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,is study reviews the technique of convolutional neural network (CNN) applied in a specific field of mammographic breast
cancer diagnosis (MBCD). It aims to provide several clues on how to use CNN for related tasks. MBCD is a long-standing
problem, and massive computer-aided diagnosis models have been proposed. ,e models of CNN-based MBCD can be broadly
categorized into three groups. One is to design shallow or to modify existingmodels to decrease the time cost as well as the number
of instances for training; another is to make the best use of a pretrained CNN by transfer learning and fine-tuning; the third is to
take advantage of CNNmodels for feature extraction, and the differentiation of malignant lesions from benign ones is fulfilled by
using machine learning classifiers. ,is study enrolls peer-reviewed journal publications and presents technical details and pros
and cons of each model. Furthermore, the findings, challenges and limitations are summarized and some clues on the future work
are also given. Conclusively, CNN-based MBCD is at its early stage, and there is still a long way ahead in achieving the ultimate
goal of using deep learning tools to facilitate clinical practice. ,is review benefits scientific researchers, industrial engineers, and
those who are devoted to intelligent cancer diagnosis.

1. Introduction

Breast cancer threatens women’s life worldwide. In the
United States, it might cause an estimation of 0.25 million
new cases of invasive breast cancer, 0.06 million new cases of
noninvasive breast cancer, and 0.04 million deaths in 2016
[1]. ,is disease dramatically increases the health burden on
those developing and underdeveloped countries [2]. Sub-
stantial clinical trial indicates that early detection and di-
agnosis of breast cancer can provide patients with more
flexible treatment options and improved life quality and
survivability [3]. ,erefore, more and more attention is
being paid to related fields, such as novel imaging modalities
of ultrasound tomography [4] and breast tomography [5].

Mammography performs as a routine tool for breast
cancer screening. It enables high-resolution perception of
the internal anatomy of breast and helps the diagnosis of
suspicious lesions [6]. Screening mammography scans the
breast from the craniocaudal view and mediolateral oblique
view, while diagnostic mammography acquires more images
when symptoms, such as architecture changes and abnormal
findings, are found on screening mammographic images. To
date, screen filmmammography (FM) has been the reference
standard for use in breast cancer screening programs, while
due to the demands of higher spatial resolution, digital
mammography (DM) has been widely accepted. General
rules exist for mammographic image interpretation. How-
ever, errors are unavoidable in clinic, and reasons are
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manifold. Above all, the difference of perceived visual ap-
pearance between malignant and benign lesions is unclear
and consequently, how to quantify breast lesions with dis-
criminative features is full of challenges. Moreover, it is still
difficult to estimate the disease risk because of limited in-
formation and thus, healthy people might be turned into
patients. Besides, work overload and fatigue further cause
misinterpretation and overdiagnosis. Unfortunately, it is
found that more than 70% of suggested biopsies are with
benign outcomes during the diagnosis phase [7].

Computer-aided models for mammographic breast
cancer diagnosis (MBCD) have been explored for over thirty
years [8, 9]. It supports the decision making and helps the
differentiation between malignant and benign lesions by
providing additional information. Due to the facilitation of
MBCD models, the diagnostic performance is enhanced
regarding both sensitivity and specificity [10] and un-
necessary examinations can be reduced in a cost-effective
manner. It further benefits biopsy recommendations, follow-
up treatments, and prognosis analysis. From a technical
perspective, major MBCD models are consisted of feature
extraction and lesion malignancy prediction. ,e former
quantifies lesions with discriminative features and the latter
builds the relationship between the features and its label,
benign or malignant. Massive studies have devoted to the
investigation of breast cancer diagnosis, ranging from using
different modalities [11–13], to the analysis of subtle signs
[14, 15] and to various technique exploration [16, 17]. Be-
cause of the easy accessibility of high-performance com-
puting resources, millions of labeled data, and advanced
artificial intelligence methods, convolutional neural network
(CNN) has revolutionized image representation and
benefited a broad range of applications [18], including but
not limited to object recognition [19], visual understanding
[20], and numerical regression [21, 22]. Quite different from
conventional MBCD techniques, CNN attempts to integrate
the feature extraction and lesion classification into a su-
pervised learning procedure. ,e input of the CNN archi-
tectures is image patches of outlined lesion regions, and its
output corresponds to the predicted lesion malignancy and
intuitively, time and labor can be reduced in feature engi-
neering. Meanwhile, CNN is pushing forward the technique
upgrading in the field of medical imaging [23], medical
physics [24, 25], medical image analysis [26–28] and ra-
diotherapy [29, 30]. ,e research toward developing effec-
tive and efficient CNN-based MCBDmodels is still ongoing.

To the best of our knowledge, three review papers have
been published regarding deep learning based breast cancer
diagnosis. One concerns lesion detection and malignancy
prediction using mammography, ultrasound, magnetic
resonance imaging and digital tomosynthesis [31]. One
focuses on mammography and histology image processing
and analysis [32]. Meanwhile, it attempts to map the
features/phenotypes between mammographic abnormalities
and histological representation. ,e last one overviews deep
learning in the detection and diagnosis of various kinds of
cancers by using different imaging modalities [33]. In
general, technical details in these review papers are not well
delivered.

,is paper also presents a review. It is dedicated to the
technique of CNN applied in a specific application of
MBCD, and it aims to provide clues on how to use CNN in
intelligent diagnosis. ,e contributions of this review are
summarized as follows. At first, this study is restricted to
peer-reviewed journal publications and consequently,
technical details and pros and cons of each model can be
delivered. Furthermore, based on how to use CNN tech-
niques, the MBCDmodels are broadly categorized into three
groups. One is to design shallow models or to modify
existing models for decreased time cost and medical in-
stances for training; another is to make the best use of a
pretrained CNN model by transfer learning and parameter
fine-tuning; and the third is to take advantage of CNN
models for feature extraction, while the differentiation be-
tween malignant and benign lesions is based on machine
learning classifiers. At last, findings, challenges, and limi-
tations are summarized, and some clues on the future work
are also given.

,e remainder of this paper is structured as follows.
Section 2 describes basic concepts regarding computer-aided
diagnosis (CAD) and transfer learning. Section 3 reviews
CNN-based MBCD techniques, including the search strat-
egy of the literature and technical details of involved models.
And then, findings, challenges, and future focus are sum-
marized in Section 4. In the end, Section 5 concludes this
review.

2. Basic Concept of CAD Models

,is section briefly describes the basic concepts of
computer-aided diagnosis (CAD) and transfer learning.
Specifically, Figure 1 shows the flow chart of machine
learning- (ML-) based CAD and major architectures of
CNN-based CAD. It should be noted that for diagnosis, a
CADmodel assumes the suspicious lesion regions have been
accurately delineated and its purpose is to predict the ma-
lignancy of the input lesions.

2.1.Computer-AidedDiagnosis (CAD). ACADmodel can be
used to provide additional information and support the
decision making on disease diagnosis and cancer staging. It
is different from a computer-aided detection model which
aims to detect, localize, or segment suspicious regions.
However, it should be noticed that a computer-aided de-
tection model can be placed ahead of a diagnosis model for
comprehensive analysis from the detection and localization
to the diagnosis of suspicious regions.

2.1.1. ML-Based CAD. A ML-based CAD model consists of
feature extraction and machine learning-based classification
as shown in the left of Figure 1, and feature selection is
optional. Widely used features come from image descriptors
that quantify the intensity, shape, and texture of a suspicious
region [34]. Preferred machine learning classifiers are not
limited to artificial neural network (ANN), support vector
machine (SVM), k-nearest neighbors, naive Bayesian, and
random forest (RF) [35]. Due to the emergency of radiomics
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[36–38], it should be noted that feature selection becomes
more and more important and it aims to retrieve intrinsic
features of suspicious lesions.

Mathematically, the procedure of using a pretrainedML-
based CAD model to predict the malignancy of a lesion can
be described as follows. First, an outlined suspicious region
(Ix) as the input is quantified with scalar variables (E(Ix)) by
using feature extraction (E). ,en, feature selection (S) is
employed to decrease the feature dimension and to retrieve
informative features (S(E(Ix))). In the end, the output of the
label (y) of the lesion (Ix) is predicted using machine learning
classifiers can be formulated as y � F(S(E(Ix))). For
comprehensive understanding, overviews regarding ma-
chine learning and breast cancer diagnosis can be referred to
[8, 9].

2.1.2. CNN-Based CAD. CNN models are computational
models that are composed of multiple processing layers to
retrieve features from raw data with multilevel representa-
tions and hierarchical abstraction [19]. As shown in the right
of Figure 1, a general architecture of CNNmodels is made up
of convolutional layers, full-connection layers, and pooling
layers in addition to the input and output layers. Specifically,
Figure 2 shows the architecture of VGG16 which consists of
13 convolutional layers, 3 full-connection layers, 5 pooling
layers, and 1 softmax layer [39]. For further improvement in
object classification, many techniques can be embedded,
including nonlinear filtering, data augmentation, local re-
sponse normalization, hyperparameter optimization, and
multiscale representation [31, 32]. At present, widely used
deep learning models include, but are not limited to, VGG
[39], LeNet [40], AlexNet [41], GoogLeNet [42, 43], ResNet
[44], YOLO [45], faster R-CNN [46] and LSTM [47].

Mathematically, the procedure of using a pretrained
CNN-based CAD model for the prediction of lesion ma-
lignancy can be described as following. Given a suspicious
region (Ix), the output of a CNN-based model can be for-
malized as y � F(Ix) � fn(fn−1(· · · (f(Ix)))) where n
stands for the number of hidden layers and fi denotes the

activation function in the corresponding layer i. Further-
more, how to design the architecture of deep learning
models in addition to the comprehensive analysis and
systematic methodologies of learning representation can be
referred from [18, 19, 48].

It should be noted that CNNmodels are data-driven and
can be trained end-to-end. ,e models enable the in-
tegration of feature extraction, feature selection, and ma-
lignancy prediction into an optimization procedure.
,erefore, these retrieved features are not designed by
human engineers but learned from the input data [19]. In
general, remarkable performance of CNN-based CAD
models comes from advanced computing hardware resource
(i.e., graphic processing units and distributed computing
system), open-source software, such as TensorFlow (https://
www.tensorflow.org/), and open challenges based on mil-
lions of high-quality labeled images, such as ImageNet
(http://www.image-net.org/). Its success also benefits from
the novel design of architectures for deep learning, such as
inception [43] and identity mapping [44].

2.2. Transfer Learning. Transfer learning, or knowledge
transfer, is more a machine learning strategy. It aims to reuse
a model pretrained in the source domain as a starting point
in a different but related target domain [49]. In the field of
machine learning, an algorithm is typically designed to
address one isolated task, while through transfer learning,
the algorithm can be further adapted to a new task (Figure 3).
It has several benefits using knowledge transfer. Above all,
knowledge transfer enables the quality of the starting point
in the target domain and thereby, promising results can be
expected. Moreover, how to make use of a pretrained model
is flexible. ,e model can be employed as a feature extractor
for high-level representation of images and its parameters
can be fine-tuned with target data. In addition, both time
and cost can be reduced dramatically. Depending on com-
puting resources, it takes about days to months training a
deep model, while the time drops to hours when transferring
this model for target applications. ,anks to the accessibility
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Figure 1: ,e diagram of the main flow chart of ML-based CAD (a) and major architectures of CNN-based CAD (b). ,e black dashed line
indicates the blocks are modifiable. ,e green dashed line denotes each step in the ML-based model is interpretable, and the red solid line
indicates the CNN-based model is data-driven when the architecture is fixed.
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of pretrained deep models online, high-cost hardware seems
unnecessary. Most importantly, transfer learning relieves the
requirement of huge amount of instances for model training,
which is critically helpful in medical imaging field. At present,
the most popular object classification is based on the
ImageNet [50] and without additional comments, pretrained
CNNmodels are all denoted an initialization on the ImageNet
in this study.

3. CNN-Based MBCD

,is section firstly introduces the search strategy of litera-
tures, involved databases and performance metrics. In the
end, CNN-based MBCD methods are categorized into three
groups based on the design and use of CNN models. ,is
overview concentrates on peer-reviewed journal publica-
tions, and it provides technical details and pros and cons of
CNN models.

3.1. Search Strategy for Literature Review. For the literature
survey, IEEEXplore, Pubmed, ScienceDirect, and Google
Scholar were used to search publications relating to CNN-
based MBCD. ,e last update was at December 20, 2018.
Keywords are “convolutional neural network,” “deep learn-
ing,” “mammography,” “breast cancer,” and “diagnosis”.
Specifically, only papers published on peer-reviewed journals
were selected, and our search yielded 18 research articles.
Table 1 summarizes the literature from the used databases, the
number (no.) of medical images in lesion classification and
the diagnosis performance (AUC, the area under the curve;
ACC, accuracy; SEN, sensitivity; SPE, specificity). Note that in
each literature, only the model which achieves the best
classification performance is reported.

3.2. Involved Databases. Table 1 indicates that mostly used
mammography databases come from in-house collection
(7/18), followed by public databases of BCDR-F03 (5/18),
DDSM (4/18), INbreast (3/18), MIAS (1/18), and IRMA
(1/18), and the last one comes from the DREAM challenge
(1/18). ,e number of medical images in databases ranges
mainly from several hundreds to thousands. Notably, the

DREAM challenge is consisted of 82,000 images. More-
over, among the public databases, BCDR-F03 is the only
one consisted of FM images, while among in-house col-
lections, [55] is the one study that makes use of FM images
(1655 FM images and 799 DM images), and all other
databases and in-house collections are made up of DM
images.

,ree public databases of DDSM (http://marathon.
csee.usf.edu/Mammography/Database.html), BCDR-F03
(http://bcdr.inegi.up.pt), INbreast (http://medicalresearch.
inescporto.pt/breastresearch/index.php), and MIAS (http://
peipa.essex.ac.uk/info/mias.html) are accessible online, while
the DREAM challenge (https://www.synapse.org/#Synapse:
syn4224222) is devoted to online competition and aims at
improving the predictive accuracy of mammographic images
for early detection and diagnosis of breast cancer. ,e IRMA
[69] contains image patches selected from the DDSM, MIAS,
and other two data sets. Among the public databases, DDSM
(“Digital Database for Screening Mammography”) remains
the largest available resource for mammographic image
analysis [70]. It consists of 14 volumes of benign lesion cases
and 15 volumes of malignant lesion cases in addition to 2
volumes of benign lesion cases without callback. It also
contains 12 volumes of normal cases. ,e images in DDSM
are in an outdated image format with a bit depth of 12 or
16 bits per pixel, and image resolution is larger than [4000,
3000], both depending on scanners.

,e database BCDR-F03 (“Film Mammography Dataset
Number 3”) is a subset of Breast Cancer Digital Repository
(BCDR) that collects patient cases from the northern region
of Portugal. It was made available for the development and
comparison of algorithms [52]. ,e BCDR-F03 contains 344
patient cases, 736 FM images, and 406 breast lesions. Among
the lesions, 230 are benign (426 images) and 176 malignant
(310 images). Notably, BCDR-F03 contains FM images in
the gray-level digitized TIFF (Tagged Image File Format)
with a bit depth of 8 bits per pixel, and image resolution is
[720, 1168].

,e database INbreast is made up of 115 breast lesion
cases and 410 digital images [71]. However, only 56 cases are
histologically verified (11 benign and 45 malignant lesions).
,e mammographic images are saved in DICOM (Digital

Input/output layer
Convolutional layer
Pooling layer

Full connection layer
Softmax layer

Figure 2:,e architecture of VGG16. It consists of 13 convolutional layers, 3 full-connection layers, 5 pooling layers, and 1 softmax layer in
addition to the input and output layers.
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Imaging and Communications in Medicine) format with 14-
bit contrast resolution. ,e image matrix is [2560, 2238] or
[3328, 4084] depending on imaging scanners.

,e MIAS database (“Mammographic Image Analysis
Society”) contains 322 digital images among which 67 le-
sions are benign and 53 lesions are malignant [72]. Quite

Table 1: A summary of CNN based MBCD methods.

Year Database No. of images AUC ACC SPE SEN
[51] 2016 DDSM 600 0.967
[52] 2016 BCDR-F03 736 0.82± 0.03
[53] 2016 In-house 607 0.86
[54] 2017 In-house 3158 0.88 0.82 0.72 0.81
[55] 2017 In-house 2454 0.82± 0.02
[56] 2017 In-house 245 0.86± 0.01
[57] 2017 INbreast 115 0.91± 0.12 0.95± 0.05
[58] 2017 In-house 560 0.79± 0.02
[59] 2017 IRMA 2796 0.839 0.837 0.854 0.797
[60] 2018 In-house 78 0.81± 0.05
[61] 2018 In-house 3290 0.7274
[62] 2018 DDSM 600 0.974

MIAS 120 0.967
[63] 2018 BCDR-F03 736 0.813
[64] 2018 DDSM 5316 0.98 0.9735

BCDR-F03 600 0.96 0.9667
INbreast 200 0.97 0.9550

[65] 2018 DDSM 600 0.97
[66] 2018 DREAM 82,000 0.85

INbreast 115 0.95
[67] 2018 BCDR-F03 736 0.891 0.852
[68] 2018 BCDR-F03 736 0.88 0.81

Source data

Source model

Source labels

Target data

Target labels

Target modelTransfer learning

Figure 3: ,e diagram of knowledge transferred from the source domain to a different but related target domain. In the source domain, a
model is trained with sufficient high-quality instances (data and labels) and transfer learning enables the model used in a related target
domain. It relieves the requirement of huge amount of instances for the training of deep models in the target domain which is critically
helpful in medical imaging field.
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different from above-mentioned databases, MIAS provides
the image coordinates of center of each abnormality and the
approximate radius (in pixels) of a circle to enclose the
abnormality, but not the coordinates of points localized on
the boundary of lesions. Images are stored 8 bits per pixel in
the PGM (Probabilistic graphical model) format. ,e da-
tabase has been reduced to a 200 micron pixel edge and
padded/clipped so that the image matrix is [1024, 1024].

3.3. Performance Metrics. To quantify the classification
performance of CAD models, widely used metrics are AUC
and ACC, followed by SEN and SPE (Table 1). Specifically,
ACC, SEN, and SPE are computed based on the confusion
matrix. As shown in Table 2, TP is the case which is his-
tologically verified positive and correctly predicted as
“positive”, while FN represents the case histologically ver-
ified positive but misclassified as “negative”. Furthermore,
TN is the true negative case predicted correctly, and FP is the
true negative case but predicted as “positive” [73]. Generally,
benign lesions are labeled with “negative” and malignant
lesions are labeled “positive”.

Given the labels and corresponding prediction results,
ACC, SEN, and SPE can be, respectively, formulated as
(TP+TN)/(TP+ FN+FP+TN), TP/(TP+ FN), and TN/
(TN+FP). As to AUC, it is quantified based on the receiver
operating characteristics (ROC) curve. ROC is a curve of
probability and AUC presents a model’s capacity of lesion
differentiation. To these 4 performance metrics, higher
values indicate better performance.

3.4. CNN-Based MBCD Models. In general, CNN-based
models can be divided into dedicated models and trans-
ferred models. ,e former include the proposal of new
architectures, the modification or integration of existing
CNN models, while the latter make the most use of pre-
trained models and further fine-tune them by using medical
instances. Furthermore, it is found that somemodels just use
CNN for feature extraction and lesion diagnosis is fulfilled
by using machine learning classifiers. In particular, hand-
crafted features are taken into consideration. ,erefore, in
this study, CNN-based MBCD models are broadly catego-
rized into three groups of dedicated models, transferred
models, and hybrid models. Table 3 summarizes the CNN-
based models from the model building to its pros and cons
analysis. Note that the pros of “parameter initialization”
indicate the model is pretrained with ImageNet.

3.4.1. Dedicated MBCD Models. To enhance the diagnosis
with unlabeled data, [54] proposes a graph-based semi-
supervised learning scheme, which is consisted of iterative
data weighting, feature selection, and data labeling before
using the modified LeNet for lesion diagnosis. Experimental
results indicate that the scheme requires quite a small
portion of labeled data (100 lesions) for training and achieves
promising performance on the unlabeled data (3058 lesions).
In addition, the scheme seems less sensitive to the initial
labeled data. Reference [55] adds 2 fully connected layers at

the last full-connection layer of the frozen AlexNet. ,e
parameters in the AlexNet are initialized on the ImageNet
and keep unchanged, while the whole model is trained on
medical instances. Reference [58] proposes a four-layered
model (3 convolutional layers and 1 full-connection layer)
and a 4-fold cross-validation strategy is performed on 560
lesions (280 benign and 280 malignant). Reference [62]
designs a CNN architecture (5 convolutional layers and 2
full-connection layers), while it pretrains the model on the
ImageNet. Notably, parasitic metric learning is embedded
that makes the best use of misclassified medical instances
and improves the diagnosis performance. Reference [65]
employs YOLO for lesion detection and localization fol-
lowed by a tensor structure for the malignancy prediction.
And consequently, automatic detection and classification of
suspicious lesions is achieved simultaneously. Similarly, [66]
uses the faster R-CNN for lesion detection and localization
and the VGG for cancer diagnosis. ,e model is first trained
on the DDSM and further validated on the INbreast and the
DREAM challenge. It performs as one of the best approaches
in mammographic image analysis. Reference [67] develops a
hybrid model. It first uses the pretrained GoogLeNet for
feature extraction, and 3072 features are obtained. And then,
an attention mechanism is proposed for feature selection. At
last, it uses LSTM to integrate both contexture information
from multiview image features and information of clinical
data for the lesion classification.

Figure 4 demonstrates the flow chart and an example of
dedicated MBCD models. ,e flow chart highlights that the
CNN is a newly designed or modified network and the
example describes the architecture of the CNN model from
[58]. It should be noted that parameters of dedicated models
are with random initialization followed by iterative opti-
mization with medical instances.

Although [55, 62, 66, 67] make use of the ImageNet for
parameter initialization, it should be highlighted that one
develops a new architecture [62], one modifies the existing
architecture and introduces a new learning strategy [55], and
the others emphasize on the integration of two kinds of
network architectures for simultaneous detection and lo-
calization and final lesion diagnosis [66, 67]. ,erefore,
[55, 62, 66, 67] are categorized into the group of dedicated
models.

3.4.2. Transferred CNN Models. Due to insufficient medical
instances, deep CNN models pretrained on a large-scale of
labeled natural images (such as ImageNet) are transferred
and also fine-tuned with medical instances before the ap-
plication in breast cancer diagnosis. Reference [61] gives out
a systematic comparison of one shallow network (3 con-
volutional layers and 2 full-connection layers) and the
AlexNet. Transfer learning is concerned, and experiment
results indicate that CNN models with transfer learning
outperform the models without transfer learning. Reference
[63] investigates three kinds of implementation of an 8-
layered CNN architecture. Parameters, such as the number
of convolutional filters in each layer, are fine-tuned with
mammographic lesion instances. Experimental comparison
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Table 2: Confusion matrix.

Predicted positive Predicted negative
Histologically verified positive True positive (TP) False negative (FN)
Histologically verified negative False positive (FP) True negative (TN)

Table 3: Summary of CNN-based MBCD models from the model building to its pros and cons analysis.

Publication (year) Approach Pros (+)/cons (−)

[51] (2016)
(1) An 8-layered CNN +parameter initialization

(2) SVM-based decision mechanism +decision mechanism
(3) Compared to ML- and CNN-based models −256 mid- and 2048 high-level features

[52] (2016)
(1) A 3-layered CNN +medical instances for training

(2) SVM-based classification −17 low- and 400 high-level features
(3) Compared to ML- and CNN-based models −a shallow CNN model

[53] (2016)
(1) Transferred AlexNet +parameter initialization

(2) SVM-based classification +soft-voting-based decision mechanism
(3) Classifier-based soft voting −29 low- and 3795 high-level features

[54] (2017)

(1) Modified LeNet +semisupervised learning
(2) Graph based semisupervised learning +a few labeled data used for training

(3) Feature dimension reduction +less sensitive to initial labeled data
(4) Using unlabeled data

[55] (2017) (1) Modified AlexNet +parameter initialization
(2) Multitask transfer learning +improved generalizability

[56] (2017)
(1) Transferred the VGG +parameter initialization

(2) SVM-based classification +decision mechanism
(3) Compared to ML- and CNN-based models −38 low- and 1472 high-level features

[57] (2017)
(1) R-CNN for detection and diagnosis +minimal user intervention in image analysis

(2) Feature regression −781 low-level features for CNN feature regression
(3) RF-based classification

[58] (2017) (1) A 4-layered CNN +medical instances for training
−a shallow CNN model

[59] (2017)
(1) A 3-layered CNN +medical instances for training

(2) SVM-based classification +image analysis in transformed domain
(3) Data augmentation −a shallow CNN model

[60] (2018)
(1) VGG for feature extraction +2 features selected for diagnosis
(2) Stepwise feature selection
(3) SVM-based classification

[61] (2018)
(1) Transferred AlexNet +parameter initialization
(2) Data augmentation

(3) Compared to CNN models

[62] (2018) (1) A 7-layered CNN +parameter initialization
(2) Parasitic metric learning +parasitic metric learning

[63] (2018) (1) Transferred VGG +parameter initialization
(2) Compared to CNN-based models

[64] (2018)
(1) Transferred VGG/ResNet/Inception +parameter initialization

(2) Comparison on 3 databases +systematic comparison
−time consuming

[65] (2018) (1) YOLO and tensor structure +medical instances for training
(2) Data augmentation +simultaneous detection and classification

[66] (2018)
(1) Faster R-CNN and VGG +medical instances for training

(2) Pretrained with the DDSM +both detection and diagnosis
+evaluated on a large-scale screening dataset

[67] (2018)
(1) GoogLeNet for feature extraction +medical instances for training

(2) Attention mechanism for feature selection +multiview and clinical information fusion
(3) LSTM for feature fusion

[68] (2018)
(1) Transferred AlexNet/GoogLeNet +parameter initialization

(2) Data augmentation
(3) Compared to ML- and CNN-based models

Computational and Mathematical Methods in Medicine 7



further indicates that incorporating handcrafted features
increases the classification performance. Reference [64]
concentrates the study on three deep learning models (VGG,
RestNet, and GoogLeNet) and knowledge transfer is ex-
plored. Experiments are conducted to compare the random
initialization and parameter initialization and to figure out
how to fine-tune the models. Notably, three public databases
(DDSM, INbreast and MIAS) are analyzed. Reference [68]
compares two deep networks (AlexNet and GoogLeNet)
which are pretrained on the ImageNet, two shallow CNN
models, and two ML-based MBCD models. Experimental
results suggest that knowledge transfer is helpful in breast
lesion diagnosis.

Figure 5 shows the flow chart and an example of trans-
ferred MBCD models. ,e flow chart highlights the offline
training of a CNN model on nonmedical images, and
moreover, it emphasizes fine-tuning the pretrainedmodel with
medical instances. A representative example using VGG as the
diagnosis model comes from [64]. It should be noted that
parameters of CNN architectures are predetermined in the
task of object recognition, and their values are further opti-
mized toward mammographic breast lesion differentiation.

Existing deep architectures are made themost use of, and
these models [61, 63, 64, 68] are pretrained on the ImageNet
and parameters are initialized. And then, mammographic
lesion instances are used to fine-tune the deepmodels.While
to further improve the diagnosis performance, additional
techniques, such as data augmentation, are embedded in the
training procedure. It should be noted that [61] has designed
shallow networks, while its purpose is to verify whether
transfer learning could improve the cancer diagnosis, and
thereby it is grouped into the transferred CNN models.

3.4.3. CNN Models as Feature Extractors. Among the CNN-
based MBCDmodels, 7 out of 18 take CNN to retrieve high-
level features for lesion representation. Reference [51] de-
velops an 8-layered network (5 convolutional layers and 3
full-connection layers). ,e model is pretrained on the
ImageNet to overcome the issue of limited medical in-
stances. And then, SVM performs as the classifier and a

decision mechanism is provided. After that, the MBCD
model integrates 256 midlevel and 2048 high-level features
for lesion classification. Reference [52] designs two shallow
networks and experimental results indicate the 3-layered
network (2 convolutional layers and 1 full-connection layer)
obtains better performance. While for higher accuracy, SVM
is further employed which takes these CNN features as its
input. Experiment results show the diagnosis performance
achieves slight but significant improvement when 17 low-
level and 400 high-level features are pooled for lesion
quantification. Reference [53] takes advantage of the pre-
trained AlexNet for the lesion differentiation. More spe-
cially, one SVM-basedmodel uses 3795 high-level features as
its input and the other SVM-based model uses 29 low-level
features for the lesion classification.,e outputs are fused by
soft voting and significant improvements are achieved in
malignancy prediction. Reference [56] investigates different
methodologies for feature fusion. It concerns 38 handcrafted
features and 1472 CNN learned features, and SVM is as the
classifier for each kind of feature.,en, the results from each
SVM are fused for final decision making. ,e results show
that the integration of low- and high-level features signifi-
cantly improves cancer diagnosis. Reference [57] proposes a
hybrid framework for mammographic image analysis. With
minimal user intervention, it is capable of mass detection,
lesion segmentation, and malignancy prediction. Specifi-
cally, for lesion differentiation, it regresses the output of the
CNN model to 781 handcrafted features and then, a full-
connection layer is added for feature abstraction. Finally, RF
is utilized to improve the diagnosis accuracy. Reference [59]
introduces a shallow network (2 convolutional layers and 1
full-connection layer). It alternatively cooperates with dis-
crete wavelet transform and curvelet transform for image
preprocessing. At last, a total of 784 features are handcrafted.
Moreover, both softmax and SVM are compared, and SVM
outperforms softmax with slight increase. Reference [60]
takes advantage of 1472 high-level features from the pre-
trained VGGwith frozen parameters. Its novelty comes from
the proposal of step-wise feature selection and the 2 most
frequently selected features are used for SVM-based breast
lesion classification.

Medical images

An example

Full connection layer
Softmax layer

Flow chart

D
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ed
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el
s

New or modified CNN
architecture Malignancy prediction

Input/output layer
Convolutional layer
Pooling layer

Figure 4: ,e flow chart and an example of dedicated MBCD models. ,e flow chart highlights the CNN is a newly designed or modified
network, and the example describes the architecture of a CNN model in [58]. It should be noted that parameters of dedicated models are
with random initialization followed by iterative optimization with medical instances.
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Figure 6 shows the flow chart and an example of CNN
models as feature extractors. ,e flow chart highlights in-
formation fusion. In other words, whether a CNN model is
newly designed or pretrained becomes not important and
using low-level feature is optional. Information fusion can be
divided into two approaches. One is feature fusion followed
by a classifier, and the other is decision fusion of lesion
malignancy predicted by using one or more classifiers. ,e
example comes from [51] which develops a new CNNmodel
and the model is pretrained on ImageNet. At last, the model
fuses the prediction results (decision fusion) from SVM
classifiers which separately use 384 midlevel features and
2048 high-level features as the input.

Prior studies have proved the benefits of low-level fea-
tures in mammographic image analysis. And at present, how
to select the informative CNN features [60] and how to fuse
low-, mid-, and high-level features and clinical information
have become important [52, 53, 56]. It should be mentioned
that even if some MBCD models concern handcrafted
features [53, 56], the ultimate purpose is to construct a
hybrid framework for improved diagnosis and thereby, these
publications [53, 56] are categorized into the third group.

3.4.4. Technical Highlights among CNN-Based MBCD
Models. Table 4 summarizes the technical highlights that
can distinguish each kind of CNN-based MBCD models. In
the Table, “✔” indicates the distinct component in the
model, “✖” denotes the component is not included in the
models, while “—”means the component is not important in
this kind of CNN-based models.

4. Discussion

A total of 18 peer-reviewed journal publications (Table 1) are
found with regard to the “convolutional neural network” or
“deep learning” based “breast cancer diagnosis” using

“mammography” images. ,e models are generally divided
into three groups (Table 4): one highlights the design of new
architectures or the modification or integration of existing
networks (Figure 4); one concentrates on the use of transfer
learning and fine-tuning in breast cancer diagnosis (Figure 5);
and the last one concerns a hybrid model in which CNN
performs for feature extraction and information fusion be-
comes indispensable in decision making (Figure 6). In ad-
dition, Table 3 summarizes these models from the model
building to its pros and cons analysis.

4.1. Our Findings. To overcome the issue of limited medical
instances, there are 10 publications that employ transfer
learning [51, 53, 55, 56, 61–64, 66, 68], with or without fine-
tuning. Transfer learning is able to alleviate this issue to some
extent, since deep models have been optimized using
massive amount of data in the source domain; and conse-
quently, the time and labor can be considerably reduced in
the target domain. In particular, it has been verified that
transfer learning benefits the differentiation of breast lesions
seen in mammographic images. Besides, to increase the
number of medical instances, data augmentation is used
[59, 61, 65, 68]. It makes sense in lesion malignancy pre-
diction, since a lesion might be presented in any particular
orientation in screening and thus, the MBCD model should
be able to learn and recognize the lesion malignancy. For
data augmentation, besides image rotation and flipping,
other techniques can be adapted, such as image quality
degrading (https://github.com/aleju/imgaug) and image
deformation [74–76].

To improve the diagnosis performance, 11 out of 18
publications develop shallow architectures or modify
existing networks [51, 52, 54, 57–60, 62, 65–67]. Shallow
architectures decrease the number of medical instances for
training, while machine learning classifiers should be uti-
lized when modified deep networks with frozen or fine-
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An example

Tr
an

sfe
rr

ed
 C

N
N

 m
od

el
s

CNN architecture

Nature images

Medical images
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Figure 5: ,e flow chart and an example of transferred MBCD models. ,e flow chart emphasizes transfer learning (dashed arrows) and
fine-tuning, and the example comes from [64] which makes use of pretrained VGG16 for malignancy prediction. It should be noted that
parameters of pretrained models are well-determined in the source domain, while fine-tuning attempts to use medical instances for further
optimization of these parameters toward the target task.
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tuned parameters perform as feature extractors. However,
problems occur. ,e first problem concerns which classifier
to be applied for the differentiation of benign and malignant
lesions. It is found that 9 out of 11 publications select SVM
[51, 52, 54, 58–60, 62, 65, 66], and 1 uses RF [57] and 1
chooses LSTM [67] for malignancy prediction. ,e second
one is how to choose informative and predictive features
among hundreds to thousands of variables. Most publica-
tions address this question by comprehensive experiments to
make a trade-off between the diagnosis efficiency and ef-
fectiveness, while only [56] proposes using the frequency of
the CNN feature selected in the training stage as the
weighting of the feature importance. Last but not the least, it
is time-consuming and troublesome. In general, it takes days
to weeks to develop new architectures and to modify or to
integrate deep models due to the requirements of model
training, parameter optimization, feature selection, and al-
gorithm comparison.

It is also found that 7 publications consider low-level
and/or clinical features [51–54, 56, 59, 67]. Low-level fea-
tures are mainly derived from intensity statistics, shape
description, and texture analysis [34]. Specifically, these
features can be further analyzed with multiscale de-
composition or in transform spaces. Clinical information
includes breast density, patients’ age, and other symptoms,
such as microcalcification. In addition, 4 publications

provide the comparison between CNN- and ML-based
models [51, 52, 56, 68] and ML-based models are treated
as the baseline. It should be noted that ML-based models
benefit from the prior knowledge and clinical experience in
feature crafting, feature selection, and the use of machine
learning classifiers. In particular, it is feasible to build a ML-
based model on a very small database [36]. Besides, ML-
based models are relatively lightweight computing and re-
quire no specific hardware and thus, these models can be
easily deployed and managed in daily work.

Integrating multiple representation of mammographic
lesions can enhance the performance of breast cancer di-
agnosis, while how to incorporate low-, mid-, and high-level
features or multiview data is quite difficult. ,ere are 4
publications [51, 53, 56, 67] which provide mechanism for
information fusion or decision fusion. Reference [51] pro-
poses a decision mechanism by evaluating the consistency of
the results from the midlevel features and the high-level
features. If not consistent, gray information would be added
to assess the similarity and support the decision making.
Both [53, 56] build ensemble classifiers by averaging the
results from two SVM classifiers among which one makes
use the pretrained CNN features and the other analyzes
handcrafted features. Reference [67] utilizes LSTM cells to
integrate the features from multiview data. Since multiview
data contain contextual information, the variations among

Table 4: Technical highlights.

New architecture Transfer learning Fine-tuning Information fusion
Dedicated CNN models ✔ ✖ ✖ ✖
Transferred CNN models — ✔ ✔ ✖
CNN models as feature extractors — — — ✔
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high-level features
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Figure 6: ,e flow chart and an example of CNN performing as feature extractors. ,e flow chart highlights the information fusion which
can be further divided into two approaches, feature fusion followed by a classifier or decision fusion of lesion malignancy predicted by using
one or more classifiers. ,e example comes from [51] which develops a new CNN model and the model is pretrained on ImageNet. At last,
the model fuses the prediction results from SVM classifiers which separately use 384 midlevel features and 2014 high-level features as its
input.
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multiview images may contribute additional information in
lesion interpretation.

4.2. Technical Challenges. Several technical challenges re-
main. ,e first challenge comes from how to use the pre-
trained deep CNN models which is closely related to the
MBCD performance [77, 78]. However, there is no definitive
answer on how to fine-tune the network and how many
medical instances is sufficient for the fine-tuning, even good
practice is available [79]. ,e simplest way is to take the
parameters of the whole network or some layers of the
network tunable. Some studies suggest layer-wise fine-
tuning, while the time consumption will be dramatically
increased [80]. On the other hand, when using deep models
as feature extractors, other technical issues arise, including
how to select high-level features, how to integrate multi-
perspective information, and which machine learning
classifier is employed. It is pitiful that no tutorial or practical
guidelines are repeatable. In clinic, to improve the perfor-
mance of breast cancer diagnosis, various imaging modal-
ities and clinical data are taken into account that further
imposes difficulties on information fusion [9]. Since no one-
size-fits-all solution is available, prior knowledge, previous
studies, and empirical experience become more and more
important to address these technical issues [78–83].

It is also challenging on how to avoid overfitting in the
optimization of deep networks. Dropout is proposed to
address the problem [84] which aims to randomly drop units
(along with connections) from the network in the training
stage. It can prevent units from coadapting too much, and a
practical guide is provided for the training of a Dropout
network [84]. It is full of potential to avoid overfitting by
increasing the number of medical instances for training. At
last, if there is no possibility to reduce the architecture
complexity and no way to increase the number of training
instances, the mainstream is to manipulate parameters, such
as the learning rate, and to monitor the drop of performance
metrics between the training phase and the validation phase
[58, 60, 61, 68]. It also should be mentioned that the
threshold of the drop is subjective, and thus, comprehensive
experiments become necessary.

,e third challenge is the curse of dimensionality [85]. It
is known that the primary purpose of deep learning is for
recognizing the target from thousands of object categories.
However, MBCD is a binary classification problem, and the
lesions seen in mammographic images are to be labeled as
benign or malignant. ,us, it seems not convincing to use
thousands of features for a binary classification problem
regarding hundreds of medical instances [51–53, 56]. Some
studies take recourse to feature selection [60] and feature
dimension reduction [54]. As to deep networks, the fre-
quency of features selected in the training phase as a
weighting factor of feature importance is meaningful [60].

In practice, challenges exist in each step of the building
of CNN-based MBCD models. First, a number of factors
influence the quality of mammographic imaging, such as the
imaging scanner and reconstruction methods, and both
breast compression and motion artifacts during image

acquisition further degrade the imaging quality. ,erefore,
quantitative image quality assessment may be necessary [86].
Moreover, due to different shapes and margin of suspicious
lesions and also ambiguous boundaries between lesions and
surrounding tissues, the quality of lesion delineation is
unstable, and thereby, the techniques for automatic mam-
mographic breast lesion detection and segmentation are still
in need of improvement [87]. In addition, evolutionary
pruning of knowledge transfer of deep models that are
pretrained on sufficient medical images is promising for
mammographic breast lesion diagnosis because of the
similar feature space [88]. Last but not the least, it is always
desirable to build a seamless system to localize the suspicious
lesions and give out the malignancy prediction simulta-
neously [65, 66].

4.3. Future Focus. Except for the technical challenges
aforementioned, another three topics should be focused on
in the future work. ,e first one is to collect sufficient high-
quality mammographic instances. Due to the limited
funding, scarce medical expertise, and privacy issues, there is
no big leap in data sharing, in particular, the mammographic
lesion images. At present, the DDSM remains the largest
publicly available database as well as the first choice in large-
scale mammographic image analysis [89]. While based
on the fact that over 150 million mammographic exami-
nations are performed worldwide per year, there is signif-
icant room for improvement in data collection and sharing.
In particular, lack of imaging data restricts the develop-
ment and upgrading of intelligent systems for personal-
ized diagnosis, including but not limited to the design of
deeper architectures, hyperparameter optimization, and the
evaluation of generalization capacity. Fortunately, rapid
progress is seen in the era of big data and many public
databases have been released online, such as TCIA (http://
www.cancerimagingarchive.net/), and various challenges are
open, such as the DREAM challenge. With such a stan-
dardization, it will become easier to compare different ap-
proaches on the same problem of the same database and
thereby pushing forward the techniques of CNN-based
MBCD.

Another topic is about the interpretation of the learned
CNN features. In contrast to handcrafted features with
mathematical formalization and clear explanation, the in-
terpretation of retrieved CNN features is quite poor. One
way to tackle this issue is from qualitative understanding
[55, 58] based on visualization. Reference [90] provides a
technique for layer-wise feature visualization. In object
recognition, the technique indicates that shallow layers
typically represent the presence of edges, middle layers
mainly detects motifs by spotting particular arrangements of
fine structures, while deep layers attempt to assemble these
motifs into a larger cluster to be a part of or the whole object
[19, 58]. It should be admitted that the layer-wise visuali-
zation technique facilitates the visual perception and further
understanding of what the networks have learned. Reference
[91] analyzed the predicted results in two-dimensional space
using t-distributed stochastic neighbor embedding (t-SNE).
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,e t-SNE represents each object by a point in a scatter plot
where nearby points denote similar objects and distant
points indicate dissimilar objects.,erefore, a clear insight is
provided into the underlying structure of malignancy pre-
diction [55]. Quantitative interpretation of deep learning is
ongoing. Reference [92] gives a geometric view to un-
derstand the success of deep learning. ,ey claim that the
fundamental principle attributing to the success is the
manifold structure in data, and deep learning can learn the
manifold and the probability distribution on it. Reference
[93] provides theory on how to interpret the concept learned
and the decisionmade by a deep model. It further discusses a
number of questions in interpretability, technical challenges,
and possible applications.,e third topic is the translation of
the clinical research of CNN-based MBCD into the decision
supporting in clinical practice. ,ere is no doubt that deep
learning tools can provide valuable and accurate in-
formation for cancer diagnosis, while it is impossible to take
the role and responsibility of clinicians. ,e fundamental
role of a clinician in routine work is to collaborate with other
team members, including physicians, technologists, nurses,
therapists, and even patients [94]. ,us, before accepting
these decision-supporting systems for daily use, it should
provide profound understanding and visual interpretation
of deep learning tools, not only the surpassing human-level
performance.

Furthermore, one big step to use CNN-based MBCD
models for clinical applications comes from the review and
approval from the Food andDrug Administration (FDA). To
date, several FDA-approved CAD systems have been in the
market, such as the QVCAD system (QView Medical Inc,
Los Altos, CA) that uses deep learning for automated 3D
breast ultrasound analysis. With the increasing use of deep
learning algorithms, more and more CNN-based CAD
systems will be approved by the FDA. Basically, compelling
properties, such as expert-level performance, robustness,
and generalizability, should be guaranteed on different
imaging devices. While from the perspective of long-term
evolution, a global real-life application accounting for
widespread geographic, ethic, and genetic variations should
be considered.,erefore, there is still a long way ahead of the
translation of deep learning tools from scientific research to
clinical practice.

4.4. Limitations. ,ere are several limitations. First, this
review focuses on CNN for automated MBCD. For
computer-aided MBCD, it can also be well tackled by using
other CAD techniques, such as case retrieval [95–97] and
breast density estimation [98, 99]. Moreover, this study
concerns only mammography. For comprehensive disease
analysis, other imaging modalities, such as ultrasound and
magnetic resonance, should be taken into consideration [31].
Besides, this review is limited to two-dimensional image
analysis, and many other medical tasks use CNN models to
tackle volumetric images [100–102]. In particular, this study
concerns only peer-reviewed journal publications that
considerably reduces the number of publications for analysis
and consequently, it might omit some high-quality

CNN-based MBCD models [103–105]. In addition, some
technical details, such as how to prepare medical instances
for training, are not delivered in this review, while it should
be kept in mind that each step is related to mammographic
image analysis.

5. Conclusion

,is study presents a technical review of the recent progress
of CNN-based MBCD. It categorizes the techniques into
three groups based on how to use CNN models. Further-
more, the findings from the model building to the pros and
cons of each model are summarized. In addition, technical
challenges, future focus, and limitations are pointed out. At
present, the design and use of CNN-based MBCD is at its
early stage and result-oriented. To the ultimate goal of using
deep learning tools to facilitate clinical practice, there is still a
long way ahead. ,is review benefits scientific researcher,
industrial engineers, and those who are devoted to intelligent
cancer diagnosis.
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