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Abstract Voltage-gated sodium channels play a critical role in cellular excitability, amplifying

small membrane depolarizations into action potentials. Interactions with auxiliary subunits and

other factors modify the intrinsic kinetic mechanism to result in new molecular and cellular

functionality. We show here that sodium channels can implement a molecular leaky integrator,

where the input signal is the membrane potential and the output is the occupancy of a long-term

inactivated state. Through this mechanism, sodium channels effectively measure the frequency of

action potentials and convert it into Na+ current availability. In turn, the Na+ current can control

neuronal firing frequency in a negative feedback loop. Consequently, neurons become less

sensitive to changes in excitatory input and maintain a lower firing rate. We present these ideas in

the context of rat serotonergic raphe neurons, which fire spontaneously at low frequency and

provide critical neuromodulation to many autonomous and cognitive brain functions.

Introduction
Computation in the brain begins at the molecular level, with proteins such as ion channels and

receptors that can change their structural and functional state in response to changes in the environ-

ment. These molecular building blocks capable of processing information have been adapted by

nature into progressively more complex computational structures: ion channels and receptors were

incorporated into synapses and neurons, neurons were interconnected into networks and circuits,

and circuits were assembled into a brain capable of abstract thinking. Not surprisingly, computation

in the engineering world followed the same trend, from transistors and integrated circuits to micro-

processors and computers.

At the molecular level, voltage-gated sodium (Nav) channels have long been credited with a criti-

cal role in cellular excitability: amplifying a small membrane depolarization, such as created by a tiny

postsynaptic excitatory current, into a full blown action potential (Hodgkin and Huxley, 1952).

Computationally, Nav channels can be regarded as the equivalent of a transistor (Sigworth, 2003), a

nonlinear electric circuit element. To generate action potentials of specific shape and firing patterns,

spontaneously or in response to synaptic input, a neuron expresses a complement of Nav and other

types of ion channels (Bean, 2007) and positions them strategically at subcellular locations

(Kole and Stuart, 2012). Although we generally understand how ion channels contribute to the

mechanics of action potential generation and propagation, the molecular and cellular landscapes are

complex and remain incompletely charted. At the most basic level, we do not fully understand how
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ion channels function as molecular computational machines and how they interact with each other

and with other factors to regulate cellular activity.

We examine here a new computational function of the Nav channel that emerges from a process

of long-term inactivation (LTI), which can be caused by interaction with fibroblast growth factor-

homologous factors (FHFs), a relatively recently discovered group of auxiliary factors (Gold-

farb, 2012). We are particularly interested in this functionality in the context of pacemaker seroto-

nergic raphe neurons (Jacobs and Azmitia, 1992), which provide critical neuromodulation to many

brain areas involved in autonomous and cognitive functions. In a previous study (Milescu et al.,

2010b), we examined the Nav channels in raphe obscurus (RO) neurons and proposed a kinetic

model that explains not only their intrinsic kinetic properties but also their characteristic process of

long-term inactivation. Here, we investigate the computational aspects of this mechanism, using a

combination of electrophysiology experiments and mathematical analysis.

Results

Action potentials in serotonergic raphe neurons and the contribution of
Nav channels
Action potentials vary in their properties in different neuronal types but they generally last from hun-

dreds of microseconds to several milliseconds, rapidly swinging the membrane between hyperpolar-

ized and depolarized states. Serotonergic neurons have a particular electrophysiological profile,

characterized by regular and spontaneous spiking at low frequency (3 -- 5 Hz), a steady depolariza-

tion in the interspike interval, and broad action potentials (3 -- 6 ms), as illustrated in Figure 1A and

B. These characteristics are partially shared with other monoaminergic neurons (Grace and Bunney,

1983; Vandermaelen and Aghajanian, 1983; Li and Bayliss, 1998; de Oliveira et al., 2010;

Tuckwell and Penington, 2014).

As in most excitable cells, Nav channels play a central role in serotonergic neurons, releasing the

large depolarizing Na+ current (INa) that generates the action potential (Milescu et al., 2010b). To

perform their duty, Nav channels must cycle through a sequence of functional states, as summarized

in Figure 1C: they are (virtually) closed (C) in the interspike interval, activate and abruptly open (O)

and then quickly inactivate (I) during the action potential, and then recover from inactivation in the

interspike interval. Interestingly, as it recovers from inactivation, the channel bypasses the open

state, instead following the transition pathway indicated by the blue arrow in the figure. The result-

ing hysteresis (red vs. blue arrows) serves a fundamental role, as it effectively separates the process

of inactivation during the action potential, controlled by the O - I transition, from the recovery from

inactivation during the interspike interval, separately controlled by the I - C transitions.

As a result of separating these pathways, inactivation from the open state proceeds very quickly,

giving the channel just enough time to flow current and sufficiently depolarize the membrane and

activate other voltage-gated ion channels. In contrast, recovery out of inactivation proceeds more

slowly from the closed states, at a rate that determines a refractory period compatible with the max-

imal spiking rate of the neuron. Furthermore, bypassing the open state minimizes the flow of Na+

ions in the wake of the action potential and thus economizes the energy utilized by cellular ionic

pumps (Carter and Bean, 2009). A conceptual kinetic mechanism that adequately captures all these

properties is shown in Figure 1D (Kuo and Bean, 1994).

Nav channels have long-term inactivation
Fast voltage-dependent activation (sub-millisecond) and inactivation (millisecond), as well as rela-

tively fast recovery from inactivation (milliseconds), are kinetic properties common to all Nav channel

subtypes, as described since the pioneering work of Hodgkin and Huxley (Hodgkin and Huxley,

1952; Armstrong and Bezanilla, 1974; Armstrong and Bezanilla, 1977; Bezanilla and Armstrong,

1977; Aldrich et al., 1983; Vandenberg and Bezanilla, 1991a; Vandenberg and Bezanilla,

1991b). However, the Nav kinetic inventory is richer than that, including such behavior as ‘persis-

tence’ (French et al., 1990; Crill, 1996) or ‘resurgence’ (Raman and Bean, 1997; Raman and Bean,

2001). In raphe and other neurons, Nav channels exhibit yet another interesting property: when sub-

jected to brief, repetitive depolarizations that mimic trains of action potentials, the Na+ current
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Figure 1. Spontaneous firing in serotonergic raphe neurons and the contribution of Nav channels. (A and B)

Raphe neurons are characterized by slow and regular spiking and broad action potentials, with the spike-

generating sodium current (INa) mostly restricted to the depolarization phase. (C) Schematic of state transitions

undertaken by Nav channels during the spiking cycle (C - closed, O - open, I - inactivated states). (D) Conceptual

Nav state model proposed to explain the fundamental kinetic properties of INa in mammalian central neurons

(Kuo and Bean, 1994). The representative current clamp recordings in (A) and (B) were obtained from RO neurons

Figure 1 continued on next page
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evoked by each pulse progressively diminishes to levels inversely proportional to the pulse repetition

rate (Figure 2A).

Furthermore, we can identify not one but two exponential components in the time course of

recovery from inactivation (Figure 2B). Following a brief (5 ms) depolarizing pulse that completely

inactivates the channels, approximately 80% of the initially available current recovers fast (millisec-

onds), with a voltage-dependent time constant, whereas the remaining 20% recovers slowly (hun-

dreds of milliseconds to seconds), also with a voltage-dependent time constant. In brain slice

recordings from neonatal RO neurons, the fast and slow components have the following time con-

stants t and relative amplitudes a (mean ± SE): at �80 mV, tfast = 3.14 ± 0.126 ms,

afast = 0.786 ± 0.013, tslow = 612 ± 76 ms, and aslow = 0.212 ± 0.007 (n = 18 cells); at �100 mV, tfast
= 1.45 ± 0.07 ms, afast = 0.775 ± 0.017, tslow = 209 ± 39 ms, and aslow = 0.199 ± 0.01 (n = 6). The two

components take similar values in acutely isolated mature dorsal raphe neurons: at �80 mV, tfast =

8.54 ± 0.59 ms, afast = 0.81 ± 0.022, tslow = 517 ± 126 ms, and aslow = 0.187 ± 0.017 (n = 6); at �100

mV, tfast = 5.25 ± 0.69 ms, afast = 0.74 ± 0.042, tslow = 247 ± 84 ms, and aslow = 0.252 ± 0.033 (n = 5).

The presence of the slow component in both intact and acutely dissociated neurons confirms the

idea that the observed phenomenology is a genuine manifestation of the Nav kinetic mechanism,

and not an artifact, such as caused by action potential back-propagation and poor space-clamp

(Milescu et al., 2010a).

Similar Nav properties (i.e., adapting response to pulse trains and partial slow recovery from inac-

tivation) have been observed in other neuronal types, such as hippocampal pyramidal neurons

(Mickus et al., 1999). Appropriately, this phenomenology has been termed ‘prolonged inactivation’

(Jung et al., 1997) or ‘long-term inactivation’ (LTI) (Dover et al., 2010), to distinguish it from slow

inactivation, which is a different process whereby Nav channels slowly (hundreds of milliseconds to

seconds, or more) become unavailable when held at depolarizing potentials, and also slowly return

to full availability at hyperpolarizing potentials (Ruff et al., 1988; Fleidervish et al., 1996). In con-

trast, LTI represents fast entry into a long-lived inactivated state, from which recovery is very slow.

Interestingly, the LTI entry and exit time constants differ by three orders of magnitude: entry in milli-

seconds at depolarizing potentials and recovery in seconds during hyperpolarization (Mickus et al.,

1999; Milescu et al., 2010b). As we discuss next, this fast-slow duality has important functional

consequences.

Mechanistic consequences of long-term inactivation
To investigate the role of LTI, we use here a previously developed model that explains well all the

observed kinetic properties of Nav channels in RO neurons, including LTI (Milescu et al., 2010b).

The Nav state model generated in that study was derived from a comprehensive collection of data

that covered steady-state properties (activation and inactivation), as well as transient properties

(time course of activation and inactivation, slow inactivation, recovery from inactivation, closed-state

inactivation, entry into LTI, cumulative inactivation, etc.), all at multiple voltages and time scales

(tens of microseconds to seconds). The rate constants were extracted from data using the optimiza-

tion and parameter constraining algorithms implemented in the QuB software (Navarro et al.,

2018; Salari et al., 2018). The model was then verified in live RO neurons, using the real-time com-

putation algorithms implemented in QuB (Milescu et al., 2008), confirming that a model-generated

current that replaced the TTX-blocked endogenous INa was able to generate action potentials of

similar shape and frequency. Interestingly, different studies in other neuronal types have arrived at

conceptually similar models to explain LTI, although they were not necessarily as comprehensively

constrained by experimental data (Goldfarb et al., 2007; Menon et al., 2009).

The model that explains LTI in RO neurons is shown in Figure 3A, where the basic kinetic scheme

introduced in Figure 1D has been augmented with a non-conducting state (S13) connected to the

open state (O6). The rate constants are explained in Materials and methods, and are as in

Milescu et al. (2010b). S13 is a long-lived state representing the open channel blocked by the

Figure 1 continued

in neonatal rat brainstem slices. In (B) INa was calculated in real-time and injected in the cell using dynamic clamp,

as in Milescu et al. (2010b).

Navarro et al. eLife 2020;9:e54940. DOI: https://doi.org/10.7554/eLife.54940 4 of 24

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.54940


putative auxiliary factor, FHF. The O6 - S13 rate constants take values that, in the context of the

intrinsic Nav kinetics, result in the observed LTI phenomenology, that is, the complete inactivation

induced by a brief depolarization and the fast-slow bi-exponential recovery at hyperpolarizing poten-

tials. The O6 - S13 transition competes with the normal inactivation process that corresponds to the

O6 - I12 transition, with interesting mechanistic consequences. A brief depolarizing pulse from �80

to 0 mV (Figure 3B) takes the channel rapidly through the sequence of closed states, as voltage sen-

sors activate. Once it reaches the open state, the channel has now two distinct pathways to follow:

to inactivate ‘normally’ into the I12 state, or to long-term inactivate into the S13 state. According to

Figure 2. Nav channels in serotonergic raphe neurons exhibit a slow kinetic component. (A) The fraction of Nav

channels available to generate current decays exponentially, when tested with trains of brief depolarizing voltage

pulses (5 ms at �15 mV, repeated at 5, 10, or 20 Hz). The decay is greater at higher repetition rates. Each pulse

completely inactivates INa, which then partially recovers from inactivation in the subsequent hyperpolarizing

interval, at �80 mV. (B) The timing of recovery from inactivation was tested with a two-pulse protocol, where the

first pulse (5 ms at �15 mV) inactivates the channels and the second pulse tests availability versus time, at �80 mV.

As indicated by the two time constants (tfast and tslow), recovery from inactivation is a bi-exponential process, with

the slow component accounting for approximately 20% of the total current. The representative voltage clamp

recordings in (A) and (B) were obtained from RO neurons in neonatal rat brainstem slices, and are TTX-subtracted.

Statistical values are given in the main text.

The online version of this article includes the following source data for figure 2:

Source data 1. Recovery from inactivation of Na+ current in rat neonatal RO neurons in brain slices and in acutely

isolated mature dorsal raphe neurons, as shown in panel B.
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our experimental data (Figure 2B), » 80% of the channels ‘choose’ the normal inactivation pathway

and » 20% take the LTI.

The I12 and S13 occupancy probabilities rise very quickly, reaching their respective values of 0.8

and 0.2 in a couple of milliseconds, as indicated by the time course of PI and PS in Figure 3B (lower

panel). However, these are not the equilibrium values: if the channels are further maintained at

depolarizing potentials for seconds, PS very slowly reaches a considerably higher value of » 0.7,

whereas PI drops accordingly to » 0.3. Hence, entry into the S13 state is a bi-exponential process,

with one component fast enough to reach completion during a brief voltage pulse -- or action

Figure 3. Nav long-term inactivation. (A) Conceptual Nav state model that adds one non-conducting state (S13) to

the model shown in Figure 1D, to explain the slow kinetic component illustrated in Figure 2. S13 is a state of

long-term inactivation. (B and C) State transitions undertaken by the channel during a brief depolarization (B) and

in the subsequent hyperpolarizing interval (C); note the difference in time scales. During depolarization, » 80% of

channels follow the standard C - O - I pathway, whereas the remaining » 20% enter the S state. The O - I and O -S

transitions are both fast, as illustrated in the bottom left panel, and compete with each other. When the

membrane potential returns to more negative values, the fraction of channels in the I states recovers quickly,

whereas the S state fraction recovers slowly, explaining the bi-exponential recovery from inactivation illustrated in

Figure 2B. PC+O, PO, PI, and PS represent occupancies of closed plus open, open, inactivated, and long-term

inactivated states, respectively.

The online version of this article includes the following source data for figure 3:

Source data 1. Rate constant values for the Nav kinetic model shown in panel A.
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potential -- and the other very slow, requiring several seconds to equilibrate. Nevertheless, since pro-

longed depolarizations are less likely to occur, the fast component is the more physiologically rele-

vant one.

What happens after a brief depolarizing pulse, upon repolarization? As depicted in Figure 3C,

those channels residing in the normal inactivated state I12 cycle relatively fast (5 -- 10 ms) back into

the non-inactivated closed states (C), without visiting the open state. In contrast, channels residing in

the LTI state S13 recover slowly, in seconds, reaching the non-inactivated states through the open

state. Therefore, the sum occupancy probability of all non-inactivated states (C states plus O6 state;

PC+O in Figure 3C) rises from 0 to » 1, on a bi-exponential time course. The fast component corre-

sponds to recovery from the normal inactivation process (PI), whereas the slow component repre-

sents recovery from the LTI state (PS). This dual fast-slow process explains the observed bi-

exponential recovery from inactivation of INa in serotonergic raphe neurons (Figure 2B). Interest-

ingly, the open probability (PO) remains close to zero, because recovery from the LTI state through

the open state is stretched over a long time interval.

The Nav channel as a molecular leaky integrator
We now arrive at our main idea, that Nav channels implement a molecular leaky integrator, through

an interaction with auxiliary factors. Mathematically, a continuous-time leaky integrator is governed

by the differential equation:

dy tð Þ

dt
¼ x tð Þ� y tð Þ=tleak; (1)

where y is the output signal, x is the input signal, t is time, and tleak is the leak time constant. Leaky

integration can be more easily understood in the discrete time domain, as a mathematical operation

that recursively calculates an output signal y from an input signal x, as follows:

ytþdt ¼ yt � e�dt=tleak þ xtþdt � dt; (2)

where dt is the sampling time between two measurements. When tleak is infinite (or tleak >> dt), the

above equation reduces to a simple integration (or summation), where yt+dt = yt + xt+dt�dt. If the

input signal contains brief (sample-long) digital pulses (i.e., 0 or 1), the integrator becomes an event

counter. When tleak is zero (or tleak << dt), the output signal becomes a scaled copy of the input sig-

nal, where yt+dt = xt+dt�dt. Otherwise, when tleak takes a finite value, the output signal at a given

time point is first ‘leaked’ (i.e., reduced) by a factor determined by the ratio dt/tleak, and then ‘inte-

grated’ (i.e., added) with the input signal arriving at the next time point, to calculate the next output

value.

How does leaky integration apply to Nav channels? First, we consider the membrane potential

(Vm) to be the input signal, and the occupancy of the LTI state S13 (PS) to be the output signal. We

further consider Vm to be ‘digital’ and take only two states: ‘low’ in the interspike interval and ‘high’

during the action potential, with the ‘low’ state meaning functionally zero input (nothing to inte-

grate). Finally, we consider that the time scale of the leak process is orders of magnitude longer

than the width of an action potential. Under these conditions, the integration step corresponds to

quickly incrementing PS whenever the input signal Vm switches to a high state (an action potential),

as shown in Figure 4A, and the leak step corresponds to slowly decrementing PS whenever Vm

switches to a low state (the interspike interval), as shown in Figure 4B.

As indicated by our experimental data (Figure 2B) and correctly predicted by our model, the

arrival of a brief depolarization, such as an action potential, prompts » 20% of all available (non-

inactivated) channels to rush into the long-term inactivated state S13, whereas the other » 80%

quickly occupy the inactivated state I12, with time courses as shown in Figure 3B. Channels that are

already inactivated will maintain their state. Because PS is in fact a probability bound by 1, it cannot

increase indefinitely. Thus, each action potential can only increase PS by » 20% of the fraction of

available channels. At the beginning of a spike train, when all channels are available, this increment

is » 0.2 but progressively gets smaller, as fewer channels remain available (Figure 4C). The specific

value of the increment depends on the relative kinetics of the O6 - S13 and O6 - I12 transitions. The

bi-exponential time course of PS, with a fast component that completes in » 2 ms, coupled with a

much slower component, ensures that changing the width of the action potential would not
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Figure 4. Nav channels implement a molecular leaky integrator that measures spiking frequency. (A) The

‘integration’ is represented by the quick entry of channels into the LTI state S, during an action potential. (B) The

Figure 4 continued on next page
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significantly alter the 80%/20% ratio, unless the width were shorter than 2 ms, in which case LTI

would be reduced, or if the depolarization were extended to hundreds of milliseconds or seconds,

in which case PS would eventually reach an equilibrium value of » 0.7, as represented by P¥
S

in

Figure 3B.

Once the action potential ends and Vm switches to the ‘low’ state, PS starts to ‘leak’, because the

input signal is ‘zero’ in the interspike interval and there is nothing to ‘integrate’. Thus, PS decays

exponentially, with the same time constant as the slow component of recovery from inactivation

(hundreds of milliseconds). Those channels that were long-term inactivated (occupying the S13 state)

at the beginning of the interspike interval will remain unavailable to conduct current for an accord-

ingly long time interval, on the order of seconds. In contrast, those channels that were normally inac-

tivated (occupying the I12 state) will become available much sooner, after only a few milliseconds. If

another action potential were triggered while some channels were still residing in either the long-

term inactivated state S13 or in the inactivated state I12, the available (non-inactivated) channels will

again divide 80%/20% between normal inactivation and long-term inactivation, and so on. As a

result, the occupancy of the S13 state would keep increasing with each action potential by progres-

sively smaller increments, unless the interspike intervals were long enough to allow complete recov-

ery out of the S13 state.

Nav channels detect action potentials and measure spiking frequency
The use of an integrator is obvious -- to summate, to count -- but what about a ‘leaky’ integrator? As

it happens, a leaky integrator not only describes many real-world phenomena, such as rain accumu-

lating into a lake that drains into a river, but also has many technical applications. One of the most

obvious is to convert the frequency of an input signal into the amplitude of an output signal. For

example, in our own electrophysiology backyard, it is customary to pass a nerve signal through a

leaky integrator (implemented in hardware or software) to convert noisy and dense spike trains into

an amplitude signal that more legibly indicates the frequency of those spikes.

As a molecular leaky integrator, Nav channels can also ‘measure’ the frequency of action poten-

tials and ‘store’ it in the occupancy of the LTI state S13. As demonstrated by the experimental data

shown in Figure 2A, the amount of Na+ current evoked with 5 ms depolarizing pulse trains decays

exponentially with each pulse, and decays more at higher repetition rates. In Figure 4C, we calculate

and plot PS using the equation PS = 1 � INa
p / INa

0, where INa
p is the peak Na+ current raised by

pulse p and INa
0 is the peak Na+ current raised by the first pulse in the series. The rationale of using

this equation to obtain PS is that the inter-pulse interval (195, 95, and 45 ms in this case) is long

enough to allow full recovery from the normal inactivation, whereas recovery from the LTI state will

be incomplete, as we know from the data shown in Figure 2B. Thus, having a fraction of channels

still trapped in the LTI state will proportionally reduce the maximal INa. As seen for this representa-

tive data set, PS reaches steady values of » 0.3 at 5 Hz, » 0.4 at 10 Hz, and » 0.5 at 20 Hz, exhibit-

ing a nonlinear dependence on the pulse repetition rate.

To better understand how Nav channels may interpret action potential frequency, we simulated

the response of our Nav model to a train of 5 ms depolarizing pulses from �80 to 0 mV, repeated at

different rates, and compared it with the response of a mathematical leaky integrator. For the sake

of simplicity, the mathematical leaky integrator was presented with the same train of pulses as the

Nav model, but the input variable x was assigned 0 and 1 values, instead of �80 and 0, respectively.

To match the behavior of the Nav model, we also modified Equation 2, as follows:

Figure 4 continued

‘leak’ corresponds to the slow transition out of the S state, during the interspike interval. (C) The average

occupancy of the LTI state (PS) increases with pulse repetition rate. The current (INa) trace is as in Figure 2A. (D)

Testing the leaky integrator with trains of brief voltage pulses (5 ms at 0 mV, from �80 mV), with different

repetition rates (2 to 100 Hz) or at constant depolarization. The average occupancy of the S state is a function of

pulse frequency. The Nav model in Figure 3A was tested with two sets of kinetic parameters for the O6 - S13
transition, corresponding to tleak = 435 ms and 80%/20% normal inactivation vs. LTI ratio (red trace; k6,13 =

400.8�e-0.011�V and k13,6 = 0.207�e-0.031�V) or 820 ms and 90%/10% ratio (blue trace; k6,13 = 205.7�e-0.011�V and

k13,6 = 0.106�e-0.031�V). Both sets have P¥
S
» 0:7. For comparison, the response of a discrete-time mathematical

leaky integrator with tleak = 435 ms (black trace; Equation 3).
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ytþdt ¼ yt � e�dt=tleak þ xtþdt � ftþdt ; (3)

ftþdt ¼ yinc�ðdt=tpÞ� ð1� yt � e�dt=tleak Þ; (4)

where yinc = 0.2 represents the 20% maximum increase in the output variable y, spread over the

duration tP of a pulse. Thus, f is an ad hoc expression that ensures that, during a pulse in the input

variable x, the output variable y can only increase by 20% of the difference between one and its cur-

rent value (i.e., 20% of 1� yt� e�dt=tleak ), in the same way as PS can only increase by 20% of the frac-

tion of available channels (i.e., 20% of 1 � PS). As a result, the range of the output variable y is

restricted between 0 and 1, similarly to PS.

Our Nav model has a leak time constant tleak » 435 ms at �80 mV, a normal inactivation/LTI ratio

of 80%/20%, and an equilibrium S state occupancy P¥
S
» 0:7. These quantities depend on the specific

values and voltage dependence of the O6 - S13 rate constants (k6,13 = 400.8�e-0.011�V and k13,6 =

0.207�e-0.031�V), in the context of all the other rate constants. Keeping the exponential factors k1
6;13

and k1
13;6 and all other rate constants unchanged, tleak depends mostly on the pre-exponential factor

k0
13;6 (lower value increases tleak), the normal inactivation/LTI ratio depends on the pre-exponential

factor k0
6;13 (lower value increases the ratio), and P¥

S
depends on the ratio between k0

6;13 and k0
13;6

(lower ratio decreases P¥
S
).

As indicated by the red trace in Figure 4D, when the Nav model is presented with a train of

depolarizing pulses, PS reaches levels that depend nonlinearly on the pulse repetition rate. At any

given pulse frequency, PS oscillates between a maximum reached at the end of a pulse, and a mini-

mum reached at the end of the inter-pulse interval. At the maximum tested frequency of 100 Hz, PS

oscillates minimally between 0.92 and 0.93. Then, under constant stimulus, PS decays down to its

equilibrium value P¥
S
(see Figure 3B). For comparison, we modified the O6 - S13 rate constants (k6,13

= 205.7�e-0.011�V and k13,6 = 0.106�e-0.031�V) to obtain tleak » 820 ms and 90%/10% normal inacti-

vation/LTI ratio, while keeping the same P¥
S
. As indicated by the blue trace in Figure 4D, in this case

PS exhibits reduced oscillations and takes longer to reach steady-state at a given pulse rate but fol-

lows the same overall trend with the increase in stimulus frequency. The discrete-time mathematical

leaky integrator responds in a similar fashion (black trace, Figure 4D), although it starts to deviate at

higher frequencies and particularly under continuous input, where it reaches a maximum, whereas

the Nav model shows Ps slowly decaying to P¥
S
.

Nav channels drive spiking frequency
As demonstrated in Figure 4C and D, Nav channels respond to stimulation frequency by changing

the occupancy of the long-term inactivated state, which, in turn, changes the amount of available

INa. This observation raises the reciprocal question: does a neuron respond to the amount of avail-

able INa by changing its spiking frequency? In other words, if Nav channels ‘encode’ frequency via

S13, can they also ‘decode’ it via INa? INa can potentially drive spiking frequency via two interrelated

mechanisms: directly, by controlling the rate of depolarization in the interspike interval, and indi-

rectly, by shaping the action potential waveform and thus affecting the other ionic currents that flow

during the action potential depolarization and during the ensuing interspike interval. To test these

possibilities, we used dynamic clamp (Sharp et al., 1993) to inject a model-based INa in RO neurons,

and measured the response of the cell to increasing levels of Nav conductance (GNa). We tested

both non-LTI (Figure 1D) and LTI (Figure 3A) models. The endogenous Na+ current was blocked

with TTX.

Indeed, RO neurons do respond to the level of available INa by changing their spiking frequency,

as shown in Figure 5A. The response in frequency vs. GNa is approximately linear over the tested

range of GNa (5 to 20 nS/pF; Figure 5B), regardless of which Nav model generates INa (LTI, red sym-

bols and fit line, or non-LTI, black symbols and fit line). However, for the same value of GNa, the LTI

model results in lower spiking frequency than the non-LTI model. This difference is explained by the

reduced amount of dynamically available INa generated by the LTI model.

The effect of INa on firing is further examined in Figure 5C, where three example waveforms,

each containing two action potentials and the interspike interval in between, obtained with the LTI

and non-LTI models under different GNa values, are shown aligned to the peak of the first action
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Figure 5. Nav channels drive spiking frequency in serotonergic raphe neurons. (A) Representative dynamic clamp

recordings, where INa generated by a non-LTI (black traces) or LTI (red traces) Nav model was injected in a neuron,

under different levels of Nav conductance (GNa). The endogenous sodium current was blocked with bath-applied

TTX. (B) Spiking frequency increases proportionally with GNa, over a range typical for neonatal RO neurons, with

INa generated by either the non-LTI model (black symbols and fit line, mean ± SE; slope = 0.148 ± 0.011,

intercept = 4.34 ± 0.14, n = 7, F-test, p=0.13) or the LTI model (red symbols and fit line; slope = 0.202 ± 0.026,

intercept = 2.48 ± 0.346, n = 7, F-test, p=0.0093). The two datasets are statistically different (paired two-tailed

t-test, p=0.0394). (C) Representative dynamic clamp traces obtained with INa generated by the non-LTI (top) or LTI

(bottom) model, illustrating how the action potential and the interspike interval are shaped by GNa. The data were

obtained without stimulation (IInj = 0) from RO neurons in neonatal rat brainstem slices.

Figure 5 continued on next page
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potential. As can be observed, the rate of membrane depolarization in the interspike interval is rela-

tively independent of INa and spiking frequency, from the hyperpolarization occurring immediately

after an action potential, up to » �50 mV. From this point, the rate of depolarization changes pro-

portionally to GNa and determines the duration of the remaining interspike interval. As a result, the

firing frequency will eventually saturate with increasing amounts of available INa, which explains why

the LTI and non-LTI models appear to converge to similar spiking frequencies, as GNa is increased,

and why the non-LTI model shows a reduced frequency vs. current slope, compared to the LTI model

(Figure 5B). Another interesting point is that at low firing frequency Nav channels spend more time

at membrane potentials where closed-state inactivation occurs (between �75 and �50 mV), which

explains why INa for the LTI model is disproportionately smaller than at higher frequencies

(Figure 5A, the red INa trace). With both models, the amount of dynamically available INa changes

the overall action potential shape (Figure 5C), particularly the peak value, presumably changing

other currents and thus indirectly affecting spiking frequency.

Firing rate is lower in the presence of LTI
The experiments described in Figures 2 and 5 clearly demonstrate that not only can Nav channels

sense the frequency of action potentials, but they also can drive the firing rate in RO neurons, with

the LTI model resulting in lower frequency. What about firing under excitatory input? Considering

these two reciprocal relationships, one can predict that changes in excitatory input will have a

reduced effect on firing frequency in neurons that express Nav channels with LTI. The reason is that

an increase in excitation will initially determine an increase in frequency, but this elevated frequency

will then push more Nav channels into the LTI state, thus reducing the available INa and returning fre-

quency to lower values.

We tested this prediction by subjecting neurons to increasing levels of depolarizing bias current

(IInj), with the endogenous Na+ current TTX-blocked and replaced via dynamic clamp with INa gener-

ated by either the LTI or the non-LTI model. We knew from our previous work (Milescu et al.,

2010b) that RO neurons express a strong firing adaptation mechanism, unrelated to sodium chan-

nels, and the challenge was to separate the effects of LTI from this other mechanism. Another chal-

lenge was maintaining stability throughout a long recording protocol, given how sensitive firing

frequency is to small fluctuations in patch properties in these neurons. As a compromise solution, we

designed the dynamic clamp protocols shown in Figure 6A and B, with the only difference between

them being the order in which the two Nav models are alternated. However, we also tried protocols

where IInj was stepped through different values for each model separately, with each depolarization

step preceded by a five-second rest period at �65 mV, and obtained similar results.

As illustrated in Figure 6C, where we extract the instantaneous spiking frequency from the exam-

ple traces shown in Figure 6A and B, RO neurons respond immediately with an increase in their fir-

ing rate when IInj is stepped up. However, this initial increase in frequency is followed by a slow

decay, which can be quite dramatic at greater depolarization (i.e., when IInj = 40 pA). Interestingly,

this decay occurs when either model is active, but it is deeper with the LTI model. During a given

depolarization episode, the frequency increases when changing the active model from LTI to non-LTI

and decreases with the opposite change. According to Figure 6D, where we plot the stationary spik-

ing frequency versus the level of depolarization, the neuron generally maintains a lower firing rate

when Nav channels have LTI, and the relative difference between LTI and non-LTI models is larger at

greater depolarizations. Regardless of the model, the frequency slightly increases with GNa, in line

with the results shown in Figure 5B. Altogether, these results make it clear that a neuron with the

LTI model has a significantly flatter stationary response to depolarizing input, but it remains equally

capable of high-frequency transients. Furthermore, these data emphasize how strongly RO neurons

adapt to depolarizing input, via a combination of mechanisms, of which only one is based on Nav

LTI. The results of swapping LTI and non-LTI models in the same cell (Figure 6C, red vs. black traces)

are to some extent masked by these other adaptation mechanisms.

Figure 5 continued

The online version of this article includes the following source data for figure 5:

Source data 1. Frequency vs. GNa for LTI and non-LTI models, as shown in panel B.
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Figure 6. LTI helps the neuron to maintain a low spiking frequency against sustained depolarizations. (A)

Representative dynamic clamp recording, where INa (lower trace) generated by the LTI (red) or non-LTI (black)

model was injected in a neuron, under increasing depolarizing current (IInj). Both models are integrated

throughout the entire protocol, but only one model at a time injects current in the cell. In this example, GNa was

Figure 6 continued on next page
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Nav channels are a molecular controller that regulates neuronal firing
rate
The overall idea that emerges from our experiments is that Nav channels implement a negative feed-

back loop that can regulate the firing frequency of the host neuron, as shown in Figure 7A. This neg-

ative feedback is conceptually similar to the typical process controller described in engineering

applications (Figure 7B). As a technological example, one could take the home furnace as the ‘pro-

cess’, the indoor temperature as the ‘process variable’, and human comfort as the ‘product’. A sen-

sor measures the temperature and forwards the measurement to a thermostat (‘controller’), which

calculates the difference (‘error’) between a user-prescribed value (‘set point’) and the measured

value. A control algorithm processes the error and determines the timing and the amount of gas to

burn in the furnace (‘control variable’), such as to maintain the actual indoor temperature relatively

constant and approximately equal to the desired temperature. The furnace will burn gas when the

error is positive, which will increase the temperature and eventually make the error zero or negative,

which in turn will instruct the furnace to stop burning gas, until the temperature drops again and the

error becomes again positive. The thermostat can compensate for changes in the outside tempera-

ture (the ‘disturbance’).

The similarity between the Nav-based neuronal controller and the general process controller is

quite striking. In the neuronal case (Figure 7A), we can identify the ‘process’ as the neuron, the ‘pro-

cess variable’ as the spiking frequency, and the ‘product’ as serotonin. The Nav kinetic mechanism

embodies the ‘sensor’, the ‘set point’, and the ‘controller’ altogether, as follows: i) spiking frequency

is measured by the occupancy of the LTI state S13, ii) the set point is determined by the rate con-

stants of the O6 - S13 transition, and iii) the control algorithm is simply represented by the mutually

exclusive relationship between the occupancy of the LTI state and the fraction of Nav channels avail-

able to generate current, which is equal to 1 - PS. Unlike the general controller, which in principle

can implement arbitrarily complex error correction (the P, I, and D blocks in Figure 7B), the Nav-

based neuronal controller is limited by its simple physical implementation. The ‘control variable’ is

represented by the amount of available INa, which can drive spiking frequency and thus closes the

control loop. Finally, the ‘disturbance’ is represented by changes in synaptic or other stimuli (‘input’).

Discussion
Nav channels play a fundamental role in cellular excitability, acting as a nonlinear amplifier that con-

verts a small membrane depolarization into an action potential. Their intrinsically complex kinetic

mechanism (Armstrong and Gilly, 1979; Armstrong, 2006) is further tweaked in different neuronal

populations by interaction with auxiliary subunits and factors to create new functional behaviors

(Grieco et al., 2005; Aman et al., 2009; Ben-Johny et al., 2014) that make Nav channels drive

spontaneous spiking (Do and Bean, 2003), enable fast spiking (Raman and Bean, 2001;

Khaliq et al., 2003), or establish complex firing modes (Magistretti et al., 2006; Yamanishi et al.,

2018). We showed here that adding a state of long-term inactivation (Figure 3), as can be created

by an interaction with auxiliary factors identified as FHFs (Smallwood et al., 1996; Liu et al., 2003;

Wittmack et al., 2004; Lou et al., 2005; Rush et al., 2006; Goldfarb et al., 2007; Dover et al.,

2010), significantly expands the Nav computational repertoire and creates new functional roles.

Figure 6 continued

10 nS/pF. Before the protocol started, the neuron was clamped at �65 mV for 5 s. (B) Same as in (A), but the

models were alternated in the opposite order. (C) Instantaneous spiking frequency extracted from the recording

shown in (A) (upper panel) or (B) (lower panel). (D) Quasi steady-state spiking frequency vs. IInj (mean ± SE, n = 13).

The values were obtained by averaging over the second half of each step, from traces obtained with the protocol

shown in (A). The datasets are statistically different (paired two-tailed t-test) for LTI vs. non-LTI model (p=0.0387 or

0.0374, for GNa = 10 or 15 nS/pF, respectively) and for GNa = 10 vs. 15 nS/pF (p=0.0143 or 0.0038, for LTI or non-

LTI model, respectively). The dashed lines in (C) and (D) are exponential fits meant as a visual aid. The data were

obtained from RO neurons in neonatal rat brainstem slices.

The online version of this article includes the following source data for figure 6:

Source data 1. Frequency vs. IInj for LTI and non-LTI models, as shown in panel D.
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Figure 7. Nav channels can regulate spiking frequency in serotonergic raphe neurons in a negative feedback loop.

(A) Nav-based neuronal controller, where spiking frequency f is both ‘measured’ by the occupancy of the long-

term inactivated state (PS) and ‘driven’ by the amount of available INa. For example, an increase in f via excitatory

synaptic input causes an increase in PS, which determines a decrease in the fraction of Nav channels available to

generate current, equal to 1 – PS. In turn, this decrease in INa reduces firing frequency, closing the loop. The

kinetics of LTI establish the operating point of the control loop. (B) For comparison, a conceptual schematic of

controllers used in engineering applications, which can combine multiple methods for error correction:

proportional (P), integral (I), and derivative (D).
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Our main finding is that LTI effectively turns the Nav channel into a molecular leaky integrator

that can analyze the firing activity of the host neuron and encode its spiking frequency into the frac-

tion of available Na+ current (Figure 4). At the same time, Nav channels can drive the neuron to

spike, with a frequency that depends on how much Na+ current is dynamically available, which is

modulated by LTI (Figure 5). These two reciprocal relationships between frequency and available

current establish a negative feedback control loop that can regulate the frequency of action poten-

tials (Figure 7). As a result, neurons expressing Nav channels with LTI would be less sensitive to

changes in excitatory input and would generally maintain a lower firing rate (Figure 6).

Future work must explain why this LTI-based functionality is necessary, in general and specifically

in the case of raphe neurons. Thanks in part to LTI, raphe neurons strongly adapt their action poten-

tial shape and frequency in response to stimuli (Milescu et al., 2010b; Venkatesan et al., 2014),

but the role of this adaptation remains to be fully explained in the context of a more complete circuit

that also includes the target neurons and all inputs, including auto-feedback. Raphe neurons act as a

sprinkler-type system that provides serotonergic modulation to most brain regions (Daubert and

Condron, 2010), via volume transmission carried by relatively evenly distributed innervation

(Azmitia and Whitaker-Azmitia, 1995; Aghajanian and Sanders-Bush, 2002; Vizi et al., 2010). We

can speculate that a downstream effect of a frequency control mechanism would be to release sero-

tonin at more stable levels. In the long term, these levels could be dialed up and down by acting on

multiple regulatory mechanisms, including LTI. In parallel with this increased stability conferred by

LTI, raphe neurons would still maintain their capability of responding to short-term changes in stim-

uli, as shown in Figure 6C. For example, the raphe obscurus neurons investigated in this study are

known to have mutual interactions with respiratory pacemaker neurons in the pre-Bötzinger Com-

plex and briefly increase their firing rate in phase with respiratory network activity (Ptak et al.,

2009).

It is interesting to note that LTI is not the only way for Nav channels to create feedback within the

neuron. The most important is the well-known positive feedback mechanism that makes Nav chan-

nels the generator of action potentials. In the case of RO neurons, any depolarization that takes the

cell above » �50 mV starts to activate Nav channels, which generate current that further depolarizes

the cell, which in turn activates more channels, and so on, until an action potential is fired

(Figure 5C). Yet another positive feedback may be created by closed-state inactivation. The inter-

spike interval in RO neurons takes the characteristic shape of a steady ramp (see Figures 1A and

5C) that is lengthened or shortened at lower or higher spiking frequencies, respectively. The ramp

starts around �70 to �60 mV and ends at » �45 mV, whereas the Nav channel steady-state inacti-

vation begins at » �80 mV and is almost complete at �40 mV. Longer interspike intervals would

give Nav channels more time to equilibrate via closed-state inactivation, which would further slow

down the ramp, because there would be less Na+ current to drive the rate of depolarization and per-

haps even insufficient current to generate an action potential. To escape this predicament, slow-spik-

ing raphe neurons express Nav channels with a relatively low rate of closed-state inactivation

(Milescu et al., 2010b), and also feature voltage-activated calcium channels that alone can sustain

spontaneous spiking with very shallow action potentials and thus can act as a backup (unpublished

data). In principle, LTI is a form of open-state block and should not occur from closed states, but the

existence of closed-state LTI remains to be further investigated. Although these two forms of posi-

tive feedback (voltage-dependent activation and closed-state inactivation) are critical, they are con-

fined to one action potential cycle, whereas LTI is a form of negative feedback that extends over

many action potentials and thus can effectively regulate the firing rate.

Mathematically, LTI can be described as a leaky integrator that summates over time an input sig-

nal into an output signal, while the output steadily decays (Equation 2). Studying for an exam is a

good analogy: we quickly accumulate knowledge with every page we read, while at the same time

we slowly forget whatever we learned. In the field of electrical engineering, a simple leaky integrator

can be implemented with an RC circuit. In the molecular world, nature has found a simple and ele-

gant way of converting the Nav channel into a leaky integrator, via LTI, while preserving its basic

functionality as a spike generator -- and also partial pacemaking driver in RO neurons. LTI is a mecha-

nism that renders a fraction of the total number of Nav channels functionally non-available, in the

sense that these channels are trapped in a non-conducting state and thus cannot contribute current

to an action potential. This fraction increases and decreases with dynamics dictated by the frequency

of action potentials, effectively becoming a measure of neuronal activity. For this mechanism to
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work, a single action potential must quickly increment the non-available fraction, whereas the subse-

quent interspike interval must slowly decrement it. In the case of LTI in RO neurons, the time con-

stants of these two processes are separated by three orders of magnitude (Figure 3B and C).

The simplest kinetic mechanism compatible with the observed LTI behavior is shown in

Figure 3A, where an additional non-conducting state is connected to the open state of the basic

Nav mechanism shown in Figure 1D (Dover et al., 2010; Milescu et al., 2010b). This model pre-

dicts the critically important large discrepancy between LTI entry and exit time constants yet realisti-

cally assumes only minimal electrical charge for the LTI transition itself. Nevertheless, the LTI

mechanism -- as well as the intrinsic Nav mechanism itself -- may be different and possibly more com-

plex in reality, and needs further investigation. More work is also necessary to identify the specific

subtypes of Nav channels and FHFs that are functional in raphe neurons. For example, we assumed

here that these neurons express a kinetically uniform Nav channel population and all channels are

equally interacting with the FHF. However, the 80% to 20% ratio between normal and long-term

inactivation components may also be explained by two (or more) Nav populations (e.g., defined by

channel subtype or compartmentalization), each interacting differently (or not at all) with the FHF, in

a concentration-dependent manner. Although we are not aware of reports in the literature where

the total Na+ current exhibits significantly more than 20% LTI under physiological conditions, the LTI

fraction can be higher in FHF-transfected neurons, where FHF may reach higher concentration

(Laezza et al., 2009). Interestingly, the same type of kinetic model with open-state block can

account for the resurgent Na+ current (Raman and Bean, 2001). However, in that case, the entry

and exit time constants have comparable values. That model can also be considered a leaky integra-

tor but the fraction of channels that enter the blocked state during a brief depolarization becomes

available immediately upon repolarization and thus augments the subthreshold depolarizing Na+

current, helping the hosting neuron to spike faster. In contrast, LTI plays the opposite role, by

decreasing the amount of Na+ current (both sub- and suprathreshold) and making it harder for the

neuron to spike at high frequency.

We are not aware of other studies where Nav channels -- or other channels -- have been specifi-

cally identified as molecular leaky integrators, even though the leaky integrator is a powerful concept

that has long been associated with neural computation, from individual neurons and circuits to cog-

nitive processes (Knight, 1972; Cook and Maunsell, 2002; Mitani et al., 2013; Portugues et al.,

2015; Groschner et al., 2018; Bahl and Engert, 2020). In excitable cells, a molecular leaky integra-

tor can be a tool for monitoring and regulating cellular activity, as we demonstrated here with Nav

channels and LTI in serotonergic raphe neurons. Desensitization of nicotinic receptors is another

example of a regulatory molecular process characterized by (relatively) fast onset in the presence of

neurotransmitter and a phosphorylation-dependent mixture of fast and slow recovery in the absence

of neurotransmitter (Paradiso and Brehm, 1998). Like Nav channels, potassium channels can also

inactivate and recover from inactivation (or activate and deactivate) slowly, on time scales that are

longer than the duration of a single action potential and thus can modulate neuronal activity

(Schwindt et al., 1988; Storm, 1988; Bond et al., 2005; Khaliq and Bean, 2008; Greene and

Hoshi, 2017), and can even implement a form of short-term memory that relies solely on intrinsic

neuronal excitability properties (Turrigiano et al., 1996). More generally, activity-dependent slow

inactivation and recovery from inactivation of Nav and other channels and receptors could be a

mechanism that stabilizes cellular function against fluctuations in expression levels (Ori et al., 2018).

The intracellular Ca2+ also acts as a leaky integrator, quickly incrementing its concentration with

each action potential, via Ca2+ influx through voltage-gated calcium channels, and more slowly dec-

rementing it during periods of quiescence (Gorman and Thomas, 1978; Helmchen et al., 1996).

Thus, the envelope of intracellular Ca2+ concentration becomes a measure of cellular activity that

can be used to regulate a variety of Ca2+-dependent cellular processes (Gárdos, 1958; Yuste et al.,

2000; O’Leary et al., 2013), including the activity of many types of ion channels (Meech and

Standen, 1975; Keen et al., 1999; Peterson et al., 1999; Deschênes et al., 2002; Wen and Levi-

tan, 2002; Hartzell et al., 2005), which in turn can change the firing activity of the cell. Enzymes

such as CaMKII can also function as a leaky integrator, as they rapidly activate during episodic rises

in Ca2+, and then slowly deactivate as Ca2+ decays (Chang et al., 2017). As a leaky integrator estab-

lished by the long-term inactivation process, Nav channels add a powerful mechanism for sensing

and regulating the activity of excitable cells.
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Materials and methods
All animal procedures were approved by the Animal Care and Use Committees of the University of

Missouri and SUNY Downstate Health Sciences University.

Brainstem slices
In vitro medullary slices containing RO neurons were obtained from neonatal (postnatal days 1 -- 4)

Sprague Dawley male and female rats (Charles River Laboratory Inc, USA, RRID:RGD_737891), as

previously described Koshiya and Smith (1999). Briefly, animals were anaesthetized with isoflurane

and the brainstem was swiftly removed in artificial cerebral spinal fluid (aCSF) containing the follow-

ing (in mM): 124 NaCl, 25 NaHCO3, 3 KCl, 1.5 CaCl2, 1 MgSO4, 0.5 NaH2PO4, and 30 D-glucose,

equilibrated with 95% O2 and 5% CO2 (pH 7.4 ± 0.05 at room temperature). Transverse slices (300 --

400 mm thick) containing nucleus raphe obscurus, the pre-Bötzinger Complex, and hypoglossal (XII)

nerve rootlets were cut on a Campden Instruments 7000 vibratome (Campden Instruments, England)

and transferred to the recording chamber and superfused with aCSF at room temperature, at a rate

of » 5 ml/min. Raphe neurons were generally identified based on their location in the slice, adjacent

to the midline. Whenever possible, the neurons were further selected based on their spiking pattern:

regular and slow pacemaking (3 -- 5 Hz) present in cell-attached mode, and broad action potentials

(3 -- 6 ms) with prominent calcium shoulder (Ptak et al., 2009). Whole-cell patch-clamp was done

under IR-Dodt contrast imaging, using a Hamamatsu Flash 4.0 camera (Hamamatsu Photonics,

Japan) controlled by the QuB software (RRID:SCR_018076) (Navarro et al., 2015). All recordings

were obtained at room temperature.

Acutely dissociated neurons
Dorsal raphe neurons were acutely dissociated from adult male Sprague-Dawley rats (200 -- 250 g),

as previously described (Penington et al., 1991). Briefly, animals were anaesthetized with isoflurane

and then decapitated with a small animal guillotine. A small volume of gray matter was cut from

immediately below the cerebral aqueduct containing the dorsal raphe nuclei, chopped into pieces,

and bathed for 2 hr at room temperature, in a PIPES buffer solution containing 0.2 mg/mL trypsin

(Sigma Type XI) under pure oxygen. The tissue was then triturated in Dulbecco’s modified Eagle’s

medium to free individual neurons. Small droplets containing suspended neurons were placed in the

recording chamber and cells were allowed to settle and adhere to the bottom of the chamber. An

extracellular recording solution containing (in mM): 120 NaCl, 10 TEACl, 20 HEPES, 30 sucrose, 3

KCl, 1.5 CaCl2, 1 MgCl2 (pH 7.4 ± 0.05 with CsOH at room temperature) was continuously perfused

at a rate of » 2 ml/min. Neurons with truncated dendrites and soma �20 mm were selected for

whole-cell patch-clamp. All recordings were obtained at room temperature.

Solutions
For voltage clamp (VC) in brain slices, pipettes were filled with a solution containing (in mM): 70 Cs-

gluconate, 30 Na-gluconate, 10 tetraethylammonium-Cl (TEA-Cl), 5 4-aminopyridine (4-AP), 10

EGTA, 1 CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na3-GTP, 10 Na2-phosphocreatine, pH 7.4 with CsOH

(285 ± 5 mOsm/L). For VC in dissociated neurons, the pipette solution contained (in mM): 90 Cs-glu-

conate, 30 NaCl, 10 TEA-Cl, 5 4-AP, 20 HEPES, 10 EGTA, 1 CaCl2, 4 Mg-ATP, 0.3 Na3-GTP, 10 Na2-

phosphocreatine, pH 7.4 with CsOH. Cs+, TEA+, and 4-AP minimized K+ currents, whereas the ele-

vated Na+ concentration decreased the size of Na+ currents and reduced VC artifacts. For current

clamp (CC) and dynamic clamp (DC) in brain slices, pipettes were filled with a solution containing (in

mM): 125 K-gluconate, 4 NaCl, 10 EGTA, 1 CaCl2, 10 HEPES, 4 Mg-ATP, 0.3 Na3-GTP, 4 Na2-phos-

phocreatine, pH 7.4 adjusted with KOH (285 ± 5 mOsm/L). For VC in brain slices, CdCl2 (200 mM)

and 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX; 20 mM) were added to the

superfusing aCSF to block Ca2+ currents and inhibit synaptic transmission. CdCl2 (200 mM) was also

used for VC in dissociated neurons, while CNQX (20 mM) was used for CC and DC experiments in

brain slices. To block Na+ currents in brain slices, tetrodotoxin (TTX, 1 mM) was added to the super-

fusing aCSF. All reagents were purchased from Millipore-Sigma (St. Louis, MO), with the exception

of Cs-gluconate from Hello Bio Inc (Princeton, NJ) and TTX from Alomone Labs (Jerusalem, Israel).
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Electrophysiology
For brain slices, pipettes (5 -- 7 MW) were pulled from borosilicate glass. For dissociated neurons,

pipettes (2 -- 3 MW) were pulled from soda-lime glass. All pipettes were coated with Sylgard to

reduce capacitive transients. Pipette capacitance was compensated 100% in VC and » 75% in CC

and DC. For DC and offline analysis, membrane capacitance (Cm) was approximated as the value

used for compensation in VC and was typically 20 pF. Series resistance (Rs) was typically 9 -- 15 MW.

Cells with Rs > 15 MW or with evidence of poor space-clamp were discarded. In VC experiments, Rs

was compensated » 80% and the compensation was readjusted before running a protocol. In CC

and DC experiments, Rs was compensated 100% and periodically readjusted. Measured liquid junc-

tion potentials of » 10 mV for the K+-based and » 8 mV for the Cs+-based solutions were corrected

online. For neurons in the slice preparation, whole-cell recordings were obtained with an EPC-10

patch-clamp amplifier (HEKA Electronik, Germany), controlled by Patchmaster software (HEKA Elek-

tronik, Germany, RRID:SCR_000034). Manipulators and stage motors (Scientifica, United Kingdom)

were controlled with the QuB software for semi-automated cell targeting (Navarro et al., 2015). For

VC, the recorded currents were low-pass filtered at 40 kHz and digitally sampled at 100 kHz. For CC

and DC, the membrane voltage signal was digitally sampled at 50 kHz (open-bandwidth). For acutely

dissociated neurons, whole-cell recordings were obtained with an Axopatch 200B patch-clamp

amplifier (Molecular Devices), controlled by pClamp 10.3 software (Molecular Devices, RRID:SCR_

011323). In this case, the recorded currents were low-pass filtered at 10 kHz and digitally sampled at

50 kHz.

Voltage clamp experiments
Voltage clamp protocols (Figure 2) were constructed and applied with the Patchmaster program

(brainstem slices) or with pClamp 10.3 (acutely dissociated neurons). The intersweep interval was 6 s

at �80 mV, necessary for complete recovery from inactivation of Na+ currents. Recordings with evi-

dence of Na+ current instability were discarded. Leak currents were subtracted using the P/n proce-

dure. For VC recordings in brain slices, the TTX-sensitive Na+ current was isolated via TTX

subtraction.

Nav kinetic model
For computer simulations and dynamic clamp experiments, we used the LTI model shown in

Figure 3A, which is based on Model II from Milescu et al. (2010b), and the non-LTI model shown in

Figure 1D. Briefly, each rate constant has an Eyring expression defined as k ¼ k0 � e
k1�V , where k0

[ms�1] and k1 [mV�1] are pre-exponential and exponential factors, respectively, and V is membrane

potential. The rate constant values of the LTI model are given in ‘Figure 3—source data 1’ file. The

non-LTI model has the same rate constants but lacks the long-term inactivated state S13 and the cor-

responding transition.

Dynamic-clamp experiments
To inject Nav conductance in live neurons, under bath-applied TTX, we used the dynamic clamp

functionality in the QuB software (Milescu et al., 2008), following previously described procedures

(Milescu et al., 2010b). In the experiment described in Figure 6, the depolarizing current (IInj) was

not normalized to cell capacitance, and values greater than 40 pA were not used, as they consis-

tently resulted in depolarization block. The real-time computational loop was run at 50 kHz and the

Nav model was solved using the matrix method. The software was run on a dual-processor worksta-

tion with Xeon E5-2667 v2 8-core CPUs, running Windows 7, interfaced with the patch-clamp ampli-

fier via a National Instruments data acquisition board PCIe-6361 and BNC-2120 connector block.

Computer simulations
To simulate the response of the model to voltage clamp protocols, we used the freely available

MLab edition of the QuB software (http://www.milesculabs.org/QuB.html), as previously described

Milescu et al. (2008); Milescu et al. (2010b).
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Statistical analysis
Data were analyzed statistically with Prism 4.1 (GraphPad, RRID:SCR_002798). In all cases, the sam-

ple size was sufficient for a = 0.05 and a power of test of 0.8.
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respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P.
Journal of Neuroscience 29:3720–3737. DOI: https://doi.org/10.1523/JNEUROSCI.5271-08.2009, PMID: 1
9321769

Raman IM, Bean BP. 1997. Resurgent sodium current and action potential formation in dissociated cerebellar
purkinje neurons. The Journal of Neuroscience 17:4517–4526. DOI: https://doi.org/10.1523/JNEUROSCI.17-12-
04517.1997

Raman IM, Bean BP. 2001. Inactivation and recovery of sodium currents in cerebellar purkinje neurons: evidence
for two mechanisms. Biophysical Journal 80:729–737. DOI: https://doi.org/10.1016/S0006-3495(01)76052-3,
PMID: 11159440

Ruff RL, Simoncini L, Stühmer W. 1988. Slow sodium channel inactivation in mammalian muscle: a possible role in
regulating excitability. Muscle & Nerve 11:502–510. DOI: https://doi.org/10.1002/mus.880110514,
PMID: 2453799

Rush AM, Wittmack EK, Tyrrell L, Black JA, Dib-Hajj SD, Waxman SG. 2006. Differential modulation of sodium
channel Na(v)1.6 by two members of the fibroblast growth factor homologous factor 2 subfamily . European
Journal of Neuroscience 23:2551–2562. DOI: https://doi.org/10.1111/j.1460-9568.2006.04789.x

Salari A, Navarro MA, Milescu M, Milescu LS. 2018. Estimating kinetic mechanisms with prior knowledge I: Linear
parameter constraints. The Journal of General Physiology 150:323–338. DOI: https://doi.org/10.1085/jgp.
201711911, PMID: 29321264

Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE. 1988. Slow conductances in neurons from cat
sensorimotor cortex in vitro and their role in slow excitability changes. Journal of Neurophysiology 59:450–467.
DOI: https://doi.org/10.1152/jn.1988.59.2.450, PMID: 3351570

Sharp AA, O’Neil MB, Abbott LF, Marder E. 1993. Dynamic clamp: computer-generated conductances in real
neurons. Journal of Neurophysiology 69:992–995. DOI: https://doi.org/10.1152/jn.1993.69.3.992, PMID: 8463
821

Sigworth FJ. 2003. Structural biology: life’s transistors. Nature 423:21. DOI: https://doi.org/10.1038/423021a,
PMID: 12721605

Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, Copeland NG, Jenkins NA, Nathans
J. 1996. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in
nervous system development. PNAS 93:9850–9857. DOI: https://doi.org/10.1073/pnas.93.18.9850

Storm JF. 1988. Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:
379–381. DOI: https://doi.org/10.1038/336379a0

Tuckwell HC, Penington NJ. 2014. Computational modeling of spike generation in serotonergic neurons of the
dorsal raphe nucleus. Progress in Neurobiology 118:59–101. DOI: https://doi.org/10.1016/j.pneurobio.2014.04.
001, PMID: 24784445

Turrigiano GG, Marder E, Abbott LF. 1996. Cellular short-term memory from a slow potassium conductance.
Journal of Neurophysiology 75:963–966. DOI: https://doi.org/10.1152/jn.1996.75.2.963

Vandenberg CA, Bezanilla F. 1991a. Single-channel, macroscopic, and gating currents from sodium channels in the
squid giant axon. Biophysical Journal 60:1499–1510. DOI: https://doi.org/10.1016/S0006-3495(91)82185-3,
PMID: 1663795

Vandenberg CA, Bezanilla F. 1991b. A sodium channel gating model based on single channel, macroscopic
ionic, and gating currents in the squid giant axon. Biophysical Journal 60:1511–1533. DOI: https://doi.org/10.
1016/S0006-3495(91)82186-5, PMID: 1663796

Vandermaelen CP, Aghajanian GK. 1983. Electrophysiological and pharmacological characterization of
serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Research
289:109–119. DOI: https://doi.org/10.1016/0006-8993(83)90011-2, PMID: 6140982

Venkatesan K, Liu Y, Goldfarb M. 2014. Fast-onset long-term open-state block of sodium channels by A-type
FHFs mediates classical spike accommodation in hippocampal pyramidal neurons. Journal of Neuroscience 34:
16126–16139. DOI: https://doi.org/10.1523/JNEUROSCI.1271-14.2014, PMID: 25429153

Vizi ES, Fekete A, Karoly R, Mike A. 2010. Non-synaptic receptors and transporters involved in brain functions
and targets of drug treatment. British Journal of Pharmacology 160:785–809. DOI: https://doi.org/10.1111/j.
1476-5381.2009.00624.x, PMID: 20136842

Wen H, Levitan IB. 2002. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. The Journal of
Neuroscience 22:7991–8001. DOI: https://doi.org/10.1523/JNEUROSCI.22-18-07991.2002, PMID: 12223552

Wittmack EK, Rush AM, Craner MJ, Goldfarb M, Waxman SG, Dib-Hajj SD. 2004. Fibroblast growth factor
homologous factor 2B: association with Nav1.6 and selective colocalization at nodes of Ranvier of dorsal root
axons. Journal of Neuroscience 24:6765–6775. DOI: https://doi.org/10.1523/JNEUROSCI.1628-04.2004,
PMID: 15282281

Yamanishi T, Koizumi H, Navarro MA, Milescu LS, Smith JC. 2018. Kinetic properties of persistent Na+ current
orchestrate oscillatory bursting in respiratory neurons. The Journal of General Physiology 150:1523–1540.
DOI: https://doi.org/10.1085/jgp.201812100

Yuste R, Majewska A, Holthoff K. 2000. From form to function: calcium compartmentalization in dendritic spines.
Nature Neuroscience 3:653–659. DOI: https://doi.org/10.1038/76609, PMID: 10862697

Navarro et al. eLife 2020;9:e54940. DOI: https://doi.org/10.7554/eLife.54940 24 of 24

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.1523/JNEUROSCI.5271-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19321769
http://www.ncbi.nlm.nih.gov/pubmed/19321769
https://doi.org/10.1523/JNEUROSCI.17-12-04517.1997
https://doi.org/10.1523/JNEUROSCI.17-12-04517.1997
https://doi.org/10.1016/S0006-3495(01)76052-3
http://www.ncbi.nlm.nih.gov/pubmed/11159440
https://doi.org/10.1002/mus.880110514
http://www.ncbi.nlm.nih.gov/pubmed/2453799
https://doi.org/10.1111/j.1460-9568.2006.04789.x
https://doi.org/10.1085/jgp.201711911
https://doi.org/10.1085/jgp.201711911
http://www.ncbi.nlm.nih.gov/pubmed/29321264
https://doi.org/10.1152/jn.1988.59.2.450
http://www.ncbi.nlm.nih.gov/pubmed/3351570
https://doi.org/10.1152/jn.1993.69.3.992
http://www.ncbi.nlm.nih.gov/pubmed/8463821
http://www.ncbi.nlm.nih.gov/pubmed/8463821
https://doi.org/10.1038/423021a
http://www.ncbi.nlm.nih.gov/pubmed/12721605
https://doi.org/10.1073/pnas.93.18.9850
https://doi.org/10.1038/336379a0
https://doi.org/10.1016/j.pneurobio.2014.04.001
https://doi.org/10.1016/j.pneurobio.2014.04.001
http://www.ncbi.nlm.nih.gov/pubmed/24784445
https://doi.org/10.1152/jn.1996.75.2.963
https://doi.org/10.1016/S0006-3495(91)82185-3
http://www.ncbi.nlm.nih.gov/pubmed/1663795
https://doi.org/10.1016/S0006-3495(91)82186-5
https://doi.org/10.1016/S0006-3495(91)82186-5
http://www.ncbi.nlm.nih.gov/pubmed/1663796
https://doi.org/10.1016/0006-8993(83)90011-2
http://www.ncbi.nlm.nih.gov/pubmed/6140982
https://doi.org/10.1523/JNEUROSCI.1271-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25429153
https://doi.org/10.1111/j.1476-5381.2009.00624.x
https://doi.org/10.1111/j.1476-5381.2009.00624.x
http://www.ncbi.nlm.nih.gov/pubmed/20136842
https://doi.org/10.1523/JNEUROSCI.22-18-07991.2002
http://www.ncbi.nlm.nih.gov/pubmed/12223552
https://doi.org/10.1523/JNEUROSCI.1628-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15282281
https://doi.org/10.1085/jgp.201812100
https://doi.org/10.1038/76609
http://www.ncbi.nlm.nih.gov/pubmed/10862697
https://doi.org/10.7554/eLife.54940

