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The oncogenic Epstein–Barr virus (EBV) persistently infects more than 95% of the human
adult population. Even so it can readily transform human B cells after infection in vitro, it
only rarely causes tumors in patients. A substantial proportion of the 1% of all human
cancers that are associated with EBV occurs during coinfections, including those with the
malaria parasite Plasmodium falciparum, the human immunodeficiency virus (HIV), and the
also oncogenic and closely EBV-related Kaposi sarcoma-associated herpesvirus (KSHV).
In this review, I will discuss how these infections interact with EBV, modify its immune
control, and shape its tumorigenesis. The underlying mechanisms reveal new aspects of
EBV-associated pathologies and point toward treatment possibilities for their prevention
by the human immune system.
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INTRODUCTION ON EBV AND ITS IMMUNE CONTROL

The ubiquitous human g-herpesvirus EBV persistently infects more than 95% of the human adult
population (1, 2). While it is primarily acquired in early childhood, delayed primary infection
during adolescence or young adulthood in one-third of the European and North American
population can result in infectious mononucleosis (IM), an immunopathological CD8+ T cell
lymphocytosis (3, 4). In some of these individuals, chronic active EBV (CAEBV) can develop which
allows the virus to infect in addition to its main host cell, the human B cell, and other lymphocytes,
including T and NK cells (5–7). From this EBV infection of T and NK cells, also virus-associated
NK/T cell lymphomas are thought to develop (8). Most types of EBV-associated lymphomas,
however, mirror the viral infection programs in B cells (8–10). Upon transmission via saliva, EBV
crosses the mucosal epithelium to infect B cells in the underlying secondary lymphoid tissues,
including tonsils (1, 11). As its default program, it expresses latent EBV gene products from
circularized viral DNA episomes. In naïve B cells, all eight latent EBV proteins (six nuclear antigens
or EBNAs, and two latent membrane proteins or LMPs) plus non-translated RNAs, including
EBERs and miRNAs, can be detected (12, 13). This so-called latency III program drives B cells into
proliferation and can also be found after in vitro immortalization of human B cells by EBV infection,
as well as in lymphomas in immune compromised individuals (14). In germinal center B cells, only
EBNA1 and the two LMPs are expressed at the protein level and thought to rescue infected cells
from deletion without T cell help and B cell receptor engagement during this B cell differentiation
stage (15). This latency IIa program is found in Hodgkin’s lymphoma (8). Via germinal center
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Münz Coinfections of EBV-Associated Pathologies
differentiation or directly from an early expressed latency IIb
program (EBNA without LMP expression), EBV-infected B cells
reach the memory B cell pool for persistence (16, 17). In these,
EBV shuts down latent protein expression or transiently induces
EBNA1 in homeostatically proliferating memory B cells during
latency 0 or I, respectively (18). Latency I can also be found in
Burkitt’s lymphoma (19). From latency 0 or I, EBV can reactivate
upon plasma cell differentiation of its infected B cells into lytic
replication and infectious viral particle production (20). Mucosal
epithelial cell infection from the basolateral site might then allow
for another round of lytic EBV replication prior to shedding into
saliva (21). Such epithelial cell infection is thought to be the
source for EBV-associated nasopharyngeal and gastric
carcinomas, but it remains unclear under which circumstances
EBV switches into the associated latency II and I programs in
these cells (8). Nevertheless, all tumor-associated EBV infection
programs are present in healthy EBV carriers and are thought to
be kept in check by immune control.

This immune response is thought to be mainly dependent on
cytotoxic lymphocytes, such as CD8+ T cells and NK cells, but not
antibody responses or antiviral cytokine secretion (22–25). The
strongest evidence for this notion comes from primary
immunodeficiencies that predispose individuals to EBV-associated
pathologies due to single-gene mutations. These identify the
perforin/granzyme cytotoxic machinery, T cell receptor signaling,
cytotoxic lymphocyte co-stimulation, development of cytotoxic
lymphocytes, and their expansion as crucial elements of EBV-
specific immune control (22–25). For example, patients with
mutations in the co-stimulatory molecule CD27 or its ligand
CD70 nearly uniformly suffer from EBV-associated pathologies
(26). This co-stimulatory interaction is required for the expansion
and cytotoxicity of a subset of EBV-specific CD8+ T cells
recognizing lytic infection and EBV-specific immune control in
mice with reconstituted human immune systems (humanized mice)
(27). In the same preclinical model system of EBV infection,
depletion of CD8+ T cells and NK cells or pharmacological
inhibition of predominantly CD4+ T cell responses leads to
higher viral loads and associated lymphomagenesis carrying
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primarily the latency III infection program (28–34). These
findings suggest that primarily cytotoxic lymphocytes prevent
transition of premalignant EBV infection to lymphomagenesis in
the vast majority of asymptomatic EBV carriers.
BURKITT’S LYMPHOMA AND
PLASMODIUM FALCIPARUM

This balance between lymphomagenesis and its control by the
immune system can be disrupted by coinfections. The most
prominent case in point is the coinfection with the malaria
parasite Plasmodium falciparum which primarily infects hepato-
and erythrocytes (19, 35, 36). In Sub-Saharan Africa and Papua
New Guinea, holoendemic exposure to this parasite is associated
with Burkitt’s lymphoma (36, 37). In this endemic form, Burkitt’s
lymphoma incidence is highest in the second half of the first
decade of life and to 90% associated with EBV. In addition, it
carries a characteristic somatic mutation in the form of c-myc
translocation into the heavy- or light-chain immunoglobulin
locus of the affected B cells (Figure 1A). This translocation is
thought to occur downstream of the germinal center reaction
and its expression of activation-induced deaminase (AID) (38).
Germinal center induction and the associated AID expression
are promoted by persistent Plasmodium infection (39, 40).
However, EBV can also directly induce AID expression via its
latent gene product EBNA3C (41). Thus, Burkitt’s lymphoma,
the tumor entity in which EBV was originally discovered (42, 43),
carries in its endemic form EBV latency I infection and a c-myc
translocation into the immunoglobulin locus. P. falciparum, but
not other malaria parasites, seems to promote Burkitt’s
lymphoma development by driving more infected B cells into a
differentiation stage in which c-myc translocation can occur
(Figure 1A) and by weakening the immune control of the
respective tumor cells.

Indeed, evidence for weakened immune control of EBV
could be found in children with holoendemic P. falciparum
A B C

FIGURE 1 | Coinfections modify EBV-associated lymphomagenesis. (A) Holoendemic Plasmodium falciparum (P. falciparum) exposure is associated with endemic
Burkitt’s lymphoma. The characteristic c-myc translocation in these uniformly EBV-infected tumor cells might be driven by parasite-induced B cell differentiation.
(B) Primary effusion lymphoma is to 100% KSHV and to 90% EBV infected. KSHV infection drives the characteristic plasmablastic differentiation of these tumor cells
that in turn leads to increased early lytic EBV reactivation. (C) HIV is able to infect EBV-transformed B cells by virtue of their CD4 upregulation and maintained CXCR4
expression. The resulting double-infected B cells with integrated HIV provirus upregulate MHC class I antigen presentation and are therefore efficiently eliminated by
CD8+ T cells.
October 2021 | Volume 11 | Article 756480

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Münz Coinfections of EBV-Associated Pathologies
exposure (44–49). This affects CD4+ T, CD8+ T, and NK cells.
Loss of T cell responses against EBNA1, the sole viral protein that
is expressed in latency I and Burkitt’s lymphoma cells, has been
documented (47) (Figure 2A). But also NK cell differentiation to
poorly functional CD56-CD16+ NK cells has been described in
children with Burkitt’s lymphoma (48, 49) (Figure 2A) which is
thought to compromise NK cell-mediated control of lytic EBV
replication (33, 50, 51). NK cell differentiation to CD56-CD16+

cells could in part be driven by activating killer immunoglobulin-
like receptors (KIRs) (52). Higher EBV reactivation and/or
diminished immune control leads also to more than 100-fold
elevated viral loads in children with holoendemic exposure to P.
falciparum (53). The development and maintenance of optimal
EBV-specific immune control could be compromised by the Th2
environment that is required for immune control of the P.
falciparum blood stage (54). Indeed, Burkitt’s lymphoma
patients carry malaria asymptomatically in Sub-Saharan Africa
(55). Why, however, altered EBV-specific immune control and/
or increased EBV-infected B cell activation that result in the
elevated viral loads of children in holoendemic malaria regions
are particularly associated with the P. falciparum parasite
remains unclear. Unfortunately, an in vivo model to probe the
interaction of these two important human pathogens is
still lacking.
PRIMARY EFFUSION LYMPHOMA
AND KSHV

Another coinfection that modifies both EBV-associated tumor
cells and EBV-specific immune control is the Kaposi sarcoma-
associated herpesvirus (KSHV) (56). This human g-herpesvirus
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that is closely related to EBV is associated with the tumors
Kaposi sarcoma and primary effusion lymphoma (PEL) (57).
PEL cells are 100% KSHV infected and carry simultaneously in
90% of cases EBV in the very same lymphoma cells (9, 58). In
most cases, EBV infection displays latency I in these tumors. PEL
are also the only tumor entity in which the KSHV genome is
maintained after culturing in vitro (59). EBV enhances KSHV
genome maintenance in these PEL cell lines (60). Accordingly,
EBV supports KSHV persistence after human B cell infection
in vivo in humanized mice (61, 62) and in vitro (63, 64) but needs
to occur at nearly the same time to maintain KSHV. Probably as
a result, KSHV infection is not found without EBV coinfection in
African populations from Cameroon or Uganda (65, 66). In these
studies, EBV infection was even identified as the most significant
environmental factor for KSHV infection. Similarly, the
orthologue viruses can be transmitted together in monkeys
(67). Thus, EBV supports KSHV persistence.

Vice versa KSHV, however, also modifies EBV-associated
lymphomagenesis and its immune control. PELs have a
characteristic plasmablastic phenotype with a distinct gene
expression pattern compared to solely EBV latency III carrying
lymphomas (68). Accordingly, not only does KSHV coinfection
increase lymphomagenesis in humanized mice, but also the
resulting double-infected B and plasma cells show the
characteristic gene expression pattern of PELs (61, 62)
(Figure 1B). According to this plasmablastic differentiation, in
vivo coinfected B cells also reactivate EBV at higher frequency
into lytic infection (Figure 1B), and this can also be
demonstrated in patient-derived PEL sections (61). This higher
lyt ic EBV replicat ion contributes to the increased
lymphomagenesis of KSHV- and EBV-coinfected humanized
mice, because coinfection with a lytic replication-deficient
A B C

FIGURE 2 | Coinfections attenuate EBV-specific immune control. (A) Holoendemic Plasmodium falciparum (P. falciparum) exposure and especially endemic Burkitt’s
lymphoma are associated with an accumulation of terminally differentiated CD56-CD16+NKG2A-KIR+ NK cells. In addition, EBV-specific T cell responses are
decreased in the affected patients. (B) KSHV coinfection drives CD56-CD16+NKG2A-KIR+ NK cell differentiation in the presence of EBV infection. (C) HIV-infected
patients also demonstrate an accumulation of poorly functional CD56-CD16+NKG2A-KIR+ NK cells. In addition, this infection depletes EBV-specific CD4+ T cells.
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DBZLF1 EBV virus abolishes the increased tumor formation (61,
62). Indeed, the influence of lytic EBV replication on virus-
associated tumorigenicity has also been observed in other settings
with decreased lymphoma formation by DBZLF1 EBV infection
alone or increased tumor frequency due to BZLF1 overexpression
(69–72). In addit ion to regulat ing EBV-associated
lymphomagenesis, KSHV coinfection also influences immune
compartments (62). In both coinfected humanized mice and
Kenyan children, CD56-CD16+CD38+CXCR6+ NK cells are
enriched (Figure 2B). This terminal NK cell differentiation stage
retains only limited abilities to expand, secrete cytokines, or kill infected
cells (62), while early differentiated CD56+CD16+NKG2A+KIR- NK
cells are the protective entity against lytic EBV replication and expand
during infectious mononucleosis (33, 51, 73, 74). These studies suggest
that KSHV influences EBV-associated lymphomagenesis by
plasmablastic differentiation of coinfected B cells, associated induction
of early lytic EBV replication, and compromising immune control of
lytic EBV infection by causing NK cell differentiation to the less
functional and weakly protective terminally differentiated CD56-
negative subpopulation.
B CELL LYMPHOMAS AND HIV

PEL like most other EBV-associated lymphomas increase also
during coinfection with the human immunodeficiency virus
(HIV) (9, 14, 75). Primarily, loss of EBV-specific immune
control upon HIV-mediated CD4+ T cell depletion and
associated CD8+ T cell senescence are thought to contribute to
this increase in EBV-associated malignancies. Accordingly, the
frequency of EBV association is increased in Burkitt’s
lymphoma, Hodgkin’s lymphoma, diffuse large B cell
lymphoma, PEL, and primary CNS lymphoma in HIV-infected
patients compared to patients without coinfections by HIV,
KSHV, or P. falciparum (75). Accordingly, the selective loss of
T cell responses to EBV antigens was found during progression
to EBV-associated lymphomas in HIV-infected patients (76–78)
(Figure 2C). The earlier occurrence of Burkitt’s and Hodgkin’s
lymphoma and later emergence of EBV latency III lymphomas
might indicate that progressive loss of T cell-mediated immune
control against EBV allows more and more immunogenic virus-
induced lymphomas to emerge. Only the frequencies of the latter
have been significantly lowered by anti-retroviral therapies
(ART) (14). Along these lines, T cell responses against the
EBV latency I antigen, particularly in healthy virus carriers
frequent EBNA1-specific CD4+ T cells (79, 80), seem to be lost
prior to EBV-associated lymphoma development in HIV patients
(76). Similarly, the protective function of CD8+ T cell-mediated
immune control of EBV is lost during coinfection with HIV in
humanized mice (31). While antibody-mediated CD8+ T cell
depletion increased EBV viral loads in single infected humanized
mice, the already increased EBV titers during HIV coinfection
could not be further increased by CD8+ T cell depletion (31).
Furthermore, HIV has also been described to differentiate NK
cells to the less protective CD56-CD16+ phenotype (81–85)
(Figure 2C). As discussed above, this terminal NK cell
Frontiers in Oncology | www.frontiersin.org 4
differentiation stage accumulates at the expense of early
differentiated CD56+CD16+NKG2A+KIR- NK cells that target
lytic EBV replication (51). Thus, HIV coinfection compromises
EBV-specific immune control by T and NK cells, resulting in
increased frequencies of EBV-associated lymphomas of all EBV
latency patterns.

However, frequencies of some, mostly low immunogenic
EBV-associated lymphomas remain high after CD4+ T cell
count stabilization due to anti-retroviral treatment (ART) in
HIV patients (14). Therefore, chronic inflammation due to HIV
infection during ART or a more direct effect of HIV might
continue to promote Burkitt’s and Hodgkin’s lymphoma despite
restored general immune control of EBV against latency III-
associated lymphomas. Along these lines, EBV-transformed B
cells can be directly infected by HIV (31). During B cell infection,
EBV upregulates CD4 on already CXCR4-expressing cells, and
X4 tropic HIV strains can establish infection as well as reversely
transcribed viral DNA integration in EBV-transformed B cells
(31) (Figure 1C). Even under conditions of reduced CD8+ T cell
function in HIV plus EBV-coinfected humanized mice, these
double-infected B cells are efficiently cleared, presumably in part
due to the upregulation of the antigen-processing machinery for
MHC class I presentation in these cells (31) (Figure 1C).
However, it is tempting to speculate that the HIV-induced
expression of DNA-modifying enzymes, such as the APOBEC
family of cytidine deaminases (86), might promote somatic
mutations that are required for lymphomas with EBV latency I
and II expression patterns to emerge. Thus, also HIV might
contribute to EBV-associated lymphomagenesis by both immune
suppression and modifying EBV-induced tumor cells directly.
OTHER INFECTIONS AND EBV

Despite the near perfect immune control of EBV in the vast
majority of asymptomatic virus carriers, it is associated with
around 1% of all human tumors (8, 87). Most of these are,
however, nasopharyngeal (NPC) or gastric carcinomas (GC),
and not lymphomas (87). Unfortunately, it is quite unclear under
which circumstances EBV establishes growth-transforming
latent infection in epithelial cells, because this cannot yet be
modeled in vitro and the only non-malignant EBV infection in
the oropharyngeal epithelium, termed hairy leukoplakia, is
caused by lytic EBV infection (88). However, it is assumed that
premalignant genetic lesions that are introduced into the
respective epithelial cells by carcinogenic substances in the diet
and/or possible chronic inflammation in the oropharyngeal
cavity or stomach provide fertile grounds for epithelial cell
transformation by EBV, resulting in latency II NPC or latency
I GC (89). One such coinfection that promotes premalignant
genetic lesion development in the gastric epithelium could be
Helicobacter pylori infection whose coinfection with EBV has
been reported in GC patients (90, 91). The induced mutations are
thought to allow EBV to establish latent transforming infection
in epithelial cells. In addition to generating chronic
inflammation, H. pylori might also directly promote EBV-
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driven proliferation in gastric epithelial cells by downregulating
tumor suppressors (92). In contrast, coinfection of EBV with
human papillomavirus (HPV) that is also associated with NPC is
rare (93). Thus, in addition to P. falciparum, HIV, and KSHV,
other coinfections might induce genetic lesions via chronic
inflammation, particularly in epithelial cells, that are then
explored by EBV during virus-associated carcinogenesis.
CONCLUSIONS AND OUTLOOK

More than 55 years after the discovery of EBV in Burkitt’s
lymphoma (42, 43), it is clear that coinfections are some of the
strongest environmental modulators of EBV-associated
pathology. However, the mechanisms underlying these
association remain largely unclear and require both clinical
studies on affected patients as well as preclinical model systems
to study coinfections. Along these lines, humanized mice offer
the possibility to study lymphotropic coinfections such as KSHV
or HIV together with EBV (31, 61, 62). In these instances,
coinfections were able to regulate both lymphomagenesis in
the EBV-infected B cells as well as their immune control.
However, coinfections outside the hematopoietic lineage, such
as for example in human hepatocytes, remain challenging (94–
98). This includes P. falciparum for which both human
hepatocytes and erythrocytes are required to complete its life
cycle. Thus, endemic Burkitt’s lymphoma remains an enigma
more than 60 years after its first description (19, 99–101).
Frontiers in Oncology | www.frontiersin.org 5
Nevertheless, the studies summarized in this review document
that infections such as by the human tumor virus EBV never
occur in isolation in humans. This suggests that also our
preclinical animal models need to be adapted with coinfections
in order to more faithfully recapitulate human physiology. Some
previously established paradigms of microbiology and immunology
might need to be revisited in such coinfection models.
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