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Abstract: The biomedical acoustic signal plays an important role in clinical non-invasive diagnosis.
In view of the deficiencies in early diagnosis of cardiovascular diseases, acoustic properties of S1

and S2 heart sounds are utilized. In this paper, we propose an integrated concave cilium MEMS
heart sound sensor. The concave structure enlarges the area for receiving sound waves to improve
the low-frequency sensitivity, and realizes the low-frequency and high-sensitivity characteristics of
an MEMS heart sound sensor by adopting a reasonable acoustic package design, reducing the loss
of heart sound distortion and faint heart murmurs, and improving the auscultation effect. Finally,
experimental results show that the integrated concave ciliated MEMS heart sound sensor’s sensitivity
reaches −180.6 dB@500 Hz, as compared with the traditional bionic ciliated MEMS heart sound
sensor; the sensitivity is 8.9 dB higher. The sensor has a signal-to-noise ratio of 27.05 dB, and has
good heart sound detection ability, improving the accuracy of clinical detection methods.

Keywords: bionic; MEMS; sensor; stethoscope

1. Introduction

Cardiovascular disease has become a frequent and common disease that endangers
human health. Therefore, the prevention and diagnosis of cardiovascular diseases repre-
sented by coronary heart disease, especially through the research of non-invasive diagnosis
technology based on modern information technology, has become an important topic of
clinical diagnosis research. Auscultation is an indispensable, routine examination method
for clinical diagnosis. The French doctor Laennec invented the stethoscope in 1816 so that
“indirect auscultation” became possible, and disciplines such as cardiac auscultation were
established, which greatly promoted the development of medicine [1,2].

Biomedical signals, especially human biomedical signals, are generated by a variety
of living organisms. Like other creatures in nature, each organ in the body is moving
in accordance with specific laws. The vibration of movement produces corresponding
sound information, whereas different sound information carries different physiological
and pathological characteristics of each related organ. After continuous development and
improvement of medical auscultation, the 3M Littmann company in the United States
made a significant breakthrough concerning medical auscultation in 2000, and applied the
developed electronic stethoscope to auscultate by using electronic technology for the first
time [3,4]. With the constant improvement and development of science, the stethoscope
has become electronic, intelligent, and portable. The cardiac sound sensor, based on the
high-density microphone, was developed by A. Mashubabu et al. in 2016 [5]. In 2017,
a piezoelectric PVDF-membrane heart acoustic sensor was fabricated by S. Afattah et al.
An innovative interferometric cardiac sound sensor was invented by R. Martinek et al.
in 2018 by utilizing optical fiber [6]. Exploiting the MEMS technology, Zhang Guojun
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et al. at North University of China developed a bionic sensing unit for detecting heart
sounds in 2019, where the piezoresistors and beams were used as the core, marking the
diversified advancement in cardiac sound auscultation approaches [7,8]. Taking the 3M
electronic stethoscope as an example, piezoelectric materials play a role as the sensing
element. When the piezoelectric material is deformed, polarization is generated inside it;
meanwhile, charges with opposite signs are generated on its two surfaces. However, the
charges generated are easy to leak and insensitive to low-frequency signals. In addition,
the sensitivity of the piezoelectric sensor is determined by the thickness of the piezoelectric
vibrator, and the piezoelectric material is also likely to be damaged in the manufacturing
process [9,10]. With the development of MEMS technology, the application of MEMS
technology to medical auscultation has become a trend [11].The heart sound sensor based
on MEMS technology realizes the acquisition and capture of the acoustic signal through the
piezoresistive effect, and a reasonable acoustic package is designed to effectively reduce
the propagation sound loss of the heart sound signal from the human tissue to the sensor
receiving process.

Heart sound, which is in the cardiac cycle, is a mechanical vibration that is the result
of myocardial contractile function and diastolic or blood flow shock to the ventricular
wall. It passes around the chest wall and the weak vibration signal is generated. The
recognition and analysis of the heart sound signal have practical application values and
clinical significance in the diagnosis of cardiovascular disease, and their accuracy and
reliability are directly related to the diagnosis and treatment effect. When the heart or
cardiovascular disease has not progressed to ECG abnormalities, pain and other symptoms,
the murmurs and aberrations of the heart sounds are reliable information for early diagnosis.
Heart sound diagnosis is non-invasive, fast, convenient, and economical, and can be used
for extensive general surveys and preventive diagnosis. It can also be used to observe the
dynamic process of the heart.

Medical bionics studies the structure, function, and working principle of the organism
by imitating its life characteristics and organizational structure characteristics, and trans-
plants these principles into medical technology. With the in-depth study of medical bionics,
we find that medical bionics helps to make our medical measures closer to an ecological na-
ture, and promotes the organic combination of traditional medicine and modern medicine
and the development of the medical cause.

2. Principles and Methods
2.1. Principle and Structure

The MEMS heart sound sensor, structured with a cilium and beams, mainly mimics
the structural pickup mechanism of 3D fiber bundles in otic hair cells of humans [11].
Combined with the bionic principle, piezoresistive effect, and MEMS technology, the
new bionic MEMS microstructure is composed of a cilium and high-precision cantilever
beams. The bottom of the cilium is fixed at the central connection of the beam members;
meanwhile, varistors with identical resistance are arranged below the maximum stress
zone of cantilever beams, which form a Wheatstone bridge (VCC means the input voltage
of the bridge and Vout suggests the output voltage).

When sound waves are applied to the biomimetic cilium, the biomimetic cilium
oscillates, deforming the cantilever beams. Finally, the deformation of the cantilever causes
a change in the resistance of the varistor placed on the cantilever surface. The mechanical
deformation is transformed into voltage output via the Wheatstone bridge. [12]

The human ear’s sensory organ structure is shown in Figure 1a. An analysis diagram
of the microstructure is shown in Figure 1b and the microstructure of bionics is shown in
Figure 1c. R1, R2, R3, and R4 form a set of Wheatstone bridges, as shown in Figure 1d. At
this time, the output voltage of the Wheatstone bridge is shown in (1):

Vout
(R1 + ∆R1)(R4 + ∆R4)− (R2 − ∆R2)(R3 − ∆R3)

(R1 + ∆R1 + R2 − ∆R2)(R4 + ∆R4 + R3 − ∆R3)
Vcc (1)
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Figure 1. Principle of bionic microsensors. (a) Human ear’s sensory organ structure; (b) analysis
diagram of microstructure; (c) microstructure of bionics; (d) Wheatstone circuit diagram.

In Formula (1), the output voltage of the X circuit of the Vout bridge, Vcc, is the input
voltage, and ∆R is the resistance change. Where R1 = R2 = R3 = R4 = R, the above formula
can be simplified as shown in (2):

Vout =
∆R
R

Vcc (2)

The resistance change is related to the stress on the cantilever beams, which is shown
in (3):

∆R
R

= πlσl (3)

In Formula (3), σl is the longitudinal stress component, and πl is their longitudinal
piezoresistive coefficient. In order to improve the sensitivity of the sensor, it is necessary to
make the sensor output as high as possible. Placing the varistor in the maximum linear
stress region of the cantilever beams can effectively improve the sensitivity of the sensor.

Figure 2 shows the force analysis diagram of the microstructure cross-section. When
the heart sound signal acts on the bionic cilium, the bionic cilium deviates slightly, twisting
to drive the cantilever beams to twist. The bionic cilium transforms the effect of sound
pressure into the torques of the cantilever beams. The result of the force analysis of the
cantilever beams can be obtained as shown in (4) [13,14]:

σ(x) = ± L2 + 3aL − 3x(a + L)
2
3 bt2(L2 + 3aL + 3a2)

PSh ± PS
bt

(4)

In Formula (4), x is the length of the cantilever beams, P is the pressure on the cilium
receiving the heart sound signal, S is the area of the cilium receiving the heart sound signal,
h is the height of the center of gravity of the cilium structure, and other parameters are
shown in Table 1. It can be seen that the stress on the cantilever beams is proportional to
the area that receives the heart sound signal, and inversely proportional to the width and
thickness of the cantilever beams. The cilium is an important structure for the sensor to
receive heart sound signals.
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Table 1. Dimensions and parameters.

Parameters Dimensions Parameters Dimensions

Length of cantilever beams L (1 mm) Thickness of cantilever beams t (0.03 mm)
Width of beams b (0.12 mm) Mass block length a (0.3 mm)

The working bandwidth of the sensor is mainly reflected by its characteristic frequency.
The characteristic frequency of a system is mainly related to the mass m and elastic coef-
ficient k of the cilium. The calculation formula of the characteristic frequency is shown
in (5):

f =
1

2π

√
k
m

(5)

It can be seen from Equation (5) that the characteristic frequency of the sensor is
inversely proportional to the cilium’s own quality. As the radius and length of the cilium
increase, the detection bandwidth of the sensor also decreases. According to clinical
research, the frequency of most physiological information of the heart sound signal is
distributed at 20~600 Hz. Therefore, on the premise of satisfying the working bandwidth
of the heart sound sensor, the low-frequency sensitivity of the heart sound sensor can
be improved. At the same time, in order to avoid affecting the deflection of the central
mass and to consider the stability of the sensor, the diameter of the cilium at the bottom
should not exceed the side length of the mass. Finally, this paper proposes the integrated
concave bionic ciliated MEMS heart sound sensor. The concave design of the bionic cilium
improved the receiving area and focused the performance of the bionic cilium on the sound
signal, improving the low-frequency sensitivity of the MEMS heart sound sensor.
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2.2. Design and Optimization of Structure

Under the previously described theory, in order to realize the low-frequency and high-
sensitivity characteristics of the heart sound sensor, a concave ciliated heart sound sensor
was designed in this study. Compared with the traditional bionic ciliated MEMS heart
sound sensor, as seen in Figure 3a [15], the concave ciliated microstructure in Figure 3b
improved the sensitivity of the microstructure by increasing the stress area, and effectively
improved the low-frequency and high-sensitivity of the heart sound sensor.
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of concave cilium.

For determining the optimal structure size of the cilium and improving the heart
sound sensor performance, the structure and size of the cilium were parameterized
in COMSOL.

Figure 4c shows the integrated concave cilium structure model, where r means the
cilium radius; h suggests the cilium height; d represents the concave cilium diameter;
M indicates the concave depth; and e denotes the concave cilium width. Restricted by
the manufacturing technique, the size optimization scopes for the cilium structure are:
0.145 mm ≤ r ≤ 0.165 mm, 3 mm ≤ h ≤ 5 mm, 1.5 mm ≤ d ≤ 2.2 mm, 0.34 mm ≤ e ≤ 0.4 mm.
Material attributes are shown in Table 2.
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Table 2. Material attributes.

Material Density (Kg/m3) Poisson’s Ratio Young’s Modulus (Pa)

Acrylic resin 1.2 × 103 0.41 4.2 × 109

Beam structure (Si) 2.33 × 103 0.27 1.6 × 1011

Through the finite element simulation calculation carried out by the iterative analysis
method, Figure 5a,c exhibit the increase in natural frequency as r increases, and the decrease
as h, d, and e increase. As is clear from Figure 5b,d, with increasing r, h, and d, the maximum
stress on the cantilever beams increases, whereas with increasing e, the stress shows a
decline. Figure 6 shows that with the increase in the concave depth M, both the first-
order solid frequency and stress of the microstructure increase. Considering the actual
requirements of the working frequency band and sensitivity, the size of the integrated
concave ciliated microstructure was finally determined: the concave depth is 0.1 mm;
cilium height is 5.7 mm; cilium radius is 0.165 mm; concave radius is 1 mm; and overall
concave width is 0.34 mm.

Biosensors 2022, 12, x FOR PEER REVIEW 6 of 15 
 

Figure 4. (a) Microstructure model for sensor; (b) integrated microstructure model of concave cilium; 
(c) microstructure model of concave cilium. 

Table 2. Material attributes. 

Material Density (Kg/m3) Poisson’s Ratio Young’s Modulus (Pa) 
Acrylic resin  1.2 × 103 0.41 4.2 × 109 

Beam structure (Si) 2.33 × 103 0.27 1.6 × 1011 

Through the finite element simulation calculation carried out by the iterative analysis 
method, Figure 5a,c exhibit the increase in natural frequency as r increases, and the de-
crease as h, d, and e increase. As is clear from Figure 5b,d, with increasing r, h, and d, the 
maximum stress on the cantilever beams increases, whereas with increasing e, the stress 
shows a decline. Figure 6 shows that with the increase in the concave depth M, both the 
first-order solid frequency and stress of the microstructure increase. Considering the ac-
tual requirements of the working frequency band and sensitivity, the size of the integrated 
concave ciliated microstructure was finally determined: the concave depth is 0.1 mm; cil-
ium height is 5.7 mm; cilium radius is 0.165 mm; concave radius is 1 mm; and overall 
concave width is 0.34 mm. 

 
Figure 5. (a) Effects of radius r and height h on the first-order solid frequency; (b) effects of height r 
and radius h on the maximum beam stress; (c) effects of the concave diameter b and the concave 
cilium width t on the first-order solid frequency; (d) effects of concave diameter b and concave cil-
ium width t on the maximum stress on the beams. 

 

Figure 5. (a) Effects of radius r and height h on the first-order solid frequency; (b) effects of height
r and radius h on the maximum beam stress; (c) effects of the concave diameter b and the concave
cilium width t on the first-order solid frequency; (d) effects of concave diameter b and concave cilium
width t on the maximum stress on the beams.



Biosensors 2022, 12, 534 7 of 15Biosensors 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 
Figure 6. Effects of the concave depth M on the first-order intrinsic frequency and effect of concave 
depth M on stress. 

The stress analysis of cantilever beams is shown in Figure 7a and the first-order nat-
ural frequency in concave cilium microstructure in liquid is seen in Figure 7b. 

 

 
Figure 7. (a) Centralized stress simulation of the cantilever beam microstructure. (b) First-order nat-
ural frequency of concave microstructure. 

2.3. Sensor Microstructure Manufacturing Process 
The MEMS processing technology was adopted to treat the microstructure of the bi-

onic MEMS heart sound sensor designed in this paper. The design of the process flow was 
combined with the specific actual process conditions to formulate the process flow design 
method, which mainly included: lithography, oxidation, doping, bonding, etching, ion 
implantation, deposition, dry etching, wet etching, metal sputtering, scribing, cleaning, 
and other processes. The main process flow is shown in Figure 8 below. 

Figure 6. Effects of the concave depth M on the first-order intrinsic frequency and effect of concave
depth M on stress.
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2.3. Sensor Microstructure Manufacturing Process

The MEMS processing technology was adopted to treat the microstructure of the
bionic MEMS heart sound sensor designed in this paper. The design of the process flow
was combined with the specific actual process conditions to formulate the process flow
design method, which mainly included: lithography, oxidation, doping, bonding, etching,
ion implantation, deposition, dry etching, wet etching, metal sputtering, scribing, cleaning,
and other processes. The main process flow is shown in Figure 8 below.
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3. Sensor Integration Package and Test
3.1. Sensor Package and Experiment Test

The bionic cilium and sensor microstructures were secondarily integrated with a
UV-cured adhesive. Under the microscopic platform, an ultraviolet-curing adhesive was
utilized to combine the cilium with the cantilever beam structure, thereby achieving the
sensor microstructure fabrication, as depicted in Figure 9.
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Meanwhile, since the sensor’s sound pickup mechanism bases itself on the bionic otic
hair cells of humans, a non-contact monitoring design was adopted. It was encapsulated
with the common stethoscope membrane body at present, with serious sound loss and low
sensitivity. Cardiac sound signals were acoustically quite weak, which may be lethal to the
heart sound auscultation process.

The schematic diagram of acoustic auscultation by a bionic sensor is shown in Figure 10.
When inputting sound on the boundary between two varying media, the reflection coeffi-
cient increases, whereas the transmitted acoustic energy decreases with the heightening
impedance difference. Upon contact of the stethoscope with skin, the reflection between
them becomes strong, resulting in higher attenuation and less transmitted acoustic energy.
Thus, for the reception of the maximum sound signal, the heart sounds were transmitted
to the MEMS-based bionic sensor after crossing the human tissues, showing progressive
attenuation. In addition, medical silicone oil (20cst) was selected as the encapsulation
material by meeting the characteristic acoustic impedance requirements of human soft
tissue. Sound velocity and acoustic characteristic impedance of different media can be seen
in Table 3.

T =
4Z1Z3

(Z3 + Z1)
2cos2(k2L) +

(
Z2 +

Z1Z3
Z2

)2
sin2(k2L)

(6)
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Figure 10. Schematic diagram of acoustic auscultation with bionic heart sound sensor.

Table 3. Sound velocity and acoustic characteristic impedance of different media.

Medium Density
[ρ (Kg/m3)]

Acoustic Characteristic
Impedance [z (Pa·s/m)]

Air (20 ◦C) 1.21 415
Water (20 ◦C) 998 1.48 × 106

Blood 1055 1.656 × 106

Soft tissue 1016 1.524 × 106

Muscle 1074 1.684 × 106

Medical coupling agent 1016 1.5~1.7 × 106

The three-layer medium propagation model is shown in Figure 11, where Pi and Pr are
the acoustic pressure of incident wave and reflected wave, respectively, Z1, Z2, and Z3 refer
to the acoustic characteristic impedance of the three-layer medium of human soft tissue,
the e-PTFE (expanded polytetrafluoroethylene) porous membrane, and the coupler agent,
respectively. k2 means the number of sound waves transmitting via the e-PTFE medium,
and L represents the e-PTFE thickness. The coefficient for acoustic wave transmission
can approximate L only when the acoustic eigen impedance in the three-layer medium is
approached, or when the thickness in the intermediate e-PTFE medium is thin enough,
according to Formula (6) [16].
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Figure 11. Three-layer medium propagation model.

At the same time, the stethoscope probe shell is machined with aluminum alloy, which
has high precision, and a light-weight and polished surface, which reduces the interference
and influence of external environmental noise on the sensor to a certain extent. The overall
design of the block diagram of the system is shown in Figure 12, and the sensor package
picture is shown in Figure 13.

The standing wave barrel calibration system was adopted to test the integrated concave
ciliated MEMS heart sound sensor, as shown in Figure 14a,b. The standing wave barrel is
a standing wave sound field. According to the sound pressure distribution theory of the
standing wave sound field, the sound pressure sensitivity level of the biomimetic MEMS
heart sound sensor is given by Equation (7), and the calibration frequency is performed by
a 1/3 octave band [13,14].

Mp = M0 + 20 log
(

Upgrsin(kd0)

U0cos(kd)

)
(7)

Biosensors 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 
Figure 11. Three-layer medium propagation model. 

At the same time, the stethoscope probe shell is machined with aluminum alloy, 
which has high precision, and a light-weight and polished surface, which reduces the in-
terference and influence of external environmental noise on the sensor to a certain extent. 
The overall design of the block diagram of the system is shown in Figure 12, and the sensor 
package picture is shown in Figure 13. 

 
Figure 12. System’s overall design of the block diagram. Figure 12. System’s overall design of the block diagram.



Biosensors 2022, 12, 534 11 of 15Biosensors 2022, 12, x FOR PEER REVIEW 11 of 15 
 

 
Figure 13. Overall packaging of MEMS heart sound sensor. 

The standing wave barrel calibration system was adopted to test the integrated con-
cave ciliated MEMS heart sound sensor, as shown in Figure 14a,b. The standing wave 
barrel is a standing wave sound field. According to the sound pressure distribution theory 
of the standing wave sound field, the sound pressure sensitivity level of the biomimetic 
MEMS heart sound sensor is given by Equation (7), and the calibration frequency is per-
formed by a 1/3 octave band [13–14]. 𝑀 = 𝑀 + 20 log(𝑈 𝑠𝑖𝑛(𝑘𝑑 )𝑈 𝑐𝑜𝑠(𝑘𝑑) ) (7) 

 
Figure 14. (a) Test of the standing wave tube calibration system. (b) Comparison diagram of sensor 
sensitivity test curve. 

In Equation (7), M  is the sound pressure sensitivity level of the MEMS heart sound 
sensor; M  is the sound pressure sensitivity level of the standard sound sensor; U  is 
the open-circuit voltage of the MEMS heart sound sensor; U  is the open-circuit voltage 
of the standard sound sensor; d  is the water penetration depth of the standard sound 
sensor; d is the water penetration depth of the bionic MEMS heart sound sensor; k is in 

Figure 13. Overall packaging of MEMS heart sound sensor. (a) The package structure is supported
within the sensor. (b) Waterproof and sound-permeable membrane encapsulation. (c) Internal
structure of bionic MEMS heart sound sensor. (d) Heart sound signal preprocessing circuit.
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In Equation (7), Mp is the sound pressure sensitivity level of the MEMS heart sound
sensor; M0 is the sound pressure sensitivity level of the standard sound sensor; Upgr is the
open-circuit voltage of the MEMS heart sound sensor; U0 is the open-circuit voltage of the
standard sound sensor; d0 is the water penetration depth of the standard sound sensor; d
is the water penetration depth of the bionic MEMS heart sound sensor; k is in the wave
number; k = 2π f /c; f is the frequency; and c is the speed of sound in the medium. The
sensitivity test results of the MEMS test are shown in Figure 13b. The experimental results
show that the working bandwidth of the MEMS heart sound sensor with the integrated
concave cilium is 20~600 Hz and the sensitivity is −180.6 dB (@500 Hz). The sensitivity
of the traditional bionic ciliated MEMS heart sound sensor is −189.5 dB (@500 Hz). The
sensitivity of the integrated concave ciliated MEMS heart sound sensor is 8.9 dB (@500 Hz)
higher than that of the traditional bionic cilium MEMS heart sound sensor. Therefore,
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in order to meet the needs of the low-frequency and high-sensitivity heart sound signal
detection, this study proposes that the integrated concave cilium MEMS heart sound sensor
has more obvious advantages.

3.2. Comparison and Analysis of Sensor Performance

The 3M Littmann electronic stethoscope has wide circulation and high reliability.
The test object was a healthy adult male. During the experiment, the 3M Littmann 3200
electronic stethoscope and bionic MEMS heart sound sensor proposed in this paper were
chosen for comparison and verification. The heart sound test results and static noise for the
3M Littmann 3200 electronic stethoscope are illustrated by Figure 15a,b. The heart sound
test results and static noise for bionic MEMS heart sound sensor is shown in Figure 16a,b.
As demonstrated by the experimental results, the signal-to-noise ratios (SNRs) are up to
27.05 dB and 21.80 dB for the MEMS cardiac sound sensor and the 3M electronic stethoscope,
respectively. The signal-to-noise ratio of the traditional bionic ciliated MEMS heart sound
sensor is 25.62 dB. The signal-to-noise ratio of the MEMS heart sound sensor designed in
this paper is 5.25 dB and 1.43 dB higher than that of the 3M electronic stethoscope and
the traditional MEMS heart sound sensor, respectively, which proves the feasibility of the
MEMS heart sound sensor in this paper to collect heart sound signals. The experimental
results also confirm that microstructure design presented in the paper is rational. The
signal-to-noise ratio can be calculated using Equation (8), and heart sound signal test data
are shown in Table 4.

SNR = 20 log
(

VS
Vn

)
(8)

where VS refers to the heart sound output peak, and Vn indicates the background noise of
the stethoscope.
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Table 4. Heart sound signal test data.

Parameter S1 (ms) S2 (ms) VP-P (mV) Background Noise (mV) SNR (dB)

3M electronic stethoscope 137 91 1373.5 111.58 21.80
Traditional bionic ciliated MEMS

heart sound sensor 134 105 210 11 25.62

Integrated concave ciliated MEMS
heart sound sensor 135 93 228.7 10.15 27.05

With multicomponent and non-stationary traits, the cardiac sound signals are the result
of complicated mechanical acoustic phenomena, which contain predictive information
and, thus, have a diagnostic value in the clinical setting. Time-frequency analysis was
performed on the collected heart sound signals and Figure 16c shows the analysis results of
the relevant features [17–20]. As demonstrated by them, the cardiac sound signal chiefly
comprises the first and second cardiac sounds, where the duration of a single cardiac cycle
is about 0.8 s. As an acoustic signal, the heart sound signal reflects the most important
perceptual characteristics in the spectrum and reveals the dynamic change process of it.
The value of the time-frequency analysis on the cardiac sound signal is not only evident
for basic research, but also for cardiac system diagnosis in the clinical setting. The results
of the spectrum analysis show that the heart sound signal frequency primarily centralizes
in 20~150 Hz and there is only weak heart murmur distribution in other frequency bands.
The heart sound signal spectrogram is shown in Figure 17. Through the analysis of the
spectrogram, it can be seen that the energy of the heart sound signal is mainly concentrated
in S1 and S2, and it has a periodic dynamic change law [21–23].
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When designing a heart sound stethoscope, in order to increase the sensitivity, it is
usually necessary to reduce the bandwidth but ensure that the frequency band is higher
than 600 Hz. Finally, an integrated concave cilium MEMS heart sound sensor was proposed.
Through experimental tests, the sensitivity of the integrated concave cilium MEMS heart
sound sensor in the 20~600 Hz frequency band was −180.6 dB@500 Hz and the bandwidth
was above 600 Hz, which meets the 20~600 Hz working range of the heart frequency
distribution.

4. Discussion and Conclusions

In view of early digital diagnosis and treatment of cardiovascular disease, an integrated
concave cilium MEMS heart sound sensor was proposed based on the bionic principles
and piezoresistive principles in this paper; the low-frequency and high-sensitivity charac-
teristics of the MEMS heart sound sensor were realized. Firstly, the pickup principle of the
sensory organ structure of the bionic human ear sound was integrated with the propaga-
tion characteristics of the human heart sound. This allows the sensor to collect the heart
tone signal using a method that has the characteristics of being low cost, and having high
sensitivity and portable non-invasive detection. Secondly, the sound-sensitive microstruc-
ture was prepared using MEMS technology, and through the design and optimization of
the high-efficiency sound transmission acoustic coupling packaging, the sensor had high
sensitivity characteristics (−180.6 dB@500 Hz), favorable low-frequency characteristics,
and a wide working frequency range (10~630 Hz). Finally, experimental tests and results
showed that the signal-to-noise ratio (SNR) of the MEMS heart sound sensor with concave
cilium was 27.05 dB, being 5.25 dB and 1.43 dB higher than the 3M Littmann electronic
stethoscope and traditional MEMS heart sound sensor, respectively. At the same time, the
collected heart sound signals were analyzed to verify the concave ciliated MEMS heart
sound sensor had a good heart sound detection ability. Therefore, the sensor structure
design proposed in this paper is feasible. In conclusion, the structural design proposed in
this paper is of great significance for the early detection and treatment of cardiovascular
diseases. At the same time, it also provides a reference for future research.
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