Sertoli cells, but not by fetal Leydig cells

during fetal stages, which is consistent with the findings in
mouse model [23–25], suggesting that the regulation of
steroidogenesis in fetal male gonads is conserved in mice and

humans.
Together, Wang et al. [19] have systematically analyzed

the regulation of FGC and gonadal somatic cell development
in humans. They have identified and characterized new types

of FGCs and gonadal somatic cells, and verified all of them
by systematic immunofluorescent staining. They have pro-
posed that the DLK1+ cell population is a progenitor

population of the steroidogenic cell lineage and the TAC1+

cell population is a progenitor population of granulosa cells
(Figure 1). Notably, they have demonstrated the crosstalk

between BMP and RA signaling pathways by functional
assays. The single-cell omics studies are greatly helping
advancing the human developmental biology, filling the gaps

between the functional studies in mouse model and cell atlas



Figure 1 The regulation of gonadal somatic cell differentiation in humans
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studies in humans. This study provides a complex but highly

ordered development and interaction network for the human
FGCs and gonadal cells.
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