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Standardized phylogenetic and 
molecular evolutionary analysis 
applied to species across the 
microbial tree of life
Migun Shakya  *, Sanaa A. Ahmed, Karen W. Davenport  , Mark c. flynn, chien-chi Lo & 
patrick S. G. chain*

there is growing interest in reconstructing phylogenies from the copious amounts of genome 
sequencing projects that target related viral, bacterial or eukaryotic organisms. to facilitate the 
construction of standardized and robust phylogenies for disparate types of projects, we have developed 
a complete bioinformatic workflow, with a web-based component to perform phylogenetic and 
molecular evolutionary (phaMe) analysis from sequencing reads, draft assemblies or completed 
genomes of closely related organisms. furthermore, the ability to incorporate raw data, including 
some metagenomic samples containing a target organism (e.g. from clinical samples with suspected 
infectious agents), shows promise for the rapid phylogenetic characterization of organisms within 
complex samples without the need for prior assembly.

The reconstruction of organismal evolutionary history using phylogenetics is a fundamental method applied 
to many areas of biology. Single nucleotide polymorphisms (SNPs), one of the dominant forms of evolutionary 
change, have become an indispensable tool for phylogenetic analyses1–4. Phylogenies in the pre-genomic era relied 
on SNPs and conserved sites within a single locus, and was later extended to multiple loci, such as in multiple 
locus sequence typing (MLST). Although still valuable, these methods only consider evolutionary signals orig-
inating within a small fraction of the genome, are unable to capture the complete variation within species, and 
generally provide a weak phylogenetic signal, particularly within a species, and do not always reflect the true 
evolutionary history of species5. While phylogenetic analyses that use many conserved genes (orthologs) are a 
great improvement, these methods require annotated coding regions, whose predictions are not always accurate 
or available6. Furthermore, they are impacted by horizontal gene transfer (HGT)7, recombination8, rate heteroge-
neity9, and incomplete lineage sorting.

Genome-wide SNPs are one of the best measures of phylogenetic diversity as they can discriminate among 
closely related organisms and help resolve both short and long branches in a tree10,11. Since selectively neu-
tral SNPs accumulate at a uniform rate, they can be used to measure divergence between species as well as 
strains12,13. Furthermore, due to the large number of SNPs found along the length of entire genomes, the use of 
whole-genome SNPs minimizes the impact of random sequencing and assembly errors that can impact individ-
ual loci, as well as biases due to individual genes under strong selective pressure. Some inherent biases remain 
with whole genome SNP approaches that are similar to loci-based phylogenies such as HGT, recombination, 
and rate heterogeneity. Although genome-wide sequencing now allows examination of the full complement of 
genomic variation, the number of completed and finished genomes are increasingly falling behind the gener-
ation of new draft genomes, due to the lack of computational or other resources. For example, of 94,126 total 
genomes in the NCBI RefSeq genome database, only 13.25% are complete (December 5, 2018 from ftp://ftp.
ncbi.nlm.nih.gov/genomes/refseq/assembly_summary_refseq.txt) and a large fraction of available sequencing 
data still remains unassembled as evident by the much larger number (e.g. 360,929 for bacteria only) of whole 
genome projects in the sequence read archive (SRA) database (June 21, 2018 from https://www.ncbi.nlm.nih.
gov/sra/). Several methods for whole-genome SNP discovery or phylogenetics have been previously described: 
SNPsFinder14, PhyloSNP2, kSNP15, WG-FAST16, NASP17, CFSAN18, CSI phylogeny19, REALPHY20, SNVPhyl21, 
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SPANDx22, Snippy23, Lyve-set24, and Parsnp25. Some of these (e.g. SNPsFinder and PhyloSNP) are no longer under 
active development. Although the others are able to analyze raw reads to identify a core genome (the conserved 
portion among all genomes) and the SNPs within it, several of them cannot process assembled contigs or multiple 
complete genomes (e.g., CFSAN, SPANDx, Lyve-set), or will perform only a portion of the required functions to 
obtain a tree (e.g., Snippy), or identify SNPs from metagenomes (e.g. WG-FAST), and only few (CSI Phylogeny, 
REALPHY, SNVPhyl) can be accessed with a graphical user interface, limiting the user base to well-trained bio-
informatics scientists. Moreover, almost all these tools have been restricted in their testing to bacterial organisms, 
and have only been used with genomes from within a single species. None have shown broad utility incorporating 
multiple species (i.e. genus-level phylogeny) or genera within a single tree, nor have any been tested on microbial 
eukaryotic genomes. In addition, most of these tools require users to select a reference genome, which can have 
dramatic impact on the alignments and resulting SNP calls26, and are unable to distinguish or map SNPs to their 
functional annotation, and hence cannot perform molecular evolution analysis.

Here, we present an open source workflow using a collection of existing bioinformatic tools for Phylogenetic 
and Molecular Evolutionary (PhaME) analysis that incorporates these additional features to allow more flexibil-
ity when studying the evolutionary relationships between closely related genomes (genera, species, and strains). 
PhaME is a whole-genome SNP-based phylogeny tool that identifies the core genome from input datasets (fin-
ished genomes, draft assembly contigs, and/or raw FASTQ reads), extracts core SNPs, parses them to coding 
or non-coding regions and as synonymous or non-synonymous SNPs, reconstructs a phylogeny, and performs 
molecular evolutionary analysis to identify genes under selection (Fig. 1). With any of the inputs there must 
be sufficient data covering a target genome of interest for acceptable SNP calling. PhaME thus accepts FASTA 
or FASTQ inputs corresponding either to genome sequencing data from isolates, or metagenomic data where the 
target organism has sufficient reads to allow SNP calling along much of the length of the genome. PhaME can be 
run either via the command line, or accessed through an accompanying webserver that can be installed locally. 
Here, we demonstrate PhaME’s ability to construct robust genus and species phylogenies using examples that 
span the tree of life, with up to thousands of genomes as input in the form of raw sequencing reads, draft assem-
bled contigs, fully completed genomes, and even unassembled metagenomic reads.
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Figure 1. PhaME analysis workflow. The PhaME analysis workflow first identifies SNPs at orthologous 
positions in complete genomes, assembled contigs, and read datasets. First, nucmer is used to identify and mask 
repeats, and to perform pairwise alignments among all complete genomes. A reference genome is selected based 
on user criteria (See Methods). Contigs are then compared with the reference genome using nucmer, and reads 
are then mapped to the reference using Bowtie 2 or BWA. The SNP and gap coordinates are used to generate 
whole-genome core alignment. If an annotation file is provided, a separate alignment consisting of conserved 
positions only found in the CDS regions are also reported. RAxML, FastTree or IQ-TREE phylogenies are 
constructed using these alignments. If specified, PAML or HyPhy packages are used to test for selective pressure 
on genes with SNPs.
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Results and Discussions
implementation of phaMe with examples from across the tree of life. To demonstrate different 
capabilities of PhaME and to validate the underlying algorithms, we tested PhaME on available bacterial genomes 
of Escherichia (together with related genera Shigella, and Salmonella) and Burkholderia (together with recently 
reclassified genera of Caballeronia and Paraburkholderia, and Ralstonia as an outgroup), as well as on eukaryotic 
genomes from Saccharomyces, and on viral genomes of Zaire ebolavirus. We further examined the robustness of 
how PhaME handles raw reads, by comparing the placement of these datasets with the genome assemblies that 
resulted from these data, and have also investigated how well PhaME performs when including metagenomic 
samples in the form of raw reads (Table 1).

High resolution Escherichia phylotyping using phaMe. The model bacterium Escherichia coli has 
been extensively studied, including its diversity and phylogenetic history27. In previous studies, phylogenetic 
analysis using a single gene28, a set of genes27,29–31, SNPs32,33, and k-mer profiles34 have consistently shown that 
E. coli strains are clustered into phylogenetic groups (A, B1, B2, D1, D2, and E) and different ‘species’ of Shigella 
also form distinct groups within the E. coli lineage and are not a separate genus35. To test whether PhaME can 
recapitulate the established E. coli tree topology, we first analyzed 35 complete genomes of E. coli, Shigella, using 
E. fergusonii as an outgroup (Table S1). PhaME detected 266,969 SNPs within the conserved core genome which 
consists of 2,159,296 aligned nucleotides (Table 1). Similar to previously published phylogenies27,31, the maximum 
likelihood phylogeny constructed from these core SNPs grouped all E. coli and Shigella strains into their expected 
phylotypes (Fig. 2).

To further test PhaME’s ability to successfully group the E. coli phylotypes when incorporating a larger num-
ber of genomes as well as representatives of related genera, we expanded our dataset to 676 genomes. We included 
genomes of Salmonella, the incorrectly named E. blattae (now reclassified as Shimwellia blattae36) and E. her-
mannii (now reclassified as Atlantibacter37), several ‘cryptic clades’ of Escherichia that have shown inconsistent 
phylogenetic placement in past studies38,39, and additional Escherichia and Shigella datasets (Table S2). Due to 
the significant increase in number and diversity of genomes in this expanded dataset, PhaME detected a much 
smaller conserved core genome of 134,062 positions, with 40,675 SNPs (Table 1). The resulting phylogeny showed 
genomes from E. coli phylotypes and Shigella accurately grouped into their respective clades (Fig. 3); Salmonella 
spp. S. bongori and S. enterica were clearly distinguished and were an outgroup to all Escherichia (Fig. S1). This 
tree also resolved contested evolutionary relationships among the environmental cryptic Escherichia lineages. 
For example, consistent with the 2009 MLST study, but in contrast with the 2011 single copy core gene study, the 
E. albertii lineage diverged before E. fergusonii38,39 and E. fergusonii grouped with cryptic clade CI and not as an 
outgroup to all four cryptic clades (Fig. 3). In addition, the tree also supports reclassification and renaming of E. 
blattae to Shimwellia blattae36 and E. hermanii to Atlantibacter hermanii37 as these genomes clearly fell outside of 
Escherichia and Salmonella. In a separate naming issue, E. fergusonii FDAARGOS 170 (GCA_001471755.1) was 
placed within an E. coli clade. Since the construction of this tree, in its most recent assembly version in NCBI 
(GCA_001471755.2; May 1, 2018), it has now been reclassified as E. coli. PhaME was therefore able to recapit-
ulate the established phylogeny of these related organisms, including distinguishing among E. coli phylotypes 
using hundreds of genomes from multiple genera while maintaining the internal Escherichia coli/Shigella topol-
ogy (Fig. 3). Additionally, PhaME provides supporting evidence for reclassification of organisms that have only 
recently been renamed, and has helped resolve the evolutionary history among the cryptic clades of Escherichia.

At a granular level, we observed several additional cases of phylogenetic placement of genomes that were 
not in agreement with their designated species name. Four genomes annotated as E. coli are found with Shigella, 
namely E. coli MRE60040, E. coli 2012C 422741, E. coli CFSAN00417642,43, and E. coli CFSAN00417742. Among 
these, E. coli MRE600 was previously shown to reside in a clade with S. flexneri, using a phylogeny inferred from 
seven housekeeping genes40. Our analysis instead places MRE600 as an outgroup of the S. boydii clade, based 
on core SNPs that are spread across 157 genes (Fig. S1). The other three outliers have been previously described 

#of genomes 
(complete/
assemblies/reads)

Average 
genome 
size*

Core 
genome 
Size**

% 
core

Core 
SNPs***

% Core 
SNPs

CDS 
SNPs¶

% CDS 
SNPs

Escherichia and Shigella 35/0/0 5,078,265 2,159,296 42.5 266,969 12.4 248,243 93.0

Escherichia (Shigella) and Salmonella 630/46/0 4,949,086 134,062 2.7 40,675 30.3 39,201 96.4

Burkholderia, Paraburkholderia, and 
Cabelleronia 70/88/55 7,303,088 43,124 0.6 15,180 35.2 15,152 99.8

Burkholderia pseudomallei/mallei 26/36/32 6,964,607 2,802,743 40.2 756,597 27.0 686,400 90.7

Bcc 16/18/10 7,525,439 699,313 9.3 97,524 14.0 94,076 96.5

Saccharomyces 2/185/7 11,413,241 96,665 0.85 24,244 25.1 23,330 96.2

S. cerevisiae 2/164/6 12,088,140 2,224,283 18.4 543,865 24.5 456,488 83.9

Zaire ebolavirus# 1359/0/0 18,812 17,639 93.8 1,787 10.1 NA NA

Zaire ebolavirus (Sierra Leone) 938/0/93 18,832 18,050 95.9 1,269 7.0 NA NA

E. coli metagenome 53/0/2 5,092,009 2,084,185 40.9 260,039 12.5 240,818 92.6

Table 1. Summary statistics of PhaME Analyses. *Average length of all complete genomes and assemblies from 
the study. **Length of all sites that are conserved across all samples. ***Number of sites with SNPs in core 
genome. ¶Number of SNPs from coding regions. #See Methods.
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as closely related to one another, and are known to express Shiga toxin44, which is consistent with the PhaME 
placement of this clade as an outgroup to S. sonnei, S. boydii and MRE600. Likewise, Shigella sp. PAMC 28760 
was placed within phylotype A of E. coli, warranting a review of its name/description. With the rapid increase in 
available E. coli and related genomes and a shifting view of their phylogeny, we find that classic nomenclature with 
named phylotypes may be insufficient to categorize all new or future strains (Fig. 3). For example, four strains 
of E. coli O145 H28 form a sister clade to phylotype E and S. dysenteriae and do not group with any previously 
named phylotypes, consistent with prior observations45.

With the above examples, we have shown that PhaME is able to reconstruct known phylogenetic relationships 
using genome-wide scans for polymorphisms. The use of core genome SNPs allows for highly detailed trees capa-
ble or resolving strain to strain relationships. We have also illustrated how PhaME can help resolve long standing 
questions regarding species and genus-level relationships, and to better understand the granular relationship 
among strains, including the discovery of misnamed strains or species and potential issues with our current 
taxonomic nomenclature.

Burkholderia phylogeny from genomes, contigs, and raw reads. We used the large and diverse 
group of Burkholderia genomes (which have been recently divided into additional genera (Paraburkholderia and 
Caballeronia), to show the ability of PhaME to recreate correct phylogenies of a highly divergent set of related 
genomes, regardless of input data type. We used 158 complete and draft genomes and 55 raw (FASTQ) read data-
sets (Tables 1, S3) to infer a genus-level phylogenetic tree (Figs. 4, S2). PhaME calculated a core genome of 43,124 
positions with a total of 15,180 core positions with SNPs (Table 1). The genomic plasticity of this disparate group, 
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Figure 2. SNP based phylogeny of 35 Escherichia and Shigella genomes. All nodes have bipartition bootstrap 
support of 60% or greater. Clades are labeled with their corresponding E. coli phylogroups on the right. The tree 
was rooted with E. fergusonii ATCC 35469 as an outgroup that was removed in the figure. The scale bar indicates 
the number of substitutions per site.
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including genome sizes ranging from 3.6 Mbp for P. rhizoxinica (1 chromosome and 1 megaplasmid) (42) to 9.8 
Mbp for P. xenovorans (2 chromosomes and a megaplasmid) (43), has contributed to the observed small core 
genome size. This also supports the hypothesis that Burkholderia are highly diverse lineage with a large ‘accessory 
genome’46 not shared among all of its members.

PhaME recapitulated all major known clades47 such as the B. cepacia complex (Bcc) and the B. pseudom-
allei group from the input reads, assemblies and genomes (Figs. 4, S2). While the overall topology of the tree 
grossly agrees with previously published phylogenies derived from concatenated housekeeping genes47,48, several 
novel observations can be made. Similar to the ribosomal protein tree49 but disagreeing with a 21 conserved 
protein tree48, PhaME supports the placement of the P. kururiensis clade as ancestral to the remaining named 
Paraburkholderia as well as the Caballeronia clade, bringing into question the recent renaming of Burkholderia 
into three separate genera. The PhaME tree also shows two well-supported (bootstrap value ≥60) and separate 
clades of B. thailandensis agreeing with a proposal to rename one of the clades as B. humptydooensis (Figs. 4, S2)50.

Similar to issues observed with the Escherichia-Salmonella phylogeny above, we also detected two B. cenoce-
pacia genomes that are likely misnamed in NCBI taxonomy database (last accessed on September 26, 2019)51. 
Strain DDS 22E (GCA_000755725.1) is a close relative to the mango tree isolate B. TJI4952 in the PhaME tree, and 
strain DWS 37E (GCA_000764955.1) lies within the B. ambifaria-B. vietnamiensis lineage. These examples fur-
ther illustrate how PhaME, using a high-resolution whole genome SNP approach, can be used to resolve disputed 
phylogenetic placement and nomenclature of taxonomic groups.

Since PhaME also allows the inclusion of raw read datasets into whole genome SNP phylogenies, we evaluated 
the accuracy of their placement compared with the assemblies and finished genomes obtained from those data-
sets. We found that PhaME accurately places all 55 raw FASTQ read datasets as immediate sister lineages to their 
respective draft assemblies or complete genomes. These results illustrate the ability of PhaME to conduct highly 
robust strain-level phylogenetic analysis without the need for assembly of raw sequencing data.

Rapid reexamination of sublineages using phaMe. The Burkholderia genera and clades therein 
have been uncharacteristically difficult to discriminate using conventional polyphasic, 16 S, recA, or MLST 
approaches47. For cases like these, the ability to select a subset of genomes for analysis from within a larger phy-
logeny, without the need to recalculate alignments, can provide more refined insight into not only the consistency 
and topology within the larger tree, but can help display differences in the core genome size and the SNPs within 
the core. The topology of the Bcc subtree (Fig. S3) remained the same as in the larger tree with all Burkholderia 
(and renamed genera). The core genome size with only Bcc increased more than ten-fold to 699,313 bp and the 
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core SNPs increased six-fold to 97,524 SNPs (Table 1). These changes did not result in topology differences but 
instead improved branch length resolution. Likewise, when PhaME recalculated the core genome of the highly 
similar B. pseudomallei group, the core genome and the corresponding SNPs increased by 64 and 50-fold respec-
tively (Table 1) with no changes in the overall topology (Fig. S4). This zoomed-in phylogenetic tree also highlights 
the recent clonal derivation of B. mallei from B. pseudomallei, with B. pseudomallei 576 as the most closely related 
sequenced ancestor and recapitulates the paraphyletic nature of the B. pseudomallei strains when B. mallei is con-
sidered its own species53.These results highlight the unique functionality of PhaME to zoom into clades within 
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a larger tree, recalculate the core genome, and rapidly generate a finer-grained phylogeny without the need to 
realign all the data.

phaMe can be implemented on small eukaryotic genomes. Because PhaME can be readily applied 
to any taxonomic group of closely related genomes, we tested its implementation beyond bacterial lineages to 
larger eukaryotic genomes. Fungi are known to be a difficult group to resolve in terms of phylogenetic analy-
sis49; the phylogenetic placement of fungal species displays disparities between trees based on gene sequence 
analyses and those based on morphological characteristics (such as modes of reproduction). This is especially 
true of the ‘Saccharomyces complex’, where the ITS regions and 26 S rDNA-based phylogenies do not show many 
well-supported clades54.

Due to the complexity and cost of assembling and finishing eukaryotic genomes, there are fewer complete 
genomes for many eukaryotic species. This is even the case for well-studied Saccharomyces, which only has 2 
complete genomes. Therefore, the ability to make use of raw reads or draft assemblies/contigs can be of great value 
in characterizing eukaryotic genomes. We analyzed 194 Saccharomyces genome projects, including 7 sets of raw 
reads, 2 complete genomes, and 185 draft assemblies/contigs (Table S4) as input using PhaME. These datasets 
represent every major species from the Saccharomyces species complex, aside from hybrid species. PhaME calcu-
lated a core genome of 96,665 bp which consists of 24,244 SNP positions. The resulting tree topology agrees with 
previously published Saccharomyces species trees (Fig. S5)55,56, displaying PhaME’s ability to align and correctly 
recapitulate the phylogeny for small eukaryotic genomes.

A refined analysis focusing solely on the large S. cerevisiae clade consisting of 172 genomes increased the core 
genome size to 2,224,283 bp, highlighting the degree to which the core may change if a more closely related set 
of genomes is used, and highlights the great sequence divergence among eukaryotic species which resulted in a 
very small core genome size for genus-wide analysis. With such a dramatic increase in the core genome used for 
tree inference, one can observe much improved discrimination among strains of S. cerevisiae, with strong (>60) 
bootstrap support for most ancestral nodes (Fig. S6). This whole genome SNP analysis is a novel approach for 
reconstructing eukaryotic phylogenies, as the standard practice in the field is still reliant on one or several anno-
tated genes57,58. PhaME can therefore provide rapid and robust discrimination among eukaryotic strains, and help 
better describe the relationships among closely related eukaryotic species, even when using raw read datasets.

Using phaMe with viral samples. The Zaire ebolavirus outbreak that began in 2014 was rapidly character-
ized by large-scale sequencing and assembly of genomes from several hundred patients59–63 and provides a rich 
dataset for phylogenetic exploration. Many of the genomes and draft assemblies sequenced during the 2014/2015 
Zaire ebolavirus outbreak, which encompassed a wide number of studies59–63, were recently combined into a 
phylogenetic study by Dudas et al.64. We used PhaME to re-analyze this dataset, and calculated 17,639 bp as the 
core genome size with 1,787 core SNP positions, using 1,359 Zaire ebolavirus genomes. The resulting PhaME tree 
topology is consistent with the combined maximum likelihood tree64, where distinct lineages are observed based 
largely on their geographical region of origin (Fig. S7)59–63.

Outbreaks such as this 2014–2015 Zaire ebolavirus scenario provide real-world situations where assembly of 
genomes is often the first step for epidemiological analysis. However, obtaining pure isolates for genome assembly 
is often difficult or time consuming, and assembly from metagenomic data can result in poor assembly, particu-
larly if the target organism is not dominant or well represented in the sample. Since PhaME can accurately place 
raw reads in a phylogeny (as shown above for pure cultures/isolates) and because it directly aligns reads to a ref-
erence genome, it can potentially provide targeted phylogenetic analyses of an organism present within complex 
samples. We therefore tested PhaME’s ability to accurately place a known infectious agent within a phylogeny 
using reads derived directly from clinical samples.

For detailed analysis of the placement of read datasets in a phylogenetic context, we focused our analysis on 
viral genomes isolated from Sierra Leone. In addition to 1,031 genome assemblies, we included 93 raw read data-
sets that covered 99% of the Zaire ebolavirus genome, resulting in a 18,050 bp core genome, with 1,269 core SNP 
positions (Tables 1, S5). These 93 raw read datasets were quite different from one another with respect to dataset 
size (from 30MB to 1.2GB), average depth of Zaire ebolavirus genome coverage (16× to 24,204×), and percentage 
of Zaire ebolavirus reads (0.21% to 99.88%) within the sample. Regardless of these differences and the abundance 
of Zaire ebolavirus reads, the PhaME tree placed 89/93 (96%) of the raw read datasets within the same branch 
as the sample-matched assembled genomes (Fig. S8). Compared with their respective assemblies, the variant 
analysis of the four remaining datasets differed by only one or two SNPs, which resulted in their slightly different 
placement within the tree. The SNP differences reflect existing allelic variation within the population of viruses 
in the samples, which can only be captured looking at the raw sequencing data, while assemblies generally reflect 
the consensus sequence. PhaME provides functionality to include or exclude variants based on fold coverage and 
proportion of reads that support the variant. These results highlight the power of PhaME to accurately phyloge-
netically characterize a target organism from a wide range of clinical viral samples without the need for assembly, 
even when it comprises only a minute fraction of a complex sample.

Analyzing raw metagenomic reads with phaMe. As demonstrated with the Zaire ebolavirus examples, 
we hypothesize that a target pathogen infecting a host (assuming a mostly clonal lineage of the target organism) 
will be accurately placed within a phylogeny due to the read mapping and SNP calling strategy in PhaME. We 
further investigated fecal samples from US patients having returned from Germany during the 2011 stx2-positive 
Enteroaggregative E. coli (StxEAggEC) outbreak. In the context of metagenomic data, the ability to accurately 
phylogenetically place a target genome has two requirements: a) that a sufficient number of reads be sequenced 
from a target organism whose phylogeny is to be established; and b) that the target organism be a dominant clonal 
member of the population (including potential commensal members of that same species) in order to accurately 
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identify SNPs belonging to the target strain. With E. coli as a commensal resident within the human gut, we tested 
the ability of PhaME to analyze fecal samples derived from two patients suspected to be infected with the 2011 
StxEAggEC strain. Two fecal sample datasets (SRR2000383 and SRR2164314), each with >270 M reads, were 
included in a PhaME phylogeny using Escherichia and Shigella phylotype representatives (Table S6, Fig. 5). The 
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Figure 5. Read-based PhaME phylogenetic analysis of two human fecal metagenomics samples. Maximum 
likelihood tree showing 53 E. coli and Shigella genomes and the placement within the tree of the dominant E. 
coli present in the two metagenomes. The tree was rooted using outgroup E. fergusonii ATCC 35469. Nodes 
with bipartition bootstrap ≥60% are labeled with circles. The scale bar indicates the number of substitutions 
per site. The bar graph on the right shows the percentage of reads that mapped to each genome from the two 
metagenomic samples. Names of genomes are colored based on their phylotype association similar to Fig. 2.
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target E. coli within the SRR2164314 fecal sample was clearly placed within the StxEAggEC phylogroup B1 out-
break strains, while the other sample was placed within a different E. coli clade not related to the outbreak strains 
(Fig. 5). These results suggest that one of the patients was indeed infected with the outbreak strain, while the other 
patient carried a strain from a different E. coli lineage.

To validate the placement of these samples within the E. coli phylogeny, we further characterized the metage-
nomes by performing taxonomy classification on the reads and also by mapping them to the human reference 
genome. While only the SRR2000383 sample had a strong human signal (95.73%), the majority of the bacte-
rial hits within both samples was E. coli, followed by a list of other enterics common in gut microbiomes (e.g. 
Eubacterium rectale, Enterococcus faecium, Lactococcus spp., Bacteroides spp., etc.; Table S7). We also inde-
pendently mapped the metagenome reads from both samples to their best match among all the reference genomes 
used in the PhaME tree, in order to evaluate the distribution of reads among the genomes. In total, 68.23% of the 
reads from SRR2164314 and only 0.77% of SRR2000383 mapped to the E. coli genomes used in the PhaME tree. 
While all E. coli genomes recruited some reads from the metagenome datasets, the dominant signal from each 
sample corroborated their phylogenetic placement in the PhaME generated tree (Fig. 5). This further supports the 
use of PhaME to establish the phylogenetic placement of target organisms, including the ability to characterize 
complex human fecal microbiome samples, even when in the presence of host signal, other microbial community 
members, and also the conflicting presence of less abundant commensal strains of the same species.

Detecting signs of positive selections. Identifying SNPs found in coding regions enables further molec-
ular evolutionary analyses as a post-phylogeny option that is provided in PhaME. By default, PhaME will use the 
HyPhy program with the Adaptive Branch-Site Random Effects Likelihood (aBSREL)65,66 model for detecting 
episodic diversifying selection on genes containing at least one SNP. Using the reference E. coli-Shigella tree 
(Fig. 1), we tested the application of molecular evolutionary analysis within PhaME. A total of 1387/4388 genes 
were found to contain at least one SNP, of which 52 genes showed statistically significant evidence of positive 
selection (Table S8). Among these, 37 genes showed a single lineage under positive selection, while one gene 
(OmpA) showed signs of positive selection in 12 lineages. OmpA is an outer member protein that is usually 
abundantly found on the outer surface of the cell and plays an important role in pathogenesis through its contri-
bution to adhesion, invasion, intracellular survival, and evasion of host defenses67. As this protein is consistently 
interacting with the host, E. coli OmpA has been previously shown to be under strong positive selection68. A more 
detailed analyses will be required to further characterize such signals of positive selection. Among phylogenetic 
tools that analyze genomes, this analytical feature is unique to PhaME and allows users to explore the evolution 
of organisms of interest beyond simple phylogenetic trees.

phaMe accessibility and performance. PhaME can be used on a wide variety of computing platforms 
from laptops with Mac OSX to Linux servers with multiple processors. Its source code is freely available in GitHub 
(https://github.com/LANL-Bioinformatics/PhaME) and can be installed for command line access with Bioconda 
(https://anaconda.org/bioconda/phame). PhaME can also be rapidly installed as a Docker container which sup-
ports use via command line, and also provides a web interface (Fig. S9) through which users can select data files, 
run jobs and view PhaME results (instructions at https://phame.readthedocs.io/). An example of the PhaME web 
interface is also hosted at https://www.edgebioinformatics.org/69 for use by the community.

In terms of PhaME performance, the overall computing load increases with the number and size of genomes, 
amount of alignments (to find the core genome), the number of SNPs, and the number of genes included in the 
molecular evolutionary analysis. We evaluated the wall clock time performance of PhaME to complete the full 
or partial analytical workflow (Table S9) using genomes of Escherichia and Shigella (Table S6) and a metagenome 
dataset (SRR2000383). Because of PhaME’s flexibility in terms of processing raw data or using previously aligned 
data, we examined the performance of various components separately. We tested the performance of generating 
the core genome and SNP matrix after conducting all possible pairwise alignments of 53 complete genomes. 
PhaME took 27.8 hours using a single processor, or 2.7 hours when increasing the number of threads and proces-
sors to 16 (see Methods for details; Table S9). Performing all pairwise comparisons is a computationally demand-
ing task, which is why PhaME can, as an alternative, pick a single reference based on smallest average MinHash 
distance which approximately represents k-mers that are shared between two genomes70. The performance with 
the same aforementioned dataset was assessed using this MinHash-based approach for the pairwise comparison 
step, and using FastTree to create a phylogeny. This option reduced the runtime to 1.5 hours using a single pro-
cessor and 36 minutes using 16 processors. Because PhaME also allows the addition of new datasets to be added 
to an existing tree (SNP matrix), we evaluated the addition of a single raw read dataset (62GB, 317 M reads) to 
the 53 genome SNP matrix using PhaME, which performs read mapping, variant calling, and extraction of SNPs. 
The process took 4 hours using a single processor. A full-fledged PhaME analysis with the 53 genomes, including 
MinHash-based reference selection, pairwise alignments, SNP extraction, RAxML phylogeny inference, along 
with molecular evolution analysis with HyPhy, took 15.16 hours to complete with 32 processors. Additional per-
formance tests can be found in Table S9.

conclusions
With the rapidly growing number of available genomes and NGS read datasets, it is becoming increasingly impor-
tant to have holistic yet modular analysis tools that can deal with common sequencing outputs, such as complete 
genomes, assembled contigs, and raw sequencing data in a standardized fashion. It is also pertinent that tools 
are capable of accommodating a wide variety of research goals and applications, while catering to the needs of 
biologists without substantial bioinformatics background or training. Here, we described a new Phylogenetic 
and Molecular Evolutionary analysis package, PhaME, that can rapidly process hundreds of genomes and/or raw 
reads from organisms across the tree of life, that produces highly robust whole genome SNP phylogenetic trees, 
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and that can additionally estimate selective pressure in core genes along lineages of the tree. PhaME is a unique 
phylogenetic tool that can correctly and quickly place raw sequencing data into phylogenetic context without the 
need for assembly, can zoom into select lineages for rapid reanalysis of a subset of genomes, and can incrementally 
add samples to previously analyzed datasets. While the full functionality of PhaME can be accessed through the 
command line, we have implemented an easy-to-use web-based interface that can accommodate biologists with a 
range of bioinformatics expertise. While phylogenetic analysis has traditionally required annotated genes, PhaME 
represents an automated workflow for today’s genomics era that enables computing the core whole genome align-
ment, phylogenetic trees, and molecular evolutionary analyses within a single tool.

Materials and Methods
phaMe overview. We present a tool for Phylogenetic and Molecular Evolution Analyses (PhaME) that can 
take raw NGS reads or assembled contig(s) that represent draft or complete genomes, will align the sequences 
to find conserved ‘core’ sections among the input genomes, identify all SNPs (in coding and non-coding regions 
of the genome), infer a phylogeny, and perform evolutionary analyses to identify signals of selective pressure 
in genes with SNPs. PhaME is primarily written in Perl incorporating several open source software packages 
including the BBMap v37.6671 for MinHash distance calculations, MUMmer package with nucmer v3.172 for 
genome alignment, Bowtie 2 v2.1.073 or BWA v0.7.17 for read mapping, SAMtools v1.674 and BCFtools v1.6 for 
parsing mapped reads and calling SNPs, RAxML v8.2.1075, FastTree v2.1.1076, or IQ-TREE v1.5.577 for recon-
struction of phylogenetic trees, and HyPhy v2.3.1165 or PAML78 for molecular evolution analyses. The overarching 
architecture of the PhaME analysis workflow is outlined in Fig. 1 and all steps are explained in detail in both the 
Supplementary Methods and online documentation at https://phame.readthedocs.io. All of the analyses were 
performed using PhaME v1.0.4 (DOI: 10.5281/zenodo.3458556).

PhaME can be used both via a command line interface and a web-based interface (Fig. S9). For command line 
use, PhaME can be installed using the source code from GitHub, or as a Bioconda package79. Detailed instruc-
tions on installation and for the GUI can be found on the GitHub page as well as in the online documentation 
at http://phame.readthedocs.io. Alternatively, we provide Docker containers that allow both command line use 
as well as an interactive web-interface that provides the ability to both submit jobs and view results. The PhaME 
web interface is deployed using a microservices framework in Docker containers that combines Flask (a python 
framework for user interfaces; http://flask.pocoo.org/), PostGREs (for user account database handling), Celery 
(for maintaining and executing PhaME; http://www.celeryproject.org/), and Redis (to keep track of task sta-
tus; https://redis-py.readthedocs.io). After logging in, users are prompted to upload and select their input data 
through a web interface, select parameters using drop-down menus, and submit their jobs. Upon completion of 
a run, the users are emailed a link to a results page that contains an interactive tree viewer (https://github.com/
cmzmasek/archaeopteryx-js) and pre-formatted tables. We have integrated PhaME as part of the EDGE bioin-
formatics platform69 and have made available a PhaME webserver at https://edgebioinformatics.org/. This online 
web service requires registration via an email which will enable running the PhaME workflow and keep track of 
projects.

After installation, PhaME requires a “control file” that provides parameter information and the location of 
input and output folders. An example control file is shown in Fig. S10. PhaME requires at least one reference 
genome, preferably a complete genome in FASTA format, consisting of one or more sequences that can be chro-
mosomes, other replicons, contigs, etc. If molecular evolutionary analysis is desired, or if the user wishes to 
explore coding vs noncoding or synonymous vs nonsynonymous differences, the reference genome must have an 
associated annotation file (GFF or GFF3 file). Additional genomes in the form of raw next generation sequencing 
reads in FASTQ format (single or paired ends), or assembled contigs in FASTA format can also be included.

PhaME produces a number of output result files. The main outputs include pairwise alignment files, the final 
multiple sequence alignments of all positions with one or more SNPs, core genome alignment, maximum likeli-
hood tree(s), text files summarizing the number of SNPs in pairwise comparisons between all aligned genomes, 
the position of SNPs in all input genomes, and information on whether these SNPs alter a codon and its associated 
amino acid. The molecular evolutionary analysis, when selected, are performed on each gene that contains a SNP 
and are presented in a series of files per gene.

Whole genome alignment and core genome and Snp discovery from genomes, contigs, and reads.  
All complete genomes input into PhaME are initially subjected to self-comparisons using nucmer in order to 
remove duplicated regions or other highly similar ‘repetitive’ elements to avoid possible misleading alignments. 
The complete genomes then undergo pairwise whole genome alignment using nucmer in all combinations when 
the user wants to create a database for faster future analysis or wants all vs. all comparisons. Otherwise (default) 
only pairwise alignments against a designated reference genome is carried out. The reference genome can be spec-
ified by the user in the control file (from among the input genomes), picked randomly from the input genomes, or 
(default) identified using the MinHash distance calculated using BBMap v. 37.6671 to identify a complete genome 
with the shortest total distance among all input genomes. Moreover, based on the proportion of query genomes 
that aligned with a reference genome, users can automatically control the inclusion or exclusion of similar or 
divergent genomes by specifying it in “cutoff ” parameter in the control file. This option also allows users to 
remove incomplete genomes that are not of desirable completion compared to the reference. Gap regions from 
the alignments (unaligned segments ≥1 nucleotide) are removed from downstream analyses. Input raw read 
datasets (either single or paired-end) are then aligned to the reference genome using Bowtie 2 (default param-
eters) or BWA MEM (default parameters). The mapping results are then parsed using SAMtools, BCFtools and 
Perl scripts to identify SNPs found in shared genomic locations. An orthologous SNP alignment is created for 
each genome, contig, and/or read set, and contains the nucleotides that are found in all genomes, and where at 
least one genome differs at that position. Given an annotation file in GFF or GFF3 format, the workflow can 
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distinguish SNPs present within coding sequences (CDS) from those present in intergenic regions. The SNPs 
identified in the pairwise genome alignments as well as those identified using mapped reads are available as text 
files or vcf files (*.snps/*.vcfs). These SNP matrices allow for rapid recalculation of the core SNPs for any subset of 
genomes and for reconstruction of subtrees. In addition, pairwise SNP profiles for the core genome (*coreMatrix.
txt) as well as for the core coding genome (*CDSMatrix.txt) and the core intergenic genome (*intergenicMatrix.
txt) are also available.

phylogenetic reconstruction. The core genome or SNP alignment is used to construct a phylogenetic tree. 
If a GFF annotation file was provided, an additional tree can be generated from the subset of SNPs found only 
within coding sequences or only within intergenic regions. The phylogenetic trees are inferred using FastTree 
(default) and/or the RAxML maximum likelihood method and/or the IQ-TREE method. In the first two cases, 
PhaME builds the tree using General Time Reversible (GTR) model, accounting for gamma rate variation and 
proportion of invariable sites (-m GTRGAMMAI in RAxML). If IQ-TREE is chosen, the program picks a model 
that fits the data using their ModelFinder80. If RAxML or IQ-TREE are chosen, one can also perform a number of 
bootstraps (specified in the control file).

Molecular evolutionary analyses. PhaME can automatically perform some of the basic molecular evolu-
tionary analyses. Using the reference GFF file, all homologous genes containing SNPs are used to test for positive 
or purifying selection through the implementation of methods within the HyPhy (hyphy.org)65 or PAML78 pack-
ages. Both packages can test for the presence of positively selected sites and lineages by allowing the dN/dS ratio 
(ω) to vary among sites and lineages. The adaptive branch-site REL test for episodic diversification (aBSREL)66 
model in the HyPhy package is used to detect instances of episodic diversifying and positive selection. If PAML 
is selected, the M1a-M2a and M7-M8 nested models are implemented. In the latter case, the likelihood ratio test 
between the null models (M1a and M8) and the alternative model (M2a and M7) at a significance cutoff of 5% 
provides information on how the genes are evolving. The results for each gene are then summarized in a table 
containing information on whether the gene is evolving under positive, neutral, or purifying selection, along with 
p-values. HyPhy is run with a model, which specifically looks for sign of positive selection in given sets of genes. 
The analysis produces a list of JSON files corresponding to each gene which can be uploaded to vision.hyphy.org/
absrel for further analysis. We opted to provide PAML as an option, however we recommend using HyPhy for 
large projects due to its speed and concise output.

Analysis of complete E. coli, Shigella spp. genomes. Complete genomes of E. coli from different phy-
lotypes and Shigella spp. and Escherichia fergusonii were analyzed using PhaME (Table S1). Briefly, PhaME picked 
E. coli IAI1 as the reference genome based on MinHash distance and all other genomes/assemblies were aligned 
against the reference using nucmer. Orthologous positions were kept, the core genome was calculated, and the 
subset consisting of only the polymorphic sites were used to reconstruct a maximum likelihood phylogenetic tree 
using RAxML (GTRGAMMAI) with 100 bootstraps. E. fergusonii was used to root the tree.

Analysis of Escherichia spp., Shigella spp., and Salmonella spp. Complete genomes of E. coli, 
Salmonella, and Shigella that were available during the time of analyses (assembly_summary_genbank.txt 
accessed June 20, 2017) including available genomes (complete or/and draft) for other species of Escherichia 
were used in the analyses. S. enterica CFSAN033543 was picked as the reference by PhaME based on MinHash 
distances and the resultant polymorphic sites were used to reconstruct a phylogenetic tree using FastTree, and 
was rooted with the Salmonella clade.

Analysis of Burkholderia spp., Paraburkholderia spp., and Caballeronia spp. using phaMe.  
Complete, draft genomes, and raw reads of Burkholderia spp. including former Burkholderia genomes from the 
newly renamed genera Paraburkholderia and Caballeronia (Table S3) were analyzed using PhaME. Genomes 
from genera that have multiple available genomes were randomly selected to have a mixture of complete and draft 
genomes. Ralstonia solanacearum PSI07 was also included and used as an outgroup and PhaME picked B. mallei 
NCTC 10247 as the reference genome based on MinHash distances. Raw reads were first quality controlled using 
FaQCs v2.0981 and then added to PhaME analysis. Orthologous polymorphic positions were kept and used to 
build a maximum likelihood tree using RAxML (GTRGAMMAI) with 100 bootstrap supports.

Subsets of the genomes that belong to the Bcc or the B. pseudomallei groups were further analyzed using 
PhaME (Table S3). Genomes that belong to the corresponding clades were selected from the whole Burkholderia 
tree and the original alignments were used to recalculate the core genome and core SNPs, which were then used 
to reconstruct maximum likelihood tree using RAxML (GTRGAMMAI) with 100 bootstraps.

Analysis of Saccharomyces spp. 210 available complete, draft, and raw reads of Saccharomyces genomes 
were analyzed using PhaME (Table S4). Since the majority of available genomes were from S. cerevisiae, we ran-
domly sub sampled those genomes so that the results were not too heavily biased with S. cerevisiae genomes. 
Although the majority of available genomes were from S. cerevisiae, there were genomes from most of the recog-
nized species of Saccharomyces, including S. kudriavzevii, S. bayanus, S. eubayanus, S. paradoxus, S. mikatae, S. 
pastorianus, and S. arboricola. The complete genome of S. cerevisiae S288C was selected as a reference based on 
MinHash distances and all genomes were aligned to the reference using nucmer. To increase the size of the core 
genome while including all divergent species of Saccharomyces, we removed datasets that aligned to less than 
15% of the reference genome. The conserved polymorphic sites were then used to reconstruct a phylogenetic 
tree using RAxML (GTRGAMMAI) with 100 bootstraps. Polymorphic sites were further divided into coding 
and non-coding regions. We also analyzed the subset of genomes that were found in the monophyletic lineage 
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of S. cerevisiae using PhaME to obtain higher resolution phylogeny with the same reference that was used for 
Saccharomyces spp. analysis.

Analysis of Zaire ebolavirus. 1,610 Zaire ebolavirus genomes that were summarized in a recent overview 
publication was obtained from https://github.com/ebov/space-time 64. Only genomes that had a linear coverage 
of 99% or greater to the PhaME picked reference genome (Accession ID: KT725295) were kept (i.e. 18,693 bp or 
greater) and processed through PhaME. For the purpose of this analysis, all genomes were treated as “complete” 
to perform self-alignments using nucmer.

For raw reads analysis, we focused on a subset of genomes (1,031) that were isolated from Sierra Leone 
and added 138 randomly selected raw reads from the Sequence Read Archive (SRA) that correspond to ana-
lyzed genomes. We also included some Guinea samples (5) for rooting the tree. These raw reads and assembled 
genomes were analyzed together using PhaME (Table S5). Briefly, raw reads were quality controlled with FaQCs 
v2.0981 before they were mapped to reference genome (KR105277) using BWA and only samples that had a linear 
coverage of 99% or greater were kept to only analyze high quality genomes. To be reported as a SNP for the pur-
pose of tree inference, the default requirement is set to 60% of the reads mapped to the SNP position must agree 
with the alternate allelic variant. For both analyses, the conserved orthologous positions that included monomor-
phic positions were then used to reconstruct a phylogenetic tree using IQ-TREE77.

Analysis of metagenomes using phaMe. Two metagenomes (SRR2000383 and SRR2164314) from the 
2011 German outbreak, along with a suite of E. coli and Shigella genomes (Table S6) representing all phylotypes 
were used as input into PhaME. Raw reads from metagenomes were first quality controlled with FaQCs v2.0981. A 
reference genome was picked based on MinHash distances, and all other genomes and the two metagenomes were 
aligned against it (E. coli str. K-12 substr. W3110). The resulting orthologous polymorphic positions were then 
used to reconstruct a maximum likelihood tree using RAxML with 100 bootstraps. As an orthogonal method 
to evaluate the placement of metagenomic data within the tree, we mapped the two metagenome datasets to all 
genomes used in the phylogeny. All genomes were thus concatenated into a single FASTA file, which was used to 
create a Bowtie 2 index and then reads from the metagenomes were mapped and the percentage of the reads (best 
hit) that were mapped to each genome was reported.

An additional independent analysis of the reads was undertaken to observe the broader taxonomic composi-
tion of the metagenomic samples. Briefly, the EDGE Bioinformatics platform69 was used to map the reads to the 
human reference genome to look at the contribution of host-derived data. The remaining reads were processed 
using GOTTCHA (version 2)82 to find the proportion of reads that map to taxonomically unique segments of 
RefSeq genomes.

Molecular evolution analysis of E. coli genomes. 53 genomes (Table S6) consisting of E. coli, E. fer-
gusonii, and Shigella spp. were processed using PhaME to detect the list of genes that are evolving under pos-
itive selection, using HyPhy. Genes with at least one SNP and 0 gapped regions within them were identified, 
converted to amino acid sequences, aligned, and then checked for positive selection using aBSREL66 model of 
HyPhy. Because the size of the core genome decreases with the inclusion of additional genomes, the core genome 
becomes increasingly enriched in highly conserved genes and depleted in accessory genes making the choice of 
genomes to be included in PhaME analysis, a critical step for molecular evolutionary studies.

performance analysis of phaMe. We tested the performance of PhaME using a set of E. coli, Shigella, and 
E. fergusonii genomes (Table S6) on a dedicated server of a Dell PowerEdge R815 model with 512GB of RAM and 
a quad-processor AMD Opteron(tm) Processor 6376 @ 2.3 GHz with Bright Computing’s version of CentOS 7 
of kernel version 3.10.0–229.el7.x86_64. Since PhaME is highly customizable and can process a wide range of 
genomic file types, we tested the performance of PhaME under different scenarios (Table S8) and reported some 
of the performance values using total wall clock time.

Data availability
Genomes, complete and incomplete, were downloaded based on ftp addresses from the assembly_summary_
genbank.txt file downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/assembly_summary_
genbank.txt) (accessed June 20, 2017). Reads were downloaded from SRA database (https://www.ncbi.nlm.nih.
gov/sra). GenBank accession numbers for the sequencing data and genomes used in this study can be found in 
Tables S1–S9. The PhaME workflow together with documentation can be found at https://github.com/LANL-
Bioinformatics/PhaME. PhaME Control files that were used for the analyses can be found at https://github.com/
mshakya/PhaME-manuscript-data (https://doi.org/10.5281/zenodo.3610728).
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