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The success of gene and gene expression profiling, such as the Oncotype DX® test for breast cancer patients,
demonstrates that as technology becomes more sophisticated molecular diagnostics will continue to play a
more important role in disease management in the future. Such promises have been and continue to be
enabled by advances in real-time PCR, microarray detection platforms and next generation sequencing
technologies. Practical adoption of new technologies into routine clinical care, however, has not always
been a smooth ride. Challenges lie on several fronts: establishment of clinical validity in large scale patient
population, mechanisms of incorporating molecular tests into standard care, and keeping up with the pace
of ever changing technologies in regulated clinical laboratories, just to name a few. This review's goals are to
educate, to stimulate discussion and to provoke efforts to build consensus, share resources, and establish
standards in order to realize the promises of genomic technologies for routine patient care.
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1. Introduction

An integratedRNAexpression pattern or transcriptional profile of a set
of genes can elucidate disease mechanisms, regulatory pathways, and
gene functions (Schena et al., 1995). During normal development, the ex-
pression pattern of the genes (i.e., gene signature profiles) can be unique
or similar between different cell and tissue types or different locations
within the same tissue type (Rinn et al., 2008). The same can also be
true in different cancer types and even in different regions of the same
tumor (Gerlinger et al., 2012). Importantly, gene signature profiling can
beused to distinguish fundamentally different disease types. For example,
diagnosis of Burkitt's lymphoma (BL), a rare and highly aggressive B-cell
ology and LaboratoryMedicine,
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lymphoma, is based on integration of morphologic, immunophenotypic
and cytogenetic data (Jaffe, 2009). Diffuse large B-cell lymphoma
(DLBCL) is more common but a less aggressive disease, yet the two
types of lymphoma can share overlapping morphologic and
immunophenotypic features. The t(8;14) translocation, a characteristic
cytogenetic feature of BL (Gerbitz et al., 1999; Hecht and Aster, 2000;
Neri et al., 1988) is present in 5 to 10% of DLBCL (Kramer et al., 1998).
To determine appropriate therapeutic intervention, it is critical to distin-
guish BL from DLBCL, as BL requires a more rigorous regimen of chemo-
therapy, as opposed to relatively low-dose chemotherapy typically
employed for DLBCL. Thus, gene expression profiling can, quite practical-
ly, inform diagnosis and choice of therapy.

A retrospective study (Dave et al., 2006) indicated that a classifier
based on gene expression profile correctly identified all 25 pathologically
verified cases of classic BL. The typical gene signature for BLwas also pres-
ent in eight cases of pathologically diagnosed DLBCL. Further analysis was
done with 28 of those patients with complete clinical information and a
molecular diagnosis of BL. The authors found that the overall survival
wasmarkedly longer among thosewho received intensive chemotherapy
than those treated with the lower dose regimens. Among seven of the
eight patients pathologically diagnosed with DLBCL yet who had the
en access article under the CC BY-NC-ND license
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gene signature of BL, five received lower doses of chemotherapy. None
survived more than two years. For the remaining two patients who re-
ceived BL chemotherapy instead, one survived more than five years and
one died after nine months of the therapy. Overall, those observations
suggest that gene signature profiling can be used to distinguish the two
types of lymphomas, and thus tailor more rational therapy choices for a
given patient's disease.

t would be highly beneficial if molecular methods can be developed to
facilitate the diagnosis ofmorphologically similar yetmolecularly different
types of diseases. Such capability could also yield diagnostic information
that in turn guides treatment with targeted therapy, especially for cancer
patients. As we saw in the above example, molecular techniques certainly
can be very effective. Given the various considerations of the different
technological platforms, however, is the diagnostic community ready to
adopt gene signature profiling into routine diagnostic practice? This article
focuses on the technologies used for gene signature profiling and how to
implement gene signature profiling for routine molecular diagnosis.

2. Technologies

The completion of the human genome project (Lander et al., 2001;
Venter et al., 2001) about a decade ago revolutionized the way genomic
research is conducted. It stimulated groundbreaking ideas on technology
development in molecular biology and has since led to fundamental ad-
vances in biomedical research. Classical approaches required researchers
to “fish out” the sequence of the gene of their interest first in order to
study the gene function. Discovery of the cystic fibrosis transmembrane
conductance regulator (CFTR) gene,whichwhenmutated causes cysticfi-
brosis, is one classical example in that regard. It took years andmany dif-
ferent laboratories to map, clone and finally sequence the gene (Beaudet
et al., 1989; Duncan et al., 1988; Eiberg et al., 1985; Estivill et al., 1987;
Kerem et al., 1989; Klinger et al., 1986; Knowlton et al., 1985; Mayo et
al., 1980; Riordan et al., 1989; Rommens et al., 1989; Scambler et al.,
1985; Tsui et al., 1985; Wainwright et al., 1986, 1985; Watkins et al.,
1986; Zielenski et al., 1991) before the information became available for
routine patient care. Upon completion of the human genome project
with the resultant public dissemination of vast amounts of generated
data, it became possible to imagine interrogating tens of thousands of
genes for mutation detection or gene expression at the same time in
an individual laboratory. Experimentally, however, conventional muta-
tion detection, genotyping and gene expressionmethodswere ill suited
to high throughput studies. Around that time, early in the century,
newly developed microarray technologies enabled the dream of high
throughput gene studies (Lashkari et al., 1997; Maskos and Southern,
1992; Schena et al., 1995). Implementation of real-time PCR technolo-
gies (Becker-Andre and Hahlbrock, 1989; Chiang et al., 1996; Gibson
et al., 1996; Gilliland et al., 1990; Heid et al., 1996; Higuchi et al.,
1993; Wang et al., 1989) simplifies the bench-level workflow and, in
turn, is a technology platform even more accessible to majority of
research and clinical laboratories. With the advent of next generation
sequencing (NGS) technologies (Brenner et al., 2000; Margulies et al.,
2005), the practical possibility on the simultaneous interrogation of
bothmutation profiles and gene expression could enable clinical inves-
tigators to “capitalize” on both technological advances and individual
genetic information on a grander scale. These representative technolo-
gies will be explored below, as they pertain to clinical use.

Microarray analysis is a nucleic acid hybridization based detection tech-
nology. Tens of thousands, even millions of oligonucleotide sequences (i.e.,
probes) derived from genes of interest are synthesized and covalently
immobilized on a solid phase, constituting a high density detection array,
commonly referred to as a microarray. The labeled complementary DNA
(cDNA) molecules derived from the RNA of a test sample are hybridized
to the microarray. Within the appropriately calibrated linear dynamic
range, the amount of the labeled fluorescent signal hybridized on probes
correlates to the extent of the RNA expression of a particular gene. With
the ability of microarray platforms that accommodates large numbers of
probes from many genes, detection of the gene expression of tens to hun-
dredsof thousandsof genes canbeachieved inparallel. By comparinga can-
cerous tissuewith its normal control sample,microarray technology can be
used to identify the patterns of differential gene expression and genes re-
sponsible for the regulationof theobservedexpressionpattern(s). A smaller
pool of genes that determine a particular expression pattern can be identi-
fied and is colloquially known as a gene signature, the process being called
gene signature profiling. Such signatures (i.e., gene signature profile) can
further be verified in subsequent microarray-based experiments using a
large number of samples with similar phenotypic features.

Agendia'sMammaPrint®, a breast cancer gene signature profiling test,
was developed by screening the gene expression of 25,000 human genes
in lymphnode negative, primary breast cancer patientswho either devel-
oped distant metastasis within five years or were disease-free after a pe-
riod of at least five years (Mook et al., 2007; van't Veer et al., 2002). About
5000 significant genes were selected initially based on the gene expres-
sion level. After application of the cancer disease outcome and supervised
mathematical classification methods, a 70-gene signature was identi-
fied. With the 70-gene signature profiling, lymph node negative
early stage breast cancer patients with low risk score would only
need the hormonal therapy to reduce the risk of distant metastasis,
while patients with a high risk score would need more aggressive
therapy, such as chemotherapy. Further studies indicated that the
70-gene prognosis signature outperformed the clinical and histolog-
ic criteria as an independent prognostic factor in lymph
node-negative young breast cancer patients (Bueno-de-Mesquita et
al., 2009; Buyse et al., 2006; van de Vijver et al., 2002).

The complexity of microarray technology, however, requires a rigor-
ous design (Churchill, 2002). Continuing with the MammaPrint® exam-
ple, for clinical testing each MammaPrint® microarray chip contains
eight sub-array areas for eight different samples. Each sub-array contains
1900 features, including 232 probes in triplicate for the targeted 70-gene,
additional 915 genes for normalization and 289 spots for hybridization
and array manufacture quality controls. Depending on the platform
used for eachmicroarray technology,most of the customizedmicroarrays
are produced by commercial manufacturers. In addition, the labeling, hy-
bridization and scanning steps require extensive development and opti-
mization. Therefore, to ease the lab workflow, other technologies, such
as real-time PCRhave been favorably implemented in gene signature pro-
filing after initial large scale screening using microarray.

Real-time PCR technologies are able to quantify a target of interest
during PCR amplification. For gene expression, a one-step reverse tran-
scription and PCR can be accomplished in a same reaction. Empirically,
it is most efficient when the number of target genes are less than 100
(VanGuilder et al., 2008). Genomic Health developed Oncotype DX®
breast cancer test, a 21-gene signature profile employing real-time
PCR. The gene signature was based on the study of the clinical outcome
for lymph node negative and estrogen receptor (ER) positive patients,
who received hormonal treatment (Cobleigh et al., 2005; Habel et al.,
2006; Paik, 2007; Paik et al., 2004). The signature profiling stratifies
the patients into three subgroups: low, medium and high risk. The
high risk group has the worst clinical outcome and a more aggressive
treatment like chemotherapy is expected to benefit these patients.

Although real-time PCR has the simplest workflow for generation of
gene signature profiles, we may not be able to use it to uncover specific
gene signature profiles in some diseases. The microarray method could
bemore practical in such cases in searching for abnormal gene expression
patterns within the entire transcriptome (i.e., expression of all the RNA in
a sample).With recent advances inNGS technologies, clinical laboratories
are eager to adapt this newest ofmolecular tools into routine clinical prac-
tice. Similar to microarray technology, NGS is a high throughput method
that generates results of a large number of genes simultaneously. The dif-
ference is that NGS produces “digital” information in that sequence of
each base pair of target genes is discrete,whereasmicroarray-derived sig-
nals from target genes are hybridization based readout which is “analog”.
Furthermore, NGS is a more diverse platform than microarrays, with its
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ability to detect alternative splice variants and novel transcripts (Marioni
et al., 2008) without prior knowledge of their existence. For example, se-
quencing the entire RNA content of a sample by NGS (i.e., RNAseq) pro-
vides all of above information as opposed to only signal intensity of the
probes by microarray. Therefore, NGS platform generates a comprehen-
sive and holistic picture of the gene expression profile of that sample
(Morin et al., 2008; Wang et al., 2009). Although NGS is comparable in
throughput to microarray technology for studying gene expression, mi-
croarray technology is generally less expensive than NGS technologies.
For initial high throughput gene expression studies, microarray technolo-
gymay be a better choice. Once a short list of gene signatures is identified,
real-time PCRwould be an easiermethod to implement in clinical labora-
tories. Certainly, NGS expands capabilities and provides more insights
into gene expression (Trapnell et al., 2010). For difficult cases, NGS may
be a better choice to find clinically relevant gene expression patterns,
just as the current whole genome sequencing is applied in clinical prac-
tices (Worthey et al., 2011).

3. Clinical laboratory implementation

Although clinical research has revealed great potential using gene
signature profiling to stratify patients and treat patients accordingly
(Alizadeh et al., 2000; Dave et al., 2006; Mori et al., 2008;
Rosenwald et al., 2002; Schmitz et al., 2012; Zhang et al., 2012),
gene signature profiling still does not represent high volume testing
or indeed even a common molecular test in diagnostic laboratories.
This may be due to the complexity during assay development and
test validation. Currently, Laboratory-Developed Tests (LDTs) account
for the majority of test results generated in molecular pathology lab-
oratories. In the U.S., based on the Clinical Laboratory Improvement
Amendments of 1988 (CLIA '88), a laboratory must perform a full an-
alytical validation before an LDT is launched. Verification of accuracy,
precision (repeatability), analytical sensitivity, analytical specificity,
reference range (normal value), and reportable range of the system
is required (Code of Federal Regulations, 42CFR493.1253, http://
www.gpo.gov/fdsys/pkg/CFR-2011-title42-vol5/pdf/CFR-2011-title42-
vol5-sec493-1253.pdf accessed 12/01/2012). Furthermore, every test
offered for clinical testing must demonstrate how consistently and
accurately the result detects or predicts the intermediate or final
clinical outcomes (clinical validity), and how likely the test result
is to significantly improve patient outcomes (clinical utility)
(http://www.cdc.gov/genomics/gtesting/ACCE/index.htm, accessed
on 12/01/2012). Analytical validation is relatively straightforward
for single target gene testing, which currently comprises the majority
of the assays on the test menu in a molecular laboratory. However,
demonstration of clinical validity and utility for LDTs is more prob-
lematic for majority of individual laboratories that do not have suffi-
cient resources and are not equipped to undertake large clinical
studies. Most often, laboratories rely on referencing peer-reviewed
publications to demonstrate clinical validity and utility.

Given these realities, developing and validating amuchmore complex
gene signature profiling test would take significant time, resources and
technical sophistication, more than is generally available in most clinical
laboratories. First, a gene signature profiling test targets a number of
genes instead of a single gene, therefore more effort on assay develop-
ment is required relative to a single gene testing. Moreover, data directly
generated from the microarray, real-time PCR and NGS platforms (i.e.,
“wet bench”data) for each assay are typically not thefinal results of a test.

Further statistical and mathematical analysis (“dry bench”) to com-
bine all the individualwet bench data is necessary to generate ameaning-
ful result for interpretation. “Dry bench” analysis certainly would heavily
depend on efforts from statisticians and bioinformaticians. Most molecu-
lar pathology laboratories, however, do not have sufficient “dry bench”
expertise and it is a relatively new concept that clinical lab personnel
would need to work closely with statisticians or bioinformaticians to
make sense of the wet bench data before generating test results or case
reports. To make the scenario even more difficult, developing a new
gene signature profiling test requires a large data set to perform the statis-
tical analysis and build the algorithm (Kratz et al., 2012;Mook et al., 2007;
Paik et al., 2004; van't Veer et al., 2002). Therefore, establishing a new
gene signature today is truly a clinical research project that most likely
is carried out in laboratories or institutionswhosemandates are not ondi-
agnostic operations.

Even if a gene signature profiling test is based on published litera-
ture, clinical laboratories would still need to develop the “wet bench”
gene signature assays and “dry bench” analysis in house for validation,
and eventual offering as an LDT. In many published research works
(Alizadeh et al., 2000; Kratz et al., 2012; Paik et al., 2004; van't Veer et
al., 2002), only names of the signature genes and rudimentary bioinfor-
matics, insufficient for true reproduction, are provided; often primer or
probe sequences are missing and this can be related to proprietary in-
tellectual property. Given the above complexities, building a gene sig-
nature profiling test is clearly not a simple undertaking for clinical
laboratories, as opposed to the single gene tests.

Perhaps not surprisingly, clinical laboratories traditionally rely on
in vitro diagnostic (IVD) manufacturers to develop this type of tests.
Under such circumstances, labs don't need to conduct large clinical
studies by themselves. They would only need to perform analytical
verification to offer the test clinically. Unfortunately, only one such
test, Agendia's MammaPrint®, is currently cleared by FDA. Further-
more, it is an instrument-based FDA clearance, meaning that only a
number of instruments with specific serial numbers at Agendia are
included in the clearance. Such practice in effect makes Agendia the
only lab that is qualified to perform the MammaPrint® test.

With the success of theGenomicHealth's OncotypeDX®breast cancer
test, it is clear that gene signature profiling can help to distinguish mor-
phologically similar, but pathologically different diseases for clinical diag-
nosis and lead to different treatments. OncotypeDX® breast cancer test is
an LDT and performs at Genomic Health. It may be the most recognized
gene signature profiling test at the current time. TheOncotypeDX®breast
cancer test was launched in early 2004. In 2006,Medicare agreed to cover
the test for lymphnode negative and ERpositive breast cancer patients. In
2007 and 2008, the American Society of Clinical Oncology (ASCO) (Harris
et al., 2007) and the National Comprehensive Cancer Network (NCCN)
(http://www.nccn.org/) added the 21-gene signature to the breast cancer
practice and treatment guidelines, respectively. At this point, Oncotype
DX® breast cancer test is widely used in daily clinical practices.

What havewe learned from theOncotypeDX®breast cancer test?Ob-
viously, clinical utility is the driving force for test implementation.
Oncotype DX® breast cancer test targets lymph node-negative,
estrogen-receptor-positive breast cancer patients. The majority of these
patients can be cured with only hormone therapy, but about 15% of
themwould have distant recurrence, who should go through chemother-
apy. OncotypeDX® breast cancer test is to stratify these breast cancer pa-
tients into two groups, low and high risk for distant metastasis. Based on
the risk factor, only patients with high riskwould undergo chemotherapy
(Paik et al., 2004). Without stratification, all the patients would be likely
to go through the aggressive chemotherapy.

In addition, Oncotype DX® was developed to streamline the phy-
sician ordering and lab workflow. Although the initial study was
based on frozen tissues (Golub et al., 1999; Perou et al., 2000; Sorlie
et al., 2001; van't Veer et al., 2002), Genomic Health further devel-
oped the gene signature using formalin-fixed, paraffin-embedded
(FFPE) tissues, which is commonly used for surgical specimens.
Real-time PCR, the most simplified molecular method for gene signa-
ture profiling, was developed as the platform for Oncotype DX®.

After the large clinical studies to determine the clinical validity of the
gene signature profile assay (Paik et al., 2004), OncotypeDX® testwas of-
fered as, and remains, an LDT. Arguably, it would be sensible for a com-
mercial laboratory like Genomic Health to seek FDA clearance or
approval on the relatively complex gene signature profiling test, thereby
boosting the confidence of patients and ordering physicians. This is
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what Agendia didwithMammaPrint®. However, after the first FDA clear-
ance of the Agendia test in 2007, there were five additional modifications
(i.e., five submissions and approvals from FDA) for the same test (http://
www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm accessed
on 12/02/2012). All these processes require extra resources and imple-
mentation of the modifications represented delays for Agendia. With a
single lab performing tests and a fast changing molecular field, Genomic
Health chose the LDT practice, which is regulated by CLIA and inspected
by College of American Pathologist (CAP), to manage any modifications
of the test. After the first launch of the Oncotype DX® test to predict the
likelihood of the distant breast cancer recurrence, Genomic Health has
validated Oncotype DX® breast cancer test for ductal carcinoma in situ
(DCIS) patients. Indication for DCIS was launched in 2011. Recently, Ge-
nomic Health launched a 12-gene OncotypeDX® colon cancer test to pre-
dict the risk of disease recurrence in patients with newly diagnosed Stage
II disease. They areworking on gene signature profiling for prostate, renal
and non-small cell lung cancer (http://www.genomichealth.com/en-US/
Pipeline.aspx#.UMlVHYMmeRQ, accessed on 12/12/2012). Evidently,
Genomic Health has made gene signature profiling a success in molec-
ular diagnostics without embarking on the FDA clearance/approval
path. Suffice it to say that an LDT is as good as an FDA approved or
cleared test as long as analytical and clinical validation is performed
properly, as in the case of Oncotype DX ®.

Furthermore, long-term evaluation of the clinical validity and util-
ity of a test offers a more complete picture to both laboratories and
physicians. After the Oncotype DX® breast cancer test was made
available, continuing clinical studies on the 21-gene signature further
proved the clinical validity and utility for breast cancer patients as
what was initially stated (Cobleigh et al., 2005; Habel et al., 2006;
Paik, 2007; Paik et al., 2004). There is no doubt that Medicare cover-
age, and recognition by ASCO and NCCN also play significant roles in
the use of Oncotype DX® breast cancer test in daily oncology practice.
4. Perspectives

The success of Oncotype DX® has been a very encouraging develop-
ment for the implementation of gene signature profiling in molecular di-
agnostic laboratories. Very recently, Pinpoint Genomics and University of
California at San Francisco developed a 14-gene signature for
non-squamous, non-small-cell lung cancer (Kratz et al., 2012). Pinpoint
Genomics (now part of Life Technologies) has already started to offer
the test to physicians.

Most service laboratories, however, do not have adequate resources
to develop a new gene signature profiling test like venture funded com-
panies like Genomic Health and Pinpoint Genomics. It is difficult to
imagine how individual academic or hospital-based service laboratories
can develop and implement similar gene signature tests simply from a
clinical validity point of view, let alone a commercialization point of
view. With these realities in mind, what can service laboratories do to
mimic successful routes for implementation of personalized genomic
medicine into daily practice?

The clearest route, it seems, is based on real-time PCR methodology
coupled to FFPE samples; this dyad is very familiar to clinical laboratories
and thus provides at least some measure of a competitive advantage.
After evaluating the clinical utility of the test, initial clinical studies to se-
lect signature genes and build dry bench classifiersmay then need collab-
oration among multiple clinical labs and/or researchers from within and
outside the institution. Such a strategy would enable the institution to
more easily accumulate a dataset that is large enough for statistical data
analysis. Once the classifier is built, multiple sites would validate the
test and verify the clinical validity and utility at their own institution. If
the gene signature test is shown to be beneficial to patients,
multi-center studies would also positively boost confidence in the test
and possibly lead to inclusion in ASCO and NCCN guidelines for standard
practice. Test reimbursement is also another important part of the
equation. Tests that become a standard of clinical practice stand a better
chance of Medicare reimbursement and coverage by other insurers.

The scope of clinical study needed to verify clinical validity and
utility of a test is large. To successfully develop a gene signature
test, therefore, may well require building a collaborative network of
clinical laboratories and researchers. Such a “divide and conquer” ap-
proach allows individual labs to perform only part of a clinical study
and not put a huge burden on any one site. This may be especially
suitable for medium sized laboratories that have the capability to do
more than just testing a single gene target, yet are not so well
resourced as to undertake large clinical studies. While it is beneficial
to combine resources from different labs and centers, communication
among them is especially important to coordinate the execution and
data integration to generate a meaningful result. Consequently, it is
important to build standards on how to collect and process data
and share resources in order to enable the proper communication
among laboratories and institutions. The willingness to collaborate
and share will expedite the adoption of personalized genomic medi-
cine, such as gene signature profiling, into routine practice.

Gene signature profiling is complex and demands significant re-
sources to develop as clinical testing. Thus, the proverbial questions are:
(i) is a signature necessary (i.e., can the result improve patient care?),
and (ii), howmany genes are enough?One study indicated that thewide-
ly performed four immunohistochemical (IHC) markers, estrogen recep-
tor (ER), progesterone receptor (PgR), human epidermal growth factor
receptor 2 (HER2) and Ki-67, can provide the same information as Geno-
mic Health's 21-gene signature profile test (Cuzick et al., 2011). These
four markers are included (at the genomic, not protein, level) in the
Oncotype DX® breast cancer test (Paik et al., 2004). However, additional
studies may be necessary to determine whether this can be generalized.
Nevertheless, it indicates that gene signature profiling could start from a
set of known genes that are associated with the same or different disease
pathways. If the small group of genes cannot stratify patients, expanding
to a larger gene set should next be considered. Additionally, RNAseq is a
good candidate technology to facilitate diagnosis and treatment of clini-
cally difficult cases as the whole genome sequencing for rare inherited
disorders.
5. Conclusion

Overall, gene signature profiling is one of the great ways to enact per-
sonalized genomic medicine in this post-human genomic project era.
Development of the high-throughput technologies, such as microarray,
real-time PCR and NGS enables studying gene expression of many
genes, even the entire transcriptome of a specimen simultaneously. The
possibility that gene signature profiling can stratify patients into different
molecular subgroups prompted the effort to develop gene signature pro-
filing for clinical diagnosis and treatment. Such test, however, is much
more complex than single gene testing and will change the way molecu-
lar laboratories function now. Statistical and bioinformatics support will
be an important part of the “dry bench” development in clinical laborato-
ries. To facilitate large-scale clinical studies for a new test, a network of
clinical laboratories and researchers must work together and share re-
sponsibilities. Building standards on data collection and analysismethods,
as well as proper communication protocols would also enhance the
chance of success. Furthermore, continued assessment of the gene signa-
ture tests would yield more evidence and insights on the performance of
the test and help determine the type of improvement needed to benefit
diagnosis and patient treatment. Thus, while the individual ingredients
for developing gene signature based tests are all available now, bringing
them together and exploiting the required synergies is the challenge for
clinical laboratories who have aspirations for such an undertaking.
Given the differences in culture and practice among institutions, laborato-
ries with the vision, complementing capabilities, staying power, and the
collaborative spirit will have a better chance of taking full advantage of
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the technological advances and bring the gene signature based tests to
fruition.
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