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Abstract: Phosphate crystals attract much attention on account of their rich crystal structures and
excellent physical and chemical properties. Herein, Rb3Ti3P5O20 single crystals were grown by
the high temperature solution method using Rb2CO3 and NH4H2PO4 as the fluxes. This crystal,
with non-centrosymmetric Pca21 space group, presents a three-dimensional framework structure
composed of [TiO6] octahedron, [PO4] tetrahedra, and [P2O7] dimers. The electronic structure was
measured via X-ray photoelectron spectroscopy. The measurements found that Rb3Ti3P5O20 has
stronger Ti–O ionic bonding properties and weaker P–O covalent bonding properties compared to
RbTiOPO4. Optical measurements indicated that Rb3Ti3P5O20 has a 3.54 eV band gap and a wide
transmission range (0.33–4.5 µm). Theoretical calculations showed that Rb3Ti3P5O20 crystals have a
moderate birefringence of 0.079 at 1064 nm. In addition, the relationship of the structure–property
was studied using first-principles method. The results demonstrated that TiO6 octahedron played a
significant role for the optical properties.

Keywords: phosphate; single crystal growth; electronic structure; optical properties

1. Introduction

Inorganic phosphate materials have received considerable attention due to their rich
structures and excellent physicochemical properties, as well as possessing broad appli-
cations in the fields of nonlinear optics, ferroelectricity, luminescence, energy technolo-
gies, and catalysts [1–5]. For instance, KTiOPO4 (KTP) and KH2PO4 (KDP) crystals have
been used for solid-state lasers as important nonlinear optical materials, and olivine-type
LiFePO4 is an outstanding cathode material for rechargeable Lithium batteries with high
capacity [6–8]. In the structure of phosphate materials, one P atom is generally coordinated
with four O atoms to shape into the [PO4] tetrahedra. These [PO4] tetrahedra units are
also linked into different phosphorus oxygen groups by sharing oxygen atoms such as
bisphosphonates, polyphosphate, and (PO3)∞ chains. These P–O groups can bond with
other ionic polyhedrons to build three-dimensional framework structures [2,4,9].

Among the phosphates, rubidium titanyl phosphate (RTP) crystal has significant
technological applications in electro-optic shutters, Q-switches, and pulse selectors based
on its large dielectric constant, high laser damage threshold, and stable physicochemical
properties [10,11]. The three-dimensional crystal structure of RTP is made up of an al-
ternating connection of [TiO6] octahedral groups and [PO4] tetrahedral groups, and the
resulting cavities are occupied by the alkali metal Rb atoms [12,13]. Research indicates
that the large-distortion of [TiO6] octahedron in the structure plays a major role in the
optical properties of titanium-containing phosphates [14]. As well as RTP, RbTiP2O7 and
RbTi2(PO4)3 materials, containing Rb, Ti, P, and O elements, were previously reported
because of the potential technological interest [15,16].

As new kinds of phosphates, Me3Ti3P5O20 (Me stands for alkaline-earth metals) mate-
rials are non-centrosymmetric and contain [TiO6] and [PO4] functional units in the structure.
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K3Ti3P5O20 crystal was first reported by Nagornyi et al. in 1993 and showed the potential
application as a valuable NLO optical material [17]. Rb3Ti3P5O20 crystal is the second
material reported for Me3Ti3P5O20 compounds, after K3Ti3P5O20 [18]. However, there are
few studies on Rb3Ti3P5O20 crystals. The growth of bulk crystals and the property charac-
terization were not carried out. In this work, Rb3Ti3P5O20 single crystals were grown by
the high temperature solution growth (HTSG) method and measured via powder X-ray
diffraction (XRD) and Infrared (IR) spectroscopy. The electronic structure was studied by
X-ray photoelectron spectroscopy (XPS). Linear optical properties and nonlinear optical
property (frequency-doubled effect) were investigated. With the aim to better explain the
structure–property relation, the density functional theory (DFT) method was applied to
compute the density of states (DOS), energy band structure, and linear refractive indices (n).

2. Materials and Methods
2.1. Single Crystal Growth

Rb3Ti3P5O20 single crystals were prepared by the HTSG method. The raw materi-
als TiO2 (99.9%, TianJin Chemical Reagent Factory, Tianjin, China), NH4H2PO4 (99.5%,
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), and Rb2CO3 (99.9%, Jiangxi
Dongpeng New Materials Co., LTD., Jiangxi, China) were not subjected to any additional
treatment. Rb2CO3, NH4H2PO4, and TiO2 were thoroughly mixed and adequately ground
in a molar ratio of 9:20:3 and put into a Pt pot [18]. First, the Pt pot with the batch was
heated to 700 ◦C in the furnace and held for 12 h until all the decomposed gases (NH3, CO2)
were gone. Second, the mixture was put into a programmable temperature vertical resis-
tance wire heating furnace and heated to 950 ◦C for 48 h. A platinum agitator blade was
put into the solution for mechanical stirring for at least 36 h in order to increase the solution
homogeneity. Third, the temperature of the solution was slowly decreased to 800 ◦C over
two weeks and finally dropped to room temperature for seven days. Transparent colorless
crystals were obtained from the excess flux by washing the cake in water.

2.2. Characterization

The XRD pattern was recorded by employing a Rigaku SmartLab 9KW X-ray diffrac-
tometer (Tokyo, Japan) set with the use of a Copper target X-ray source (λ = 0.15418 nm) in
the diffraction angle range (2θ) of 10–60◦. The measurement had a scanning step size of
0.02◦ and a scanning step time of 0.4 s at room temperature. A bulk transparent Rb3Ti3P5O20
single crystal (0.12 × 0.1 × 0.1 mm3) was chosen for the analysis of single crystal structure.
The single crystal diffraction data collection was recorded via a Bruker D8 VENTURE
PHOTON 100 diffractometer (Karlsruhe, Germany) with the use of a monochromatic
Molybdenum target X-ray source (λ = 0.71073 Å) at 296.15 K. The crystal structure was
resolved with the SHELXT structure solution program via Intrinsic Phasing and polished
up with the SHELXL refinement package by making use of least square minimization [19].
The precise crystallographic data and detailed experimental conditions of Rb3Ti3P5O20
crystal are listed in Table 1. Electron Probe Microanalysis (EPMA) was measured by a
Shimadzu EPMA-1720H (Kyoto, Japan) for compositional analysis of the Rb3Ti3P5O20
crystal. A well-polished wafer was chose for measurement. XPS spectra were surveyed by
an X-ray photoelectron spectrometer (Thermo Fisher ESCALAB 250, Waltham, MA, USA)
in an ultra-high vacuum (<10−7 Pa) with the use of a monochromatic aluminum target
X-ray source. The excess charging on the sample surface during the measurement was
neutralized by the neutralization gun [20].
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Table 1. Crystal data and structure refinement for Rb3Ti3P5O20 crystal.

Formula Rb3Ti3P5O20
Formula mass 874.96
Temperature (K) 296.15
Crystal system orthorhombic
Space group Pca21
a (Å) 18.2967(17)
b (Å) 6.3043(5)
c (Å) 14.7942(15)
α (◦) 90
β (◦) 90
γ (◦) 90
Volume (Å3) 1706.5(3)
Z 4
Density(cal.) (g/cm3) 3.406
µ (mm−1) 10.450
F (000) 1648.0
Crystal size (mm3) 0.12 × 0.1 × 0.1
Radiation Mo Kα (λ = 0.71073)
2θ range for data collection (◦) 4.452 to 72.844
Index ranges −14 ≤ h ≤ 30, −10 ≤ k ≤ 8, −24 ≤ l ≤ 24
Reflections collected 23,890
Independent reflections 8114 [Rint = 0.0457, Rsigma = 0.0540]
Data/restraints/parameters 8114/1/282
Goodness-of-fit on F2 1.010
Final R indexes [I ≥ 2σ (I)] R1 = 0.0345, wR2 = 0.0826
Final R indexes [all data] R1 = 0.0429, wR2 = 0.0864
Largest diff. peak/hole (e Å−3) 2.02/−1.81
Flack parameter 0.029(9)

IR spectra were measured with a Nicolet NEXUS 670 infrared spectrometer (Thermo
Nicolet Corporation, Madison, WI, USA). Fully ground crystalline powders were used for
testing. Ultraviolet-Visible (UV-Vis) diffuse reflectance data for Rb3Ti3P5O20 crystals were
obtained by using a Hitachi UH4150 spectrophotometer (200–800 nm, Tokyo, Japan). The
optical transmission spectra were measured on a Hitachi UH4150 UV-Vis-IR spectrometer
(200–2000 nm) and a Nicolet NEXUS 670 FTIR spectrometer (2000–5000 nm) using a well-
polished crystal wafer of Rb3Ti3P5O20. The frequency-doubling effect of Rb3Ti3P5O20
crystal was tested on a Q-switched Nd:YAG solid-state laser under a 1064 nm wavelength
by the Kurtz–Perry technique, and a KDP was used as a reference [21]. The test conditions
were not changed after the test start to ensure the accuracy of the results.

2.3. Computational Details

The electronic structure of Rb3Ti3P5O20 was calculated by the ultra-soft pseudopo-
tential method using DFT in the CASTEP module including density of states (DOS), band
structure (Eg) and refractive indices (n) [22]. The 3D crystallographic structure file from
single crystal structure determination of Rb3Ti3P5O20 crystals was used for optimization
and calculation. During the numerical calculation, generalized gradient approximation
and Perdew–Burke–Ernzerhof functions were used to optimize the total energy of the
system to a minimum. Thereby, the Rb 4p65s1, Ti 3p64s23d2, P 3s23p3, and O 2s22p4 states
were considered as the valence electrons. The K point mesh was set as 2 × 6 × 3 in the
Brillouin region and the cut-off limit of kinetic energy was set at 350 eV. The refractive
indices and birefringence of the Rb3Ti3P5O20 crystal were computed based on the obtained
band structure and DOS.
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3. Results and Discussion
3.1. Crystal Growth

Due to the high thermal stability of the Rb3Ti3P5O20 crystal, it can be grown below
the melting point using the high temperature solution method [18]. To obtain high quality
crystals, it is extremely vital to choose an appropriate flux. Previously, for decreasing
the viscosity of the melt and the melting point, Rb2CO3 and NH4H2PO4 fluxes were
utilized in our laboratory to grow high quality single crystals of pure RTP and doped-
RTP [13,23,24]. Therefore, we have chosen Rb2CO3 and NH4H2PO4 to serve as fluxes
for growing Rb3Ti3P5O20 single crystals. As a result, the millimeter-sized transparent
colorless single crystals were successfully obtained. Figure 1a shows the photograph of
as-grown Rb3Ti3P5O20 crystals with dimensions of 7 × 2 × 1 mm3 and 3 × 3 × 1 mm3. The
experimental powder XRD of Rb3Ti3P5O20 crystal is plotted in Figure 1b. The diffraction
peak positions of as-grown crystals correspond well to a standard Rb3Ti3P5O20 pattern
(PDF No. 82-1169) [18], suggesting that the Rb3Ti3P5O20 crystals possess not only high
purity but also good crystallinity. Meanwhile, the Rietveld refinement of XRD was carried
out by GSAS 2 software and the final plot is shown in Figure 2. The compositional analysis
of Rb3Ti3P5O20 crystal shows that elemental ratios of Rb, Ti, P, and O are 3.55:3.25:6.12:20.42.
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3.2. Crystal Structure

The structure of the Rb3Ti3P5O20 crystal was obtained by single crystal XRD analysis.
It belongs to an orthogonal crystal system with a polar space group of Pca21 (No. 29) with
the unit cell parameters a = 18.2967(17) Å, b = 6.3043(5) Å, c = 14.7942(15) Å, and Z = 4. The
unit cell parameters are similar to those reported in a paper (a = 18.282(2) Å, b = 6.2932(7) Å,
c = 14.773(2) Å) [18]. The structure diagram of the Rb3Ti3P5O20 crystal along the b-axis
is plotted in Figure 3a. It features a three-dimensional (3D) structure consisting of [TiO6]
and [PO4] polyhedrons, linked via P–O–P, P–O–Ti and Ti–O–Ti bonds. The Rb atoms are
ten-coordinated or eleven-coordinated by oxygen atoms to maintain electrical neutrality,
and they are located in the one-dimensional channels. The Ti–O and P–O bond lengths are
in the regions 1.797–2.031 Å and 1.483–1.615 Å, respectively. The O–P–O and the O–Ti–O
angles in the Rb3Ti3P5O20 crystal are in the ranges 98.9◦–116.8◦ and 84.89◦–177.95◦.
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(b) IR spectra of Rb3Ti3P5O20.

For the purpose of further verifying the types of phosphorus oxygen groups in
Rb3Ti3P5O20 structure, IR spectra (Figure 3b) were measured for the 600–3000 cm−1

wavenumbers. The peaks of 1232, 1206, and 1166 cm−1 are attributable to the asym-
metric stretching vibrations of P–O bonds. The IR spectra, ranging from 800 to 1100 cm–1,

are assigned to the symmetric stretching vibrations and the asymmetric stretching vibra-
tions of P–O–P. The peak of 712 cm−1 is caused by the symmetric stretching vibrations of
P–O–P. Hence, the IR spectra specify the existence of [PO4] tetrahedron and [P2O7] dimer,
which coincide with the results obtained from the single crystal structure analysis of related
phosphates [25,26].

3.3. Electronic Structure

The electronic structure of the Rb3Ti3P5O20 crystal was first measured by XPS and ana-
lyzed. The survey spectrum recorded for the Rb3Ti3P5O20 single crystal is shown in Figure 4a.
The characteristic peaks of all constituent elements (Rubidium, Titanium, Phosphorus, and
Oxygen) were found in the survey spectrum. The C 1s peak (284.6 eV) was attributed to
hydrocarbonate contamination, and the line was used as a reference for the binding energy
scale calibration. The calcium element was also tested as surface contamination.
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The deconvoluted high-resolution XPS spectra [27,28], of major elements in Rb3Ti3P5O20
crystal are shown in Figure 4b–e. The binding energy (BE) values and the BE difference of the
constituent elements of the title compound are presented in Table 2. RbTiOPO4 (RTP) and
KTiOPO4 (KTP) are given for comparison. The BE values of Rb 3d5/2, Ti 2p3/2, P 2p, and O 1s
for Rb3Ti3P5O20 crystal are 109.3 eV, 458.6 eV,132.7 eV, and 530.1 eV, respectively. The main
peak of O 1s at 530.1 eV corresponds to lattice oxygen. The weak peak at 531.8 eV is usually
attributed to defects and contamination (such as H2O and CO2) of the material surface. The
BE values are similar to those of the corresponding elements in RTP and KTP crystals, and
this indicates that the atoms are in similar chemical environments [29,30]. The BE difference
∆BE (M–O) = BE (O 1s)—BE(M), where M is the element to be analyzed, is usually used
to evaluate the chemical bonding of the elements in crystal lattice because the parameters
are insensitive to the surface charging effects [31–33]. As for Rb3Ti3P5O20, the BE difference
values were calculated to be as follows: ∆BE (Ti–O) = 71.5 eV, ∆BE (P–O) = 397.4 eV and
∆BE (Rb–O) = 420.8 eV, respectively. Compared with RTP, Rb3Ti3P5O20 shows smaller ∆BE
(O–Ti) and ∆BE (O–P) values. The results demonstrate that the Rb3Ti3P5O20 crystal exhibits
weaker covalency of P–O bonds and stronger ionicity of Ti–O bonds compared with RTP.

Table 2. Binding energy values (eV) of Rb3Ti3P5O20, RTP, and KTP crystals.

Rb3Ti3P5O20 RTP KTP

Rb 3d5/2 (±0.1 eV) 109.3 108.9 –
Ti 2p3/2 (±0.1 eV) 458.6 458.6 458.4

P 2p (±0.1 eV) 132.7 132.8 132.8
O 1s (±0.1 eV) 530.1 530.4 530.9

∆BE (O 1s−Rb 3d) 420.8 421.5 –
∆BE (O 1s−Ti 2p) 71.5 71.8 72.5
∆BE (O 1s−P 2p) 397.4 397.6 398.1

Reference This work [29] [30]
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3.4. Optical Properties Characterization

The UV-Vis diffuse reflectance spectrum of Rb3Ti3P5O20 crystals is shown in Figure 5a.
The absorption data were calculated based on reflection spectra by using the Kubelka–Munk
transformation equation:

F(R) = K/S = (1− R)2/(2R) (1)

where S is the scattering coefficient, K is the absorption coefficient, and R is the re-
flectance [34]. The optical band gap of Rb3Ti3P5O20 crystals is estimated to be 3.54 eV,
which is corresponding to the absorption edge of 339 nm. For further obtaining a precise
value of the absorption edge, the transmission spectrum (200–5000 nm) of a well-polished
wafer was recorded. Figure 5b demonstrates that the transmission cutoff edge can reach
down to 331 nm in the UV region, which is shorter compared with the RTP crystal (350 nm).
The IR region cutoff edge of Rb3Ti3P5O20 crystal is located at 4.5 µm. This shows the
similarity to the KTP and RTP crystals. The Rb3Ti3P5O20 crystal is of high transparency
in the UV-Vis-NIR region and has a wide optical transparency range of 0.33–4.5 µm. The
step near 800 nm is caused by a test instrument (light source change). The absorption band
at 3000 nm may be related to the formation of hydrogen bonds in the crystal (stretching
vibrations of the O-H bond).
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The SHG response was measured because Rb3Ti3P5O20 crystal is non-centrosymmetric.
The result is plotted in Figure 6. The SHG intensity is about 0.4 × KDP for a particle size
range of 70–90 µm. The magnitudes of distortions of the TiO6 octahedra were calculated
using the method proposed by P. Shiv Halasyamani [35]. The magnitude of the distortion
was quantified by considering deviations from 180◦ of the three trans O–Ti–O bond angles
as well as the six Ti–O bond distances in the [TiO6] octahedra. The calculation formula of
the octahedral distortion (∆d) is as follows:

∆d = |(M−O1)−(M−O4)|
|cos θ1|

+ |(M−O2)−(M−O5)|
|cos θ2|

+ |(M−O3)−(M−O6)|
|cos θ3| (2)

where the oxygen pairs (O1, O4) are in opposite positions in the [TiO6] octahedra. (O2, O5)
and (O3, O6) are positioned in the same way. The calculated ∆d values for [TiO6] octahedra
with three different crystallographic positions are 0.1536, 0.2631, and 0.2909, respectively.
According to the definition of P. Shiv Halasyamani, these values belong to a weak distortion
range (0.05–0.40) [35]. The weak distortions of [TiO6] octahedra might result in a weak
SHG response of the Rb3Ti3P5O20 crystal.
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3.5. Theoretical Calculations

To explore the structure–property relationship of the Rb3Ti3P5O20 crystals, the band
structure and DOS were calculated based on the DFT method. As shown in Figure 7a,
Rb3Ti3P5O20 is an indirect band gap material with an energy band gap width of 2.79 eV,
which is smaller than the test value (3.54 eV). It can be attributed to the underestimation of
the band gap by the DFT method [36]. The calculated total densities of states and partial
densities of states (TDOS and PDOS) are plotted in Figure 7b. Optical properties of crystals
are closely related to electronic transitions near the Fermi level (or the forbidden band).
Therefore, it is vital to investigate the valence band top (VBT) and the conduction band
bottom (CBB).
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From the spectra shown in Figure 7b, it can be inferred that: (1) the orbital effect of
alkali metal cations (Rb+) to electronic transitions near the forbidden band can be negligible.
(2) the electronic states of VBT between –5.0 eV and 0.0 eV are mainly constituted by O 2p
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orbitals and a spot of P 3p orbitals. (3) the electronic states near CBB (2.7 eV–5.0 eV) are
mainly contributed by Ti 3d orbitals and little component O 2p orbitals. According to
these analyses, it is clear that distorted [TiO6] octahedra contribute considerably to the
optical properties of Rb3Ti3P5O20 crystals, while [PO4] and [P2O7] groups contribute less
to the optical properties. Based on the calculated energy band structure and DOS, linear
refractive index curves and birefringence (∆n) curve of Rb3Ti3P5O20 are computed. As
shown in Figure 8, the refractive indices are characterized by a considerable anisotropy and
nx > nz > ny, which indicates that the Rb3Ti3P5O20 is a biaxial crystal. The values of the
birefringence are 0.079 at 1064 nm and 0.104 at 532 nm. The relatively large birefringence at
1064 nm of Rb3Ti3P5O20 is close to the value of KTP (experimental ∆n = 0.092 at 1064 nm).
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4. Conclusions

In summary, large Rb3Ti3P5O20 single crystals with dimensions of 7 × 2 × 1 mm3 and
3 × 3 × 1 mm3 were successfully grown via the high temperature solution growth method
in the Rb2O–TiO2–P2O5 system. The structural analysis indicates that there are two anionic
groups [PO4] and [P2O7] in the structure of Rb3Ti3P5O20 crystal. The optical properties of
the crystal, including UV-Vis diffuse reflectance spectra and transmission spectra, were
studied for the first time. The results demonstrated that Rb3Ti3P5O20 displays a wide
transparent range of 0.33–4.5 µm and has a relatively large band gap of 3.54 eV. The second
harmonic generation measurement showed that the SHG intensity is about 0.4 × KDP. The
weak distortions of [TiO6] octahedra might result in the weak SHG response. The band
structure, the density of states, and the dispersive refractive indices were calculated by
first principles calculations. The DOS spectra of Rb3Ti3P5O20 show that the valence band
top is formed mainly by O 2p orbitals and the conduction band bottom is contributed to
by Ti 3d orbitals. Therefore, distorted [TiO6] octahedra contributes considerably to the
optical properties. Furthermore, Rb3Ti3P5O20 has a moderate birefringence of 0.079 at
1064 nm. This work may be used as a reference for feasible optical application prospects of
Rb3Ti3P5O20 crystals.
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