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Abstract

The regulated degradation of damaged or misfolded proteins, as well as down-regulation of key signaling proteins, within
eukaryotic and bacterial cells is catalyzed primarily by large, ATP-dependent multimeric proteolytic complexes, termed
proteasomes. Inhibition of proteasomal activity affects a wide variety of physiological and pathological processes, and was
found to be particularly effective for cancer therapy. We report here on the development of a novel high throughput assay
for proteasome inhibition using a unique, highly sensitive live-cell screening, based on the cytoplasm-to-nucleus
translocation of a fluorescent proteasome inhibition reporter (PIR) protein, consisting of nuclear localization signal-deficient
p53 derivative. We further show here that mdm2, a key negative regulator of p53 plays a key role in the accumulation of PIR
in the nucleus upon proteasome inhibition. Using this assay, we have screened the NCI Diversity Set library, containing
1,992 low molecular weight synthetic compounds, and identified four proteasome inhibitors. The special features of the
current screen, compared to those of other approaches are discussed.
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Introduction

The proteasome is the major proteolytic complex, responsible,

in eukaryotic cells, for the degradation of a multitude of cellular

proteins. This multi-protein complex, present in both the

cytoplasm and the nucleus, catalyzes the ATP-dependent

proteolysis of short-lived regulatory proteins, as well as the rapid

elimination of damaged and abnormal proteins [1,2]. The 26S

proteasome is a large complex of ,2.5 MDa. Based on

biochemical analyses, this complex can be dissociated into two

functionally distinct subcomplexes, the 20S core particle (CP)

which is the proteolytic component, and the 19S regulatory

particle (RP), that is responsible for recognizing, unfolding, and

translocating polyubiquitinated substrates into the 20S CP, where

they are degraded.

The 20S CP is a 670 kDa barrel-shaped protein complex made

up of four stacked, seven-membered rings (467 subunits), two

outer a rings and two inner b rings (a1-7b1-7b1-7a1-7). The two

matching a rings are situated in the outer rims of the barrel, facing

the 19S regulatory complex. The proteolytic active sites are

located on the two identical b-rings, which are positioned in the

center of the 20S complex [3,4]. In eukaryotes, the catalytic

activities of the proteasomes are confined to only three of the b-

subunits. Although proteasomes can hydrolyze the amide bonds

between most amino acids, proteolytic activities measured using

fluorogenic substrates define three distinct (although not conclu-

sive) cleavage preferences [5]: b2 possesses tryptic activity (i.e.,

cleaving after basic residues); b5 displays chymotryptic activity

(i.e., cleaving after hydrophobic residues); and b1 has ‘‘caspase-

like’’ or ‘‘post-acidic’’ activity. In all three active b-subunits,

proteolytic activity is associated with their N-terminal threonine

residue, which acts as a nucleophile in peptide-bond hydrolysis.

The use of proteasome inhibitors as drug candidates emerged

from the observation that at specific concentrations, they can

induce apoptosis in certain leukemia- and lymphoma-derived cells

[6,7] without similarly affecting their non-transformed counter-

parts. Further development and clinical trials led to the approval of

the modified boronic dipeptide Pyz-Phe-boroLeu, known as

Bortezomib or VelcadeH, as a drug for the treatment of multiple

myeloma [8,9,10,11]. Most synthetic proteasome inhibitors are

short peptides that mimic protein substrates. Typically, the

pharmacophore that reacts with and inhibits the threonine residue

in the 20S proteasome’s active site is bound to the carboxyl residue

of the peptide [12]. Some of the typical synthetic inhibitors are

peptide aldehydes, peptide vinyl sulfones, peptide boronates, and

peptide epoxyketones [for review, see [13]]. Most notable among

the natural, bacterially derived non-peptide inhibitors is claso-

lactacystin-b-lactone (Omuralide) [14]. Related drugs such as

Salinosporamide A (NPI-0052) and Carfilzomib (PR-171) are

currently in advanced clinical trials [15,16,17]. However, despite

the extensive efforts invested in proteasome inhibitor development,

there is a growing need for novel inhibitory molecules, due to the

emergence of drug-resistant cells and the variable effects of existing

inhibitors on different cells.

Most of the current assays for proteasome inhibition are based

on cell-free assays [18,19], which require purification of 26S or
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20S proteasomes from different sources. Such assays may, in

principle, be adapted to high-throughput screens, yet they may fail

to predict the inhibitory activity in live cells. To overcome this

problem, cell-based screens have been incorporated into the drug

discovery process. For example, a modified ‘‘classical’’ method for

measurement of the chymotrypsin-like, trypsin-like, or caspase-like

proteasome activities in cultured cells [20] is currently available

from Promega Corporation. A number of fluorescent reporter

molecules have been also usefully employed to monitor the activity

of the proteasome. Dantuma et al constructed a fusion of GFP to

Ubiquitin (Ubi[G76V]-GFP) using a standard peptide bond at the

N-terminus [21], Another proteasome sensor construct, which is a

GFP fusion to an artificial peptide, CL1, identified in yeast has

been designed by Bence et al ([22]. The Andreatta group and BD

Biosciences Clontech has introduced a sensor cell line expressing a

GFP fusion protein with a fragment of the mouse ornithine

decarboxylase (MODC), which is degraded by the proteasome

without the requirement for ubiquitination [23]. An additional

reporter cell line, based on the stable expression of a p27kip1-GFP

fusion was recently employd for the discovery of a novel

proteasome inhibitor, argyrin A [24]. The common feature of

most of these GFP-fused reporters is that they are based on

proteins rapidly degraded by the proteasome under normal

conditions, leading to very low fluorescence of the cells, while

following inhibition of proteasome activity, the overall fluorescent

signal of the cells rapidly increases as a result of accumulation of

the reporter proteins.

In this article, we describe a novel, image-based screening

approach, which utilizes an H1299 reporter cell line, stably

expressing a fluorescent ‘‘Proteasome Inhibition Reporter’’ (PIR)

protein. The screen is based on the finding that upon inhibition of

proteasomal activity, this fluorescent reporter molecule translo-

cates from the cytoplasm to the nucleus. Our findings demonstrate

that this approach is highly sensitive, and compatible with high

throughput microscopy. In the screen reported herein, we tested

the Diversity Set of the NIH/NCI chemical library, and identified

four compounds with pronounced proteasome inhibitory activity,

three of which are novel inhibitors.

Materials and Methods

DNA Constructs, Generation of a Stable Reporter Cell
Line and Transient Transfection

To construct a YFP-tagged Proteasome Inhibitor Reporter

(PIR) protein, cDNA encoding a full-length human p53 R175H

mutant was amplified by PCR from a cDNA clone, and three

consecutive lysine residues in the bipartite Nuclear Localization

Signal (NLS) were replaced with alanines by PCR-based, site-

directed mutagenesis [25] [26]. The DNA fragment was cloned

into the BglII and NotI sites of pLPCX retroviral vector (Clontech)

in-frame to the N-terminus of the yellow fluorescent protein (YFP),

using the NotI/ClaI restriction sites. The PIR protein was

expressed in an H1299 non-small cell lung carcinoma cell line,

following retroviral infection, and the cells were cultured in RPMI

1640 medium containing 10% fetal bovine serum, 2 mM

glutamine and 1% penicillin-streptomycin (all from Sigma-

Aldrich) in a humidified atmosphere of 5% CO2 at 37uC.

Fluorescent cells were isolated by flow cytometry, and single-cell

cloning was used to generate a morphologically uniform cell

population.

Plasmids for the expression of human MDM2 were kindly

provided by B. Vogelstein (wild type MDM2), A. Levine [MDM2

D9-58] and A. Ciechanover [MDM2 Ser 440]. Transfections

employing plasmid DNA were carried out using Lipofectamine

2000TM reagent (Invitrogen) as per the manufacturer’s instruc-

tions. For RNA interference, PIR cells were transfected with 50

pM control or MDM2 siRNA oligonucleotides (Dharmacon, ON-

TARGETplus SMARTpool), with Dharmafect 2 (Dharmacon)

according to the manufacturer’s protocol.

Immunofluorescence Microscopy
Cells were cultured on glass coverslips, fixed, and permeabilized

for 2 min in phosphate-buffered saline (PBS) containing 0.5%

Triton X-100 and 3% formaldehyde, and post-fixed with 3%

formaldehyde in PBS for 30 min. The cells were then rinsed and

stained with polyclonal anti-b-catenin antibody (Sigma) or a

mixture of anti-MDM2 monoclonal antibodies SMP14, 2A10, and

4B11 for 1 h (hybridoma cells were kindly provided by A. Levine),

washed, and further incubated with Cy3-conjugated goat anti-

mouse IgG (Enco). Images were acquired using the DeltaVision

system (Applied Precision Inc.).

Compound Library
The chemical compound library screened here for proteasomal

inhibitors consisted of the NCI Diversity Set, containing 1,992 low

molecular weight synthetic compounds selected from and

representing nearly 140,000 compounds available from the NCI

DTP chemical library (http://dtp.nci.nih.gov/branches/dscb/

diversity_explanation.html).

The library compounds were dissolved in dimethyl sulfoxide

(DMSO) to a concentration of 10 mM, placed in 96-well plates,

and stored at 270uC for future use.

Image-Based Screening Assay for Proteasome Activity
PIR-expressing H1299 cells were seeded at a density of 800 cells

per well in 384-well assay plates (F-bottom, mClear, black, tissue-

culture-treated) (Greiner Bio-One). Cells were cultured for 24 h

and treated with the library compounds at two concentrations (1

and 10 mM) in RPMI 1640. In each assay plate, cells in 24 wells

treated with 0.2% DMSO alone were used as controls. As a

positive control, 1 mM MG132 was added to a single column of

the assay plate. Following 12 hours of incubation, cells were fixed

in 3% paraformaldehyde for 20 min, then washed with PBS and

screened for localization of the PIR protein.

Microscope Automation and Image Processing
WiScanTM Cell Imaging System (Idea Bio-Medical) was used

for this screen [27]. The system is based on an IX71 microscope

(Olympus), equipped with a fast laser AutoFocus device [28] and

an automated stage. Thirty-six fields were acquired from every

well using a 60x/0.9 air objective, stored, and tiled into montages

to detect consistent effects. Scoring of the nuclear translocation of

the fluorescent PIR protein was carried out manually.

In Vitro Proteasome Activity Assay
For measuring proteasome activity, purified 20S or 26S

proteasomes prepared from rabbit muscles were incubated at a

final concentration of 16 nM, with 100 mM fluorogenic 7-amido-

4-methylcoumarin (AMC) tetrapeptide substrate Suc-LLVY-AMC

(Bachem) and the stated concentration of the hit compounds in the

presence of 100 ml of assay buffer (50 mM Hepes, 5 mM MgCl2,

2 mM ATP and 1 mM DTT). The well-documented proteasomal

inhibitor MG132 was used as a positive control, and an equivalent

volume of solvent as a negative control. The time-dependent

increase of hydrolyzed AMC groups was measured in a 96-well

plate equilibrated to 37uC, using a Varioscan multi-well plate

reader (Thermo Fisher Scientific, Inc.) in a kinetic mode, in which
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the recording intervals were set to 1 minute. The excitation

wavelength was 370 nm; fluorescence emission was recorded at

465 nm.

Immunoblotting
H1299-PIR cells were lysed with radioimmune precipitation

assay buffer (1% NP-40, 1% sodium deoxycholate, 0.1% SDS,

150 mM NaCl, 50 mM Tris, pH 8.0) containing a protease

inhibitor cocktail from Roche Applied Science. Protein extracts

were subjected to 8% SDS-PAGE, transferred to a nitrocellulose

membrane (Whatman), and probed with monoclonal anti-p53

(DO1, Santa Cruz Biotechnology), anti-ubiquitin (Covance), anti-

b-catenin (Sigma) and anti-b-tubulin (Sigma) primary antibodies.

For sub-cellular fractionation, cells were harvested and

resuspended in ice-cold hypotonic lysis buffer [10 mM HEPES

pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT, supplement-

ed with a complete protease inhibitor cocktail (Roche)], incubated

on ice for 15 min, then NP40 was added, to a final concentration

of 0.6%. The samples were vortexed for 10 s and immediately

centrifuged at 12,000 g for 30 s. The supernatant (cytoplasmic

fraction) was transferred to a fresh tube. The nuclei pellet was

washed once with hypotonic lysis buffer, and lysed with SDS

sample buffer (100 mM Tris–HCl pH 6.8, 2% SDS, 100 mm

DTT, and 10% glycerol).

Cell Viability Assay
The effect of each hit compound on cell viability was tested at

11 different concentrations, ranging from 0.1–100 mM. PIR cells

were plated onto 384-well microplates for 24 hours, and then

treated for 48 h with the library compounds. Cell viability was

determined using the colorimetric AlamarBlueH (Invitrogen)

viability assay, according to the manufacturer’s instructions.

Results are expressed as GI50; namely, the compound concentra-

tion that reduces the AlamarBlueH score by 50%, compared to

untreated controls.

Results

Development of an H1299-PIR Reporter Cell Line and Its
Application for an Image-Based, High-Throughput
Screening for Proteasome Inhibitors

The PIR protein, used here for proteasome inhibitor screening,

was constructed of yellow fluorescent protein (YFP) fused to the C-

terminus of the human p53 R175H mutant. The cytoplasm-to-

nucleus transport of this p53 mutant was attenuated by additional

triple mutation in the bipartite NLS in which three consecutive

lysine residues were replaced with alanines (K319A, K320A, and

K321A), as described by O’Keefe et al [29]. In agreement with

previous reports, under normal cell culture conditions, this point

mutation leads to cytoplasmic localization of the PIR protein in

H1299 cells [29,30], confirming that the three basic residues at

position 319–321 are indeed part of a nuclear localization signal.

However, upon treatment with known proteasome inhibitors (e.g.

MG132, Bortezomib and ALLN), PIR translocates into the

nucleus in a manner reminiscent of p53 mutated in its NLS

(Fig. 1B upper panel) [31]. b-catenin, whose cellular levels are

primarily regulated by the proteasome, underwent similar nuclear

translocation in response to proteasome inhibition (Fig. 1B, lower

panel), yet this was accompanied by significant stabilization and

increase in its quantity [32] unlike PIR, whose overall levels did

not markedly change. To validate these results, we quantified the

levels of PIR in the nuclear and cytoplasmic fractions of treated

and control H1299-PIR cells using immunoblotting. This assay

confirmed our microscopy-based observation, and pointed to a

,3-fold increase in the nuclear/cytoplasmic ratio of PIR, in

response to MG132 treatment (Fig. 1C).

To assess the sensitivity of the PIR cell-based assay, H1299-PIR

cells were incubated for 8 hours with different concentrations

(0.01–10 mM) of known proteasome inhibitors (MG132 and

Bortezomib). The cells were then fixed and scored for nuclear

translocation of PIR. The score (EC50) refers to the concentration

of inhibitor needed to induce nuclear translocation of PIR in 50%

of the treated cells. This test indicated that in our assay, the EC50

values for MG132 and Bortezomib were 0.5 mM, and 0.05 mM,

respectively. These values favorably compare with those reported

for other detection systems, such as the commercial Living Colors

HEK 293 ZsGreen Proteasome Sensor system (Clontech), which

detects MG132 at 2.5 mM (after 20 hours of treatment using flow

cytometry) [23], or for the Ubi[G76V]-GFP-based reporter system

(BioImage), in which the reported EC50 value for MG-132 was

approximately 1.0 mM [21]. Thus, H1299-PIR cells appear to be

sensitive reporters, capable of detecting the activity of proteasome

inhibitors in a cell-based assay.

Nuclear Accumulation of Endogenous MDM2 in
Response to Proteasome Inhibition Is Responsible for PIR
Nuclear Translocation

To further characterize the mode of PIR nuclear translocation

upon proteasome inhibition, we have considered the possibility

that proteasome-sensitive p53 binding proteins, are responsible for

carrying PIR into the nucleus. Towards this end, MDM2, a p53

E3 ubiquitin ligase and a known target of proteasome-dependent

degradation, was transfected into PIR cells, and its localization was

assessed by immunofuorescence microscopy. As expected, endog-

enous MDM2 labeling in the PIR-H1299 cells was relatively faint

and mostly nuclear while PIR was mainly localized to the

cytoplasm (Figure 2a). In contrast, in the cells transfected with wild

type MDM2, both the fluorescent PIR and MDM2 translocated to

the nucleus. This suggests that MDM2 can transport NLS-

deficient PIR from the cytoplasm into the nucleus, perhaps via the

NLS of MDM2, consistently with previous studies suggesting that

MDM2 can promote the nuclear import of DNLS p53 [31].

Interestingly, PIR remained cytoplasmic in cells over-expressing a

mutated MDM2 lacking the p53 binding site (MDM2 D 9-58),

suggesting that the interaction between the two proteins is needed

for their cotranslocation to the nucleus. On other hand, MDM2

mutant with point mutation that abolishes its E3 ubiquitin ligase

function (MDM2 Ser440) induced PIR nuclear localization similar

to the wild type molecule.

To check whether MDM2 expression is critical for PIR nuclear

translocation, we performed siRNA-mediated knockdown of

MDM2 expression in PIR-cells, and then treated the cells with

proteasome inhibitors (Figure 2b). It was found that when MDM2

levels in the knocked-down cells were reduced, PIR remained

cytoplasmic even following treatment with proteasome inhibitors,

indicating that MDM2 is an essential player in the nuclear

localization of NLS-deficient PIR.

Screening for Novel Proteasome Inhibitors in the
Diversity Set of the NIH/NCI Chemical Library

To assess the potential use of the cytoplasm-to-nucleus transloca-

tion of PIR in high-throughput, microscopy-based screening for novel

proteasome inhibitors, we tested 1,992 low molecular weight

compounds comprising the NCI Diversity Set chemical library. A

flow chart depicting the screening procedure is shown in Figure 3,

and described in the Experimental Procedures. Following the initial

automated screen, the images of the affected cells were inspected
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manually and a secondary screen was performed, in which hit

compounds were tested at multiple concentrations, and directly

compared to the well-established proteasome inhibitor MG132. This

procedure resulted in the discovery of four compounds that induced

nuclear translocation of PIR, indicating a hit rate of ,0.2%. As

summarized in Table 1, all four compounds detected in the primary

screen were confirmed by manual inspection.

Biochemical Validation of the Inhibitory Effects of the Hit
Compounds

One characteristic outcome of proteasome inhibition is the

accumulation of ubiquitinated proteins in the treated cells. To

monitor the levels of ubiquitinated proteins that accumulated upon

incubation with the novel inhibitors detected in our screen,

H1299-PIR cells were treated with each of the inhibitors for

Figure 1. Engineering and validation of the PIR reporter system. (A) Schematic representation of the PIR protein. PIR consists of yellow
fluorescent protein (YFP) fused to the C-terminus of the human p53 mutant R175H, carrying a triple mutation in the bipartite NLS in which three
consecutive lysine residues were replaced with alanines K319A, K320A, and K321A. (B) Nuclear accumulation of the PIR protein upon treatment with
proteasome inhibitors. PIR cells were exposed to MG132, Bortezomib, and ALLN at the indicated concentrations for 6 h. PIR-associated YFP-
fluorescence (upper panel) and immunostaining with anti-b-catenin antibody (lower panel) are seen. (C) PIR cells were incubated for 6 h without
proteasome inhibitor (control), or with 10 mM MG132. Fractionated cytoplasm and nuclear lysates were analyzed by Western blot with anti-p53
antibody. A band corresponding to PIR was detected in the nuclear fraction only following treatment with MG132.
doi:10.1371/journal.pone.0008503.g001
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6 hours, at doses comparable to those that were used in the screen.

Following incubation, cell extracts were analyzed by Western blot,

using anti-ubiquitin and anti-b-catenin antibodies. As shown in

Fig. 4A&B, accumulation of endogenous polyubiquitinated

proteins, as well as elevated levels of b-catenin (a known target

of the proteasome), at varying degrees, were caused by all four

inhibitors, confirming their inhibitory effect on proteasomal

degradation. The hit compounds NSC321206 (at a concentration

of 0.15 mM) and NSC310551 (0.3 mM) were the most effective,

demonstrating inhibitory activity comparable to that of 5 mM

MG132. NSC99671 and NSC3907 (50 mM and 20 mM, respec-

tively) displayed less of an inhibitory effect. It is noteworthy that

the same concentrations that induced nuclear transport in the PIR

assay, also resulted in accumulation of polyubiquitinated proteins

and stabilization of b-catenin. Moreover, the potency of

proteasomal inhibition, judged by these criteria, coincides nicely

with the magnitude of the nuclear fluorescence signal detected in

the PIR cell-based assay, upon inhibition with the different hit

compounds.

To directly test the capacity of the four compounds to inhibit

activity in mammalian proteasomes, we performed an in vitro

activity assay in which the hit compounds were tested for their

effects on the degradation of the model fluorogenic tetrapeptide

LLVY-AMC by purified rabbit 26S proteasomes. As seen in

Fig. 4C, all four compounds inhibited proteasomal degradation to

varying degrees. Both NSC310551 and NSC321206 showed levels

of inhibition comparable to that of MG132, with NSC321206

being the most effective inhibitor. NSC99671 displayed a

moderate inhibitory effect, and NSC3907 had only a minor

effect. The low potency of NSC3907 in inhibiting the purified

Figure 2. MDM2 promotes PIR nuclear translocation. (A) Overexpression of MDM2 results on the PIR nuclear localization without additional
stimuli. PIR cells were transfected with wild-type MDM2, MDM2 mutant deficient on p53 binding (D 9-58), or MDM2 mutant with abolished E3 ligase
site (Ser 440). Cells expressing both p53 and MDM2 were visualized by immunofuorescence staining with the anti-MDM2 monoclonal antibodies. PIR
has a nuclear localization in the cells expressing wt MDM2 and MDM2 (Ser 440), and remains cytoplasmic in the cells transfected with MDM2 (D 9-58).
(B) Mdm2 siRNA prevents bortezomide–induced translocation of PIR to the nucleus. PIR cells were transiently transfected with 200 pmol control-
siRNA or Mdm2-siRNA. Forty-eight hours after transfection, bortezomide (0.1 mM) was added for an additional 6 h, and immunofuorescence staining
for MDM2 was performed as described in Materials and Methods.
doi:10.1371/journal.pone.0008503.g002
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proteasome was consistent with previous findings [33,34], showing

that this molecule (8-Quinolinol salicylate) can specifically inhibit

the chymotryptic activity of the proteasome only in complex with

intracellular copper. The fact that this compound was still picked

up by our screen reflects an advantage of this cell-based assay.

Effect of the Novel Proteasome Inhibitors on Cell Viability
Proteasome inhibitors are known to be particularly cytotoxic to

malignant cells via multiple mechanisms [7,35]. To directly test

the effects of the new proteasome inhibitors discovered in this

study on cell viability, we treated PIR-expressing H1299 cells for

48 h with each of the four compounds, at a wide range of

concentrations, ranging from 0.1 to 100 mM. The cells were then

subjected to an Alamar Blue viability assay, which quantifies the

number of metabolically active cells. As shown in Fig. 5, all four

compounds affect cell viability, or inhibit the growth of PIR-

H1299 cells (independent of the presence of PIR), at different

concentrations. NSC3907 and NSC99671 exhibited a relatively

weak growth inhibition effect, with GI50 values of 47 mM and

96 mM, respectively, while NSC310551 and NSC321206 dis-

played a considerably stronger effect, with GI50 values of 0.27 mM

and 0.17 mM, respectively. For all proteasome inhibitors examined

in this screen, there was a high correlation between proteasomal

inhibitory activity and cell viability.

In view of previous reports, indicating that malignant cells are

significantly more sensitive to proteasome inhibition than their

normal counterparts [7,36], we compared the effect of the most

effective inhibitory compound, NSC321206, toward normal breast

epithelial cell line (MCF10A) and malignant breast carcinoma cells

(MDM-MB-231) cell lines. As shown in Fig. S1, NSC321206

effectively eliminated all MDA-MB-231 cells at a concentration of

1 mM (GI50 value of 0.4 mM), while the non-malignant breast

epithelial cell line (MCF10A) were only partially affected, at a

considerably higher concentration of this compound.

To gain insights into the effects of our hit compounds on a wide

variety of cells, we explored the published information on the

effects of these compounds on the NCI-60 panel of human tumor

cell lines used in the NCI Developmental Therapeutics Program

(DTP) (http://dtp.nci.nih.gov). As seen in Figure S2, the four hit

compounds showed cytotoxic effects (log10 GI50 ,24.0) against a

variety of cell lines, whereas NSC321206 and NSC310551

demonstrated high cytotoxicity in vitro against all tested human

cancer cell lines in the panel, with average negative log10 GI50

values of 7.2 and 6.6, respectively. The activity of NSC3907 was

much lower, with a mean overall – log10 GI50 value of 5.3.

NSC99671 was non- toxic for most of the lines (overall –log10

GI50 of 4.1). The most sensitive cell lines for all hit compounds

were the leukemia cells, with overall -log10 GI50 equaling 7.73 for

NSC321206, 7.028 for NSC310551, 6.249 for NSC3907, and

4.473 for NSC9967. These initial findings corroborate our in vitro

results, and directly demonstrate the use of our novel proteasomal

inhibitors as potential therapeutic agents in cancer.

Discussion

Presently, few approaches for the high-throughput discovery

of proteasome inhibitors exist [18,19,20], those that do, are

mostly based on the use of biochemical techniques. Cell-based/

image-based assays enables evaluation of potential proteasomal

inhibitors that may not be detected using purified proteasomes

and have several other advantages such as demonstrating that

active compounds are cell-permeable and are sensitive to effects

at multiple targets and nodes within a given pathway, as

opposed to a strict cell-free assay that focuses on one particular

target, such as degradation of a particular substrate by a purified

proteasome. The main motivation directing the development of

PIR was to establish a method enabling the assessment of

Figure 3. A flow chart of the screening procedure. For the
screening assay, H1299-PIR reporter cells were plated in 384-well plates
for 24 h and treated with compounds of the NCI Diversity Set library at
two concentrations (1 and 10 mM), one compound per well. Following
12 hours of incubation, cells were fixed in 3% paraformaldehyde and
screened for PIR cellular localization with WiScanTM automated
microscope system. Acquired images were analyzed for PIR nuclear
translocation, and selected hits were confirmed by microscopy-based
and biochemical methods, and tested for compound cytotoxicity.
doi:10.1371/journal.pone.0008503.g003

Table 1. The hit compounds identified in the PIR screen as potent proteasomal inhibitors.

NSC3907 NSC99671 NSC310551 NSC321206

Chemical name 8-Hydroxyquinoline
salicylate

2-[2-[(1,3-dimethyl-2-oxo-6-
sulfanylidene-7H-purin-8-yl)sulfanyl]
ethyl]isoindole-1,3-dione

copper; [(6-methylpyridin-2-
yl)methylideneamino]-[methylsulfanyl
(sulfoniu mylidene]methyl) azanide

bromocopper; (dipyridin-2-
ylmethylideneamino)-
[methylsulfanyl(sulfoniumylidene)
methyl]azanide

Molecular formula C16H13NO4 C17H15N5O3S2 C18H22CuN6S4 C13H12BrCuN4S2

EC50 5 mM 15 mM 0.25 mM 0.1 mM

doi:10.1371/journal.pone.0008503.t001
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proteasomal inhibition in a cellular context, based on the

unequivocal translocation of a fluorescent reporter protein from

the cytoplasm to the nucleus upon proteasomal inhibition,

without grossly affecting its overall levels. We found this

approach to be highly specific, with essentially no false positives,

in contrast to existing cell-based screens for proteasomal

inhibitors that monitor the accumulation of fluorescent signals

from direct proteasomal substrates [21,22,23], that appear to be

sensitive to autofluorescence and to the fluorescence-quenching

effects of the screening molecules, as well as to variations in cell

geometry, some of which may be induced, directly or indirectly,

by proteasomal inhibition.

The design of the PIR reporter protein is based on a p53

R175H mutant which, in contrast to the short-lived, WT p53, has

a significantly longer half-life (several hours), presumably due to

its reduced susceptibility to proteasomal degradation [37]. As a

result, the overall concentration of PIR in cells is only marginally

affected by treatment with proteasomal inhibitors such as MG132

(Fig. 1C). In the PIR assay, monitoring proteasomal inhibition is

based on intracellular translocation of the reporter protein from

the cytoplasm to the nucleus, in response to proteasomal

inhibition. It is noteworthy that PIR was found to be particularly

suitable for high throughput screening for proteasomal inhibitors,

due to the unambiguous quantification of nuclear vs. cytoplasmic

fluorescence.

Several proteins such as p53, MDM2 and b-catenin were

previously reported to accumulate in the nucleus following

treatment with proteasome inhibitors [32,38,39,40,41,42].

Beyond the fact that these are all target substrates of the

ubiquitin-proteasome pathway, their translocation to the

nucleus is mediated via recognition of their NLS by cytosolic

nuclear transport receptors [apart from b-catenin, which is

imported into the nucleus by direct binding to the nuclear pore

machinery [43]]. Typically, deletion or mutation of the NLS

disrupts their nuclear import. Under normal cell culture

conditions, PIR, which is based on R175H p53 with a mutated

bipartite NLS [29], loses its ability to translocate to the nucleus

and, therefore, accumulates in the cytoplasm. Even treatment

with etoposide, which is a strong inducer of p53 cytoplasm-to-

nucleus transport, fails to promote this translocation. Our

studies provide some clues as to the mechanism underlying PIR

Figure 4. Positive hit compounds inhibit 26S proteasome. (A)
PIR cells were treated with hit compounds and MG132 for 6 hr at the
following concentrations: NSC3907 – 20 mM; NSC99671 – 50 mM;
NSC310551 – 0.3 mM; NSC321206 – 0.15 mM; and MG132 - 5 mM).
Whole cell lysates were immunoblotted for ubiquitin (upper panel) and
b-catenin (middle panel). Tubulin (lower panel) was used as an internal
loading control. (B) Quantitation of the amounts of ubiquitinated
proteins (blue) and b-catenin (red) in the absence of and upon
treatment with the different inhibitors. (C) Positive hit compounds
inhibit purified proteasome in vitro. Purified 26S proteasomes from
rabbit muscle were incubated for the indicated times in the presence of
30 mM of our positive hits (100 mM for NSC3907). MG-132 at a 5 mM
concentration served as a positive control. NSC3907 (blue), NSC99671
(green), NSC310551 (magenta), NSC321206 (orange), without treatment
(red) and MG-132 (black).
doi:10.1371/journal.pone.0008503.g004

Figure 5. Effect of the hit compounds on the viability of PIR
cells. PIR cells were treated with the active compounds for 48 hr at 11
concentrations ranging from 0.1 to 100 mM and the cells’ viability was
assessed by AlamarBlue assay. Results are expressed as the viability
ratio of treated to untreated cells and represent the mean 6 SD of 6
repeats.
doi:10.1371/journal.pone.0008503.g005
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translocation to the nucleus upon proteasomal inhibition.

Specifically, we propose a model suggesting that nuclear entry

of this molecule is driven by yet another protein, which is highly

sensitive to proteasomal degradation, contains a nuclear

localization domain, and is capable of piggy-backing PIR into

the nucleus. Furtheremore, we provide evidence suggesting that

this nuclear translocator of PIR is, in fact, the p53 E3 ubiquitin

ligase MDM2, which was shown to translocate into the nucleus

upon proteasome inhibition (Xirodimas et al 2001). MDM2

promotes PIR nuclear import in transiently transfected cells

over-expressing wild type MDM2, in the absence of additional

stimuli (Fig. 2). Upon proteasome inhibition, the levels of

MDM2 dramatically increase and, in turn, drive PIR into the

nucleus. We also demonstrated that the ability of MDM2 to

bind p53 is critical for such translocation, unlike its E3 ubiquitin

ligase function. Further compelling support for our model comes

from the fact that the translocation of the PIR protein to the

nucleus, induced by proteasome inhibition, is abolished by

MDM2 knockdown, confirming that the interaction between the

two proteins results in colocalization in the nucleus. This is

consistent with previous reports showing that wild type p53 (as

well as its homologue p73) and MDM2 may facilitate the

shuttling of each other from the cytoplasm into the nucleus

[31,44] and vice versa.

In conclusion, the novel cell-based screen described here

appears to be a robust and highly sensitive tool for the

identification on new proteasome inhibitors. It is based on the

stabilized MDM2-dependent accumulation of the PIR molecule in

the nucleus, and is compatible with microscopy-based high

throughput screening technology. Further characterization of the

new inhibitors discovered using this approach, as well as the

development of a combined ultra high resolution / high content

screen, based on the PIR cells, are currently underway.

Supporting Information

Figure S1 Differential effect of NSC321206 on human malig-

nant breast cells (MDM-MB-231) and human non-malignant

breast epithelial cells (MCF10A). The two cell lines were treated

with NSC321206 for 48 hr at 6 concentrations ranging from 0.025

to 2.5 mM and the viability was assessed using the AlamarBlue

assay. Results are expressed as the viability ratio of treated to

untreated cells and represent the mean 6 SD values of 6 repeats.

Found at: doi:10.1371/journal.pone.0008503.s001 (2.12 MB TIF)

Figure S2 In vitro cytotoxicity of the hit compounds on an NCI-

60 panel of human tumor cell lines. Results are based on data from

anti-cancer drug screening against the full panel of 60 human

cancer cell lines, conducted as part of the Developmental

Therapeutics Program at the National Cancer Institute (http://

dtp.nci.nih.gov). The panel is divided into nine sub-panels

representing diverse cancer cell types, including leukemia,

melanoma, and cancers of the lung, colon, kidney, ovary, breast,

prostate, and central nervous system. Results obtained with this

test are expressed as the -log of the molar concentration that

inhibited cell growth by 50% (-log GI50 .4.00 for active

compounds).

Found at: doi:10.1371/journal.pone.0008503.s002 (4.24 MB TIF)
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