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Many protein tyrosine kinases are key regulators involved in cellular growth, differentiation, development, apoptosis and signal
transduction pathways. Obtaining a comprehensive tyrosine-kinase expression profile in tumour cells is essential to learning more
about their oncogenic potentials and responses to various chemotherapeutic reagents – such as retinoic acid, which has been shown
to suppress the growth of gastric cancer cells and modulate gene expression. Expression of tyrosine kinases in retionic acid-treated
cancer cells was investigated by reverse trancriptase–polymerase chain reaction (RT–PCR) and a novel restriction analysis of gene
expression (RAGE) display technique. We first established comprehensive tyrosine-kinase profiles in different human gastric cancer
cell lines. In cells treated with 9-cis-retinoic acid or all-trans-retinoic acid, we found that two PTKs (Eph and Hek5) appeared to be
upregulated. In the present study, we demonstrate an efficient and simple RAGE approach for examining tyrosine kinases’ expression
in tumour cells and their alterations following drug treatments.
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It is estimated that there are 1000–2000 different protein kinases
in the human genome (Hunter and Cooper, 1985; Robinson et al,
2000). Less than 10% of all kinases are protein tyrosine kinases
(PTK), but many tyrosine kinases are involved in growth
signalling, and alterations of these kinases often result in cellular
transformation (Hunter and Cooper, 1985). Many PTK genes are
proto-oncogenes and some of them are associated with human
cancer progression, including erbB2/neu in breast cancer and met
in gastric cancer (Kameda et al, 1990; Kuniyasu et al, 1992). These
genes are highly conserved from nematode to human and are
involved in important biological functions such as growth,
differentiation, development, apoptosis and signal transduction.
On the basis of their cellular localisation, these PTKs can be further
classified as receptor-type or nonreceptor-type PTK and dual
kinases that can phosphorylate both tyrosine and serine/threonine
residues. Since PTKs share significant homologies in their kinase
catalytic domain, degenerated polymerase chain reaction (PCR)
primers can be designed according to the amino-acid sequence
submotifs of the kinase catalytic domain (Robinson et al, 1996; Lin
et al, 1998). In previous studies, we identified 25– 35 different PTK
genes expressed in cells by simple reverse trancriptase –polymer-
ase chain reaction (RT –PCR) reaction (Lin et al, 1998, 1999; Wu
et al, 2000). Since then, we implemented an improved restriction
analysis of gene expression (RAGE) profiling approach, developed
at Dr Hsing-Jien Kung’s laboratory (Robinson et al, 1996), which
utilises restriction enzyme digestion and gel electrophoresis for

quick and efficient kinase profiling (manuscript in preparation).
Recently, this profiling method has been used to generate
expression profiles of human breast cancer cell lines (Meric et al,
2002) and also identified axl receptor tyrosine kinase as one of the
adenovirus E1A target genes in ovarian cancer cells (Lee et al,
1999).

Retinoic acid (RA) and its metabolites, the retinoids, are
required for differentiation and tissue maintenance. Deficiencies
in the metabolism of retinoids are associated with severe defects of
vertebrate embryonic development (Gudas, 1992; Chambon, 1994).
This reagent has been used in the treatment of acute promyelocytic
leukaemia with good success (Huang et al, 1988), and recently it
was shown to suppress the growth of gastric cancer cell lines (Shyu
et al, 1995; Naka et al, 1997). The RA signalling pathway involves
specific high-affinity receptors, which belong to ligand –inducible
transcription factors (Chambon, 1996). The RA ligand-receptor
complexes modulate target genes’ expression by binding to the
retinoid-responsive elements in the promoter regions. Among
PTKs, c-erbB2/neu promoter contains retinoid-responsive ele-
ments, which are weakly modulated by the addition of RA in the
medium (Hudson et al, 1990). All-trans-RA was recently shown to
enhance mRNA expression of c-fms receptor tyrosine kinase in
human breast carcinoma cells (Sapi et al, 1999). Extensive research
on the expression of PTKs and RA modulation is lacking and
details regarding the mechanisms involved in the RA-regulated
growth inhibition of gastric cancer cells are not known. In the
present study, we examined the overall PTK expression profiles in
gastric cancer cells treated with 9-cis-RA or all-trans-RA. We
found that expressions of eph (ephA1) and hek5 (ephB2) were
upregulated following treatment in several gastric cancer cell lines.
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MATERIALS AND METHODS

RT–PCR amplification and RAGE profiling of human
tissues

Poly(A) selected mRNA were purchased from Clontech, including
eight adult tissues (brain, kidney, liver, lung, pancreas, placenta,
small intestine and stomach) and four foetal tissues (foetal brain,
foetal kidney, foetal liver and foetal lung). Reverse transcription
was carried out with a cDNA synthesis kit (Boehringer Mannheim,
Mannheim, Germany). The PCR primers are derived from the
conserved motifs DFG and DVW of tyrosine-kinase catalytic
domain as described (Meric et al, 2002). Several pairs of
degenerated PCR primers were designed, which would expect a
PCR product of 150–170 bp range. In order to identify the
restriction-digested fragments, the 50-sense primers were radio-
labelled with 33P by polynucleotide kinase in this RAGE method.
The PCR reactions were conducted at 421 annealing temperature
for five cycles and then at 551 for 25 cycles with an Accugen 9600
PCR thermocycler and Taq polymerase (GIBCO-BRL, Rockville,
MD, USA). The final PCR products at 170 bp fragment products
were separated and eluted from agarose gels. An equal amount
(20 000 c.p.m.) of the eluted PTK amplicon was then digested with
respective restriction enzymes (New England BioLabs, Beverly,
MA, USA) and analysed with denaturing 7% sequencing poly-
acrylamide gels. Following electrophoresis, the gel was dried
and exposed to an X-ray film or processed by a Fuji BAS
6000 phosphoimager (Fuji photo film, Tokyo, Japan). A sequen-
cing reaction product (35S-label, and T-track only) with a
predetermined sequence template was used as a standard for
fragment size. We have pre-established a restriction fragment
database of human PTKs digested with 18 different restriction
enzymes, and individual tyrosine kinase was identified based on its
respective characteristic restriction fragment sizes on the exposed
X-ray films or in the phosphoimager-processed files.

Gastric cancer cell lines and RA treatment

Six human gastric cancer cell lines were used in this study,
including HR, AGS, KATO III, NUGC (NUGC-3), TSGH
(TSGH9201) and SC-M1 (Lin et al, 1998). All cell lines, except
HR, were kindly provided by Dr Chin-Wen Chi at Taipei-Veterans
General Hospital, Taiwan. These cells were cultured in RPMI 1640
or DMEM culture medium supplemented with 10% foetal calf
serum, 2 mM glutamine, 100 U ml�1 penicillin, and 100 mg ml�1

streptomycin in 5% CO2/95% air at 371C. 9-cis-Retionic acid and
all-trans-RA were purchased from Sigma (St. Louis, MO, USA).
Retinoic acid was dissolved in dimethyl sulphfoxide (DMSO)
under subdued light in a tissue culture hood. Three cell lines were
selected for RA treatment based on an earlier report of their
sensitivity to RA (Shyu et al, 1995) as well as their tolerance to
serum-free culture conditions. Since serum could contain retinoids
and other steroid hormones, serum-free culture conditions were
preferable to reduce the background. Cells were seeded overnight
at a density of 1� 106 cells per 100-mm tissue culture plates. The
cells were then washed with serum-free medium and maintained in
serum-free culture medium with the presence or absence of RA for
36–48 h. The final concentration of RA used in the medium was
10�6 – 10�8

M and the concentration of DMSO in control groups
was 0.1%. The growth response of RA-treated cells was measured
by an MTT assay (Yasumura et al, 1994).

RAGE PTK profiling of human gastric cancer cells

Total RNA was extracted from exponentially growing gastric
cancer cells by TRIzol reagent (GIBCO-BRL, Rockville, MD, USA),
and the RNA pellets were washed several times with 70% ethanol,
dried and resuspended with RNase-free water. Reverse transcrip-

tion was carried out and RAGE PTK profiles were performed as
described above.

RT–PCR expression analysis of selected kinases

Total RNA samples from various gastric cancer cell lines were used
in reverse transcription reactions with oligo (dT)15 primers as
described above. The resulting cDNA was subjected to PCR
reaction by using gene-specific primers. The PCR was conducted
in 25 ml reactions each containing 200mM dNTP, 1.25 mM MgCl2
and 800 nM of the specific primer for 35 cycles at 581C annealing
temperature for 30 s, 721C for 30 s and 941C for 30 s. The primer
sets for the kinases used in this study were:

The expected sizes of PCR products were 371 bp for GAPDH,
318 bp for yes and 420 bp for hek5. The final products were
analysed in 2% agarose gel, visualised by ethidium bromide
staining and recorded with the Alpha Innotech IS-500 gel
documentation system.

Western blot analysis of yes kinase

Gastric cancer cell lines were incubated in NP-40 lysis buffer
containing 50 mM Tris pH 7.4,. 150 mM NaCl, 1 mM EGTA, 1% NP-
40, 0.25% SDS, 1 mM sodium vanadate, 1 mg ml�1 protease
inhibitors, 200 mg ml�1 chymostatin and 1 mM PMSF for 30 min
at 41C. Cell lysates were then centrifuged at 14 000 rpm for 10 min
and supernatants were harvested. A measure of 100 mg of lysates
was boiled and electrophoresed in 7.5% SDS–polyacrylamide gels
under reducing conditions. The separated proteins were then
electrophoretically transferred to a PVDF membrane (Immoblin-P,
Millipore, Bedford, MA, USA). Following blocking by blocking
solution of 10% nonfat dried milk for 1 h at room temperature, the
membrane was blotted with anti-yes-specific antibody (Santa Cruz
Biotech, Santa Cruz, CA, USA) or anti-b-actin antibody (Santa
Cruz Biotech, Santa Cruz, CA, USA) at room temperature for 1 h.
Following washing with Tris-buffered saline with 0.05% Tween-20
and incubation with horseradish peroxidase-conjugated secondary
antibodies, protein bands were detected by the enhanced
chemiluminescence method (Amersham Life Science, Piscataway,
NJ, USA).

RESULTS

By using degenerated primers from submotifs VII and IX of the
kinase domain as well as RT–PCR, we were able to easily amplify
PTK genes expressed in cells. In addition to the previous ‘cloning
and sequencing’ method, we utilised an improved RAGE method
to provide a more efficient, economical and expeditious tyrosine-
kinase profiling approach. We first established the PTK RAGE
protocol in our laboratory by using a panel of human tissues.
Samples from 12 tissues could be displayed on a single sequencing
gel; thus we could effectively screen all known human PTKs in a
short period of time. As shown in Figure 1, the amplified PTK
products was digested with MwoI restriction enzyme and
separated on a sequencing gel. In Figure 1, several PTKs could
be identified by their specific restriction fragment sizes. As
examples, the 73 bp fragment represented csk kinase gene; 67 bp
fragment for mek5/mlk3; 65 bp fragment for ron kinase; 59 bp
fragment for FGFR4/fms; 50 bp fragment for btk/mer/rtk kinase
genes. In many cases, several different kinases could be

Sense Antisense

gapdh TGGTATCGTGGAAGGACTCA AGTGGGTGTCGCTGTTGAAG

yes GTGATTGGGATGAGATAAG TGATTGCTACTTTCGTGG

hek5 CATCGTGACTGAGCT GAGCTCGATGATGGC
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represented by similar size restriction fragments, and alternative
restriction enzymes would be necessary to identify single-gene-
specific restriction fragments. It was calculated that just 15– 20
restriction enzymes (four-base or five-base hitters) were required
to cover all known PTKs. Among these kinases in Figure 1, ron
kinase expression was found in selected tissues only (brain, lung,
pancreas, small intestine, stomach, foetal brain and foetal lung).
This finding correlated with the reported in situ hybridisation and
Northern blot data (Quantin et al, 1995), which validated our PTK
profiles. By eliminating cloning and sequencing steps in previous
profiling approaches (Lin et al, 1998) and adopting end-labelled
PCR primers, this RAGE method is more quantitative as the
intensity of each PTK fragments could reflect the PTK molecules
expressed in cells.

This approach enabled us to establish comprehensive PTK
expression profiles from a large number of samples in a single
experiment, and thus we were able to generate comprehensive PTK
profiles from six different human gastric cancer cell lines in a very
limited amount of time. Two cell lines (AGS and SC-M1) were
derived from primary tumours and others (HR, Kato III, NUGC,
TSGH) were derived from metastatic tumours from various
organs. With this PTK profile information, we hoped to learn
more about the biological significance of particular PTKs in the
oncogenesis of these human gastric cancer cells.

As shown in Figure 2, the amplified PTK products were digested
with Hae III restriction enzyme and displayed on a sequencing gel.
Samples from six human gastric cancer cell lines could be
displayed on a single sequencing gel; thus, we could effectively
screen all known human PTKs with only a few gel displays. In
Figure 2, several PTKs could be identified by their specific
restriction fragment sizes. Alternative restriction enzymes would
be necessary to identify all PTKs according to their unique specific
restriction fragment. This RAGE method is more quantitative as
the radioactive isotope is labelled on the primers. Therefore, we
could measure PTK expression levels by enumerating radio-
activities of each fragment. In Figure 3, we correlated the
expression of the yes PTK gene by specific primers. The RT–
PCR results reflected the RAGE profile. AGS and Kato III showed a
lower level of yes expression in both assays. In order to validate the
protein expression level, Western blot analysis was performed with
yes PTK-specific antibody. As shown in Figure 4, overexpression of
yes tyrosine-kinase protein is evident. The yes PTK expression
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Figure 1 RAGE PTK profiling of different human tissues. Poly(A) mRNA
obtained from Clontech was amplified by RT–PCR as described in
Materials and Methods. The 150–170 bp amplicon was purified and used
for MwoI digestion. The completed digested products were separated by a
denaturing sequencing gel. Specific PTKs were identified by the digested
fragment sizes as indicated.
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Figure 2 RAGE PTK profiling of different human gastric cancer cell lines.
Total RNA obtained from six human gastric cancer cell lines (AGS, HR,
Kato III, NUGC, SC-M1 and TSGH) was amplified by RT–PCR as
described in Materials and Methods. The 150–170 bp amplicon was
purified and used for HaeIII digestion. The completed digestion products
were separated by a denaturing sequencing gel. Specific PTKs were
identified by their digested fragment sizes as indicated.

AGS HR Kato III NUGC SC-M1 TSGH

yes

Figure 3 RAGE profile and RT–PCR pattern of yes tyrosine kinase in
human gastric cancer cell lines. Upper panel: RAGE expression profile
of the yes kinase gene. Lower panel: yes kinase expression detected by
RT–PCR method with specific primers.

Yes

Actin

A
G

S

H
R

K
at

o 
III

N
U

G
C

S
C

-M
1

T
S

G
H

Figure 4 Immunoblot showing the expression of yes tyrosine kinase in
human gastric cancer cell lines. An equal amount of cell lysate from human
gastric cancer cell lines was resolved by SDS–PAGE. After electrophoresis,
proteins were transferred to a PVDF nylon membrane and then probed
with anti-yes antibody. The anti-b-actin antibody was used a control.
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pattern is similar in the mRNA and protein level in this study
(Figures 3 and 4).

Figure 5 summarises the complete PTK profiles in these gastric
cancer cell lines, and a total of 39 protein kinases were identified.
Each cell line generated a unique and distinct PTK expression
profile. This valuable information can now be used as an overall
PTK expression reference database and serve as PTK fingerprints
of different gastric cancer cell lines. Four cell lines of Asian origins
(Japan and Taiwan) presented surprisingly similar profiles,
although Kato III had an enhanced expression on brk and cak
kinases and a lower expression level on slk. On the other hand, two
PTKs (hek8 and mer) expressed at a higher level in AGS and HR
cells. There were also significant variations between cell lines,
including a low expression level of ron in HR cells. This
information allows us to discern the tyrosine-kinase expression
pattern in a particular cell line and to select proper cells for
tyrosine-kinase functional studies. For example, AGS might not be
suitable for erbB2/neu transfection experiments, since it has the
highest expression of that particular tyrosine kinase (Figure 5). On
the same token, HR cells would be the preferable choice for
studying cak kinase because of its extremely low expression level
(Figures 2 and 5). There was a small number of different PTKs
identified between previous cloning experiments using HR cells

and the new RAGE profile of HR cells. This could largely be
attributed to the different degenerated primers used in the two
types of experiments.

Upregulation of some PTKs, such as c-erbB2/neu, confers
resistance to chemotherapeutic reagents (Yu et al, 1996). It is
important to know the PTKs modulated by chemotherapeutic
reagents and possible resistant mechanisms involved in cancer
cells. This RAGE-based PTK profiling allowed us to quickly screen
tyrosine-kinase genes modulated in cells treated with various
reagents. We first selected RA for our studies, since it directly
modulates gene expressions following its binding to RAR or RXR
receptors. In addition, RA was shown to suppress gastric cancer
cell growth in vitro (Shyu et al, 1995; Naka et al, 1997). We used
both 9-cis-RA and all-trans-RA and three RA responsive cell lines
(NUGC, SC-M1, TSGH) in this study. By MTT assay, we had
determined that growth of these gastric cancer cells was inhibited
by 10�8 – 10�6

M in both all-trans-RA and 9-cis-RA. Cell death was
observed after 5 –7 day treatment with RA. Since it was shown that
most RA responsive genes are activated by 24 h posttreatment
(Bouillet et al, 1995), we therefore selected an optimum condition
of 10�6

M under serum-free conditions and a 36-h treatment
schedule for mRNA extractions, at which point most cells (480%)
were still viable.
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According to PTK RAGE profile analysis, there were several
kinases upregulated by 9-cis-RA and all-trans-RA in all cells,
including eph, hek5 and several novel kinases. In Figure 6, hek5
RAGE profiles are shown in the upper panel. To verify the
expression of hek5, we also performed RT–PCR experiments with
hek5-specific primers (Figure 6, lower panel). Similar results were
obtained with the eph kinase (not shown). There was a notable
increase in hek5 expression level in SC-M1 and TSGH cells
(Figure 6). Both eph and hek5 belong to the eph tyrosine-kinase
subgroup, which is the largest subgroup of tyrosine kinases and
which plays important roles in development (Zisch and Pasquale,
1997). Hek5 expression was previously shown to be elevated in
human gastric cancer tissues (Kiyokawa et al, 1994). However, the
present study is the first to show the modulation of eph and hek5
by RA treatment in human gastric cancer cell lines. In a reported
RA-resistant cell line (AGS) (Shyu et al, 1995), basal levels of hek5
and c-erbB2/neu expression were markedly elevated in comparison
with those of RA-sensitive cell lines (Figure 6). Since amplification
of c-erbB2/neu could lead to drug-resistant phenotypes in tumour
cells (Yu et al, 1996), it would be interesting to investigate if hek5
kinase is also involved in such mechanisms.

DISCUSSION

We have developed a simple, economical and efficient method for
generating comprehensive expression profiles of gene families.
With this technique, we were able to effectively generate PTK
expression profiles of human gastric cancer cell lines. These
profiles serve as fingerprints for each tumour cell line and are
extremely valuable in correlating various biological properties of
these tumour cells in vitro and in vivo. Thus, we should be able to
learn more about the roles of PTKs in tumour initiation and
progression, and develop better therapeutic reagents or strategies.

Retinoic acid is the active derivative of vitamin A, and interacts
with two classes of receptors (RARs and RXRs). Both RARs and
RXRs are ligand-dependent transcription factor receptors (Cham-
bon, 1996). RAR and RXR families each posseses three receptor
subtypes (a, b and g), which have been demonstrated to be
differentially expressed in various tissues during the mouse
embryo development (Ruberte et al, 1991). RARs are activated
by all-trans-RA acid and 9-cis-RA, whereas RXRs are only
activated by 9-cis-RA (Heyman et al, 1992). RA regulates the
growth and differentiation of many different cell types, and plays
an important role in development (De Luca, 1991). Many genes are
known to be modulated by RA treatment, such as Stra genes
(Stra1–13) (Bouillet et al, 1995; Boudjelal et al, 1997), midkine
(Muramatsu et al, 1993), ICAM-1 (Cilenti et al, 1995), STAT1

(Kolla et al, 1996), IL-8 (Harant et al, 1996) and IL-2 receptor alpha
subunit (Bhatti and Sidell, 1994). Among signal transduction
molecules, c-erbB2 promoter activity and X17C (a novel MAP
kinase phosphatase) were found to be upregulated by RA (Hudson
et al, 1990; Mason et al, 1996). RAR and RXR can also be
phosphorylated by protein kinases (Tahayato et al, 1993). In a
previous report on RARs’ and RXRs’ Northern mRNA expression
level of gastric cancer cell lines (Shyu et al, 1995), enhanced
expression of RARa/RARg was observed in SC-M1 cells and
enhanced RARb level was found in TSGH cells. Both RA-sensitive
cell lines (SC-M1 and TSGH) had also increased RXRa expression,
but only TSGH had higher RXRb expression transcript. The
authors implicated that RARb and RXRb may not be related
to the RA-mediated growth inhibitory effect in these sensitive
cells, while RARg may play an important role in these cells
(Shyu et al, 1995). Nevertheless, hypermethylation of the RARb
promoter resulted in the loss of RARb, and nm23-H1 genes were
reported in diffuse-type gastric cancers (Oue et al, 2002). With
our PTK profiling technique, we identified two PTKs (eph and
hek5) that also responded to RA treatment in RA-sensitive gastric
cancer cell lines. The actual roles of these kinases in RA-mediated
growth inhibition need to be further examined. Owing to the
complex homo- or hetero-dimer interactions between RARs and
RXRs, it is difficult to dissect the detail mechanisms of RARs’ and
RXRs’ activation, not to mention mechanisms involving other
retinoic/retinol binding proteins within the cytoplasm. It is also
important to identify those novel kinases in RAGE profiles that are
regulated by RA treatments. This could be achieved by direct
cloning of restriction fragments from gels or by bioinformatic
databases interrogations. We did not observe the expected
upregulation of c-erbB2/neu PTK in the gastric cancer cells
examined.

Eph receptor tyrosine kinases (including eph and hek5) and their
ligands (ephrins) play important functions during embryogenesis,
especially in neuronal tissue growth, migration and differentiation
(Zisch and Pasquale, 1997; Mellitzer et al, 1999). Overexpressions
of ephs and ephrins are documented in many human cancers
including gastrointestinal cancers (reviewed in Nakamoto and
Bergemann, 2002). There are more than 14 members of the eph
PTK family and at least eight different ephrins. Since ephrins are
attached to the cell membrane by either glycosylphosphatidyl-
inosital-anchor or a single transmembrane domain, they might act
as receptor-like signalling molecules that can be phosphorylated
and then transduce signals (Bruckner et al, 1997). Autocrine
expression of eph kinase and ephrins was recently demonstrated in
human lung cancer cell lines and tissues (Tang et al, 1999). Ephrin-
B1 (also known as lerk-2, stra-1 and cek5-L), which is the ligand
for hek5, hek10 and elk, is strongly upregulated by RA in mouse
P19 embryonal carcinoma cells and D3 embryonic stem cells
(Bouillet et al, 1995). Since hek5 is also upregulated in gastric
cancer cells following RA treatment, we are now investigating the
expression of ephrin-B1 and hek5 in detail to determine their
functions in human gastric cancer cell growth and in RA-mediated
cell growth inhibition. On the other hand, hek8 (ephA4) was
downregulated by RA treatment in developing chick limb buds
(Patel et al, 1996). However, there is no literature report regarding
the RARs’ or RXRs’ involvement in the eph/ephrin signalling
pathway following RA treatment. It is evident that extremely
complicated networks exist within the eph/ephrin as well as the
RA/RAR-RXR systems because of the large numbers of gene family
members and crossinteractions. This report provides an initial but
significant observation on the crosstalk between these two
complicated signal networks. Such crosstalk interactions among
different signal transduction pathways have been documented
recently between IL-6 and EGF pathways in prostate cancer cells
(Qiu et al, 1998). With this new RAGE profiling approach, we are
able to show the potential interactions between eph and RA
pathways in human gastric cancer cell lines.
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Figure 6 Modulation of hek5 kinase in three gastric cancer cell lines
treated with 9-cis-RA and all-trans-RA. NUGC, SC-M1 and TSGH cells
were treated with 10�6

M 9-cis-RA or 10�6
M all-trans-RA for 36 h. Total

RNA was extracted and used for PTK RAGE analysis. The RAGE profile of
hek5 expression is shown in the upper panel. In the lower panel, expression
of hek5 is demonstrated by RT–PCR using hek5-specific primers.
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