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Abstract

Background: Combined heart and renal failure is associated with high cardiovascular morbidity and mortality. Anti-oxidant
and anti-inflammatory, non-hematopoietic effects of erythropoietin (EPO) treatment have been proposed. Monocytes may
act as biosensors of the systemic environment. We hypothesized that monocyte transcriptomes of patients with cardiorenal
syndrome (CRS) reflect the pathophysiology of the CRS and respond to short-term EPO treatment at a recommended dose
for treatment of renal anemia.

Methods: Patients with CRS and anemia (n = 18) included in the EPOCARES trial were matched to healthy controls (n = 12).
Patients were randomized to receive 50 IU/kg/week EPO or not. RNA from CD14+-monocytes was subjected to genome
wide expression analysis (Illumina) at baseline and 18 days (3 EPO injections) after enrolment. Transcriptomes from patients
were compared to healthy controls and effect of EPO treatment was evaluated within patients.

Results: In CRS patients, expression of 471 genes, including inflammation and oxidative stress related genes was different
from healthy controls. Cluster analysis did not separate patients from healthy controls. The 6 patients with the highest
hsCRP levels had more differentially expressed genes than the 6 patients with the lowest hsCRP levels. Analysis of the
variation in log2 ratios of all individual 18 patients indicated that 4 of the 18 patients were different from the controls,
whereas the other 14 were quite similar. After short-term EPO treatment, every patient clustered to his or her own baseline
transcriptome. Two week EPO administration only marginally affected expression profiles on average, however, individual
gene responses were variable.

Conclusions: In stable, treated CRS patients with mild anemia, monocyte transcriptomes were modestly altered, and
indicated imprints of inflammation and oxidative stress. EPO treatment with a fixed dose has hematopoietic effects, had no
appreciable beneficial actions on monocyte transcription profiles, however, could also not be associated with undesirable
transcriptional responses.
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Introduction

Patients suffering from chronic heart failure (CHF) and

concomitant renal failure have increased cardiovascular morbidity

and mortality [1]. Conversely, chronic kidney disease (CKD)

patients have an increased risk for myocardial infarction with

higher mortality compared to the general population [2]. This

condition in which combined cardiac and renal dysfunction

aggravates failure of the individual organs has been described as

the cardiorenal syndrome (CRS) [3]. In this paper, CRS is defined
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as the combination of CHF and CKD. Among the pathways

involved in the pathogenesis of CRS are oxidative stress,

inflammation, the renin-angiotensin system (RAS) and the

sympathetic nervous system (SNS), the cardiorenal connectors [3].

Anemia is a well-recognized problem in chronic renal disease.

The pathophysiology of renal anemia includes an absolute and/or

relative deficiency to erythropoietin (EPO) and a reduced

sensitivity to EPO of red-cell lineages. Regarding the former,

analogues of the human EPO are available to increase EPO levels.

Regarding the latter, transferrin receptor-bound polymeric IgA1

was recently identified as an important modulator of the bone

marrow response to EPO [4]. Besides the cells involved in

erythropoiesis, a number of other cells involved in cardiovascular

disease have been shown to express EPO receptors (reviewed in

[5]) including monocytes [6].

Anemia can aggravate heart and renal failure and is associated

with worse outcome in CHF [7] and CKD [8]. EPO can be used

to treat renal anemia, however, normalization of hemoglobin

(Hgb) in CKD patients is not associated with improved

cardiovascular outcome [9,10,11]. In contrast, high EPO doses

and the inability to reach target Hgb seem to be associated with

adverse outcome [12]. EPO also has non-hematopoietic, anti-

inflammatory and anti-oxidative effects on kidneys, brain, heart

and vasculature [13,14]. Nonetheless, not all reports are equivocal,

and undesirable actions such as oxidative stress have also been

reported [5].

Among several other circulating cells, monocytes can be used as

sensors for direct EPO effects on these cells or for indirect actions

of EPO by affecting the internal environment. Monocytes have

previously been shown to be able to serve as biosensors to detect

changes in the systemic environment [15] and to evaluate the

response to treatment [16,17]. In addition, monocytes are key

players in the initiation and progression of atherosclerosis.

Monocytes have shown to be sensitive to several of the cardiorenal

connectors, such as cytokines and angiotensin II [18,19]. We have

recently described that monocytes from CKD patients display

increased expression of genes coding for suppressors of cytokine

signaling proteins [20,21]. Monocyte transcriptomes also corre-

lated with collateral artery formation in patients with coronary

artery disease [22].

We have previously shown that short-term, low dose EPO

treatment increases erythropoiesis as detected by increased

reticulocyte counts [24]. In the present study, it was investigated

whether monocyte gene expression profiles of cardiorenal patients

reflect the altered systemic environment in CRS and are

responsive to short-term, low-dose EPO treatment. First, we

explored whether monocytes of CRS patients indeed display

altered gene expression profiles compared to healthy controls.

Moreover, we investigated whether short-term EPO treatment

affects monocyte gene transcription. Since EPO might have

undesirable effects, both potentially beneficial effects of EPO, such

as induction of anti-inflammatory and anti-oxidant genes and

potential detrimental effects on monocyte transcriptomes were

investigated.

Methods

Study design
The present study is part of the EPOCARES trial (Clinical-

Trials.gov, NCT00356733), in which CRS patients on regular

treatment and standardized iron supplementation were random-

ized to receive fixed dose subcutaneous EPO treatment or no EPO

treatment. Details of the study design have previously been

described [23,24]. Matched for age and gender, we selected 18

patients with mild anemia (10.3–11.9 g/dl in women and 10.3–

12.6 g/dl in men), moderate renal failure (estimated creatinine

clearance 20–70 ml/min calculated by Cockcroft-Gault formula)

and CHF. CHF was defined as New York Heart Association class

II-IV, based on symptoms, signs and objective abnormality on

echocardiography [25]. Patients were included with reduced

ejection fraction (,50%) or left ventricular end diastolic volume

index ,97 ml/m2 with evidence of diastolic left ventricular

dysfunction [26]. The medical ethics committee of the Univ.

Medical Center Utrecht, The Netherlands approved the protocol

and all patients gave their written informed consent. All

procedures were in accordance with the Helsinki Declaration.

After enrolment, 12 out of 18 patients were randomized to

receive a low dose of Epoetin-b therapy (50 IU/kg/wk; Neor-

ecormon, Roche Pharmaceuticals). Dosages of EPO used in

cardio- and cerebro-protection are higher than the dosages

normally used for the treatment of renal anemia. It should also

be remarked, that despite the desire to study higher doses of EPO

in this setting, this would not be justifiable, given the data that is

out there to suggest that the higher dosages may be associated

unwanted cardiovascular effects [9,11,27]. Biochemical analysis

and monocyte isolation for gene expression analyses were

performed at baseline and after 18 days of EPO treatment (i.e.

after 3 EPO injections), prior to the expected rise in Hgb level.

Twelve healthy age- and gender-matched persons served as

baseline controls.

Sample collection and microarray procedures
Peripheral blood was collected from patients and healthy

controls in EDTA containing tubes after 30 minutes in a resting

position. Blood was kept on ice. Within 3 hours of blood

withdrawal, CD14+-monocytes were positively isolated with the

use of immunomagnetic beads (Invitrogen, CA). The purity of the

isolated monocyte population was on average 90% as determined

by CD14+-staining on flow cytometry analysis.

mRNA was isolated from cell collections using Trizol reagent

(Invitrogen/Gibco, CA) according to the manufacturer’s instruc-

tion. Subsequently, mRNA was purified with NucleoSpinH RNAII

(Macherey-Nagel, Düren, Germany) and samples were sent to

ServiceXS (Leiden, The Netherlands) for further microarray

processing. In brief, quality and integrity of RNA was checked by

lab-on-chip technology (Bioanalyzer Agilent, CA). Subsequently,

Illumina TotalPrep RNA Amplificationkit (Applied Biosystems/

Ambion, TX) was used to create double-stranded cDNA from

500 ng total RNA. After cDNA purification, in vitro transcription

reaction resulted in aRNA, which was also purified. Amplified

biotinylated aRNA was finally randomly hybridized to Human-

Ref-8 V3.0 Expression BeadChips (Illumina, CA), followed by

scanning for raw gene expression intensities on Illumina’s

BeadArray scanner.

Validation of gene array results by real-time quantitative
polymerase chain reaction (qPCR)

Monocyte cDNA samples from all patients before and after 18

days EPO treatment and from healthy controls were subjected to

real-time qPCR by BioMark dynamic array technology (Fluidigm,

CA), performed at ServiceXS. The cDNA samples were exposed

to specific target amplification, using PreAmp Master Mix and

Gene Expression Assays (Taqman; Applied Biosystems, TX) for

IL8, FOS, EGR1, CX3CR1, ADRB2, EPO-R and housekeeping

genes GAPDH, 18S, b-Actin and RPL13a. They were subjected

to a BioMark dynamic array for determination of Ct-values. Each

gene was measured in triplicate for each sample. The default
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Taqman PCR protocol was used with an annealing temperature of

60uC and a total of 35 cycles of PCR.

Statistical analyses
Clinical characteristics are presented as mean6standard devi-

ation or median (interquartile range) for respectively normally and

not normally distributed data. Analysis between groups for

statistically significant differences was performed by Student’s t-

test, Mann-Whitney U test or paired analysis when appropriate. P-

values,0.05 were considered significant.

For microarray data analysis, individual bead outliers were

removed from raw bead data if signal intensity was higher or lower

than median intensity plus or minus 26median absolute deviation

respectively (T4Illumina, software developed by the authors). The

transcript level of a gene in each sample was considered present

when the average raw intensity of the gene was significantly higher

than negative controls from the same BeadArray (t-test; T4Illu-

mina). Genes were significantly present (transcriptionally active) in

a group when present in at least 8 or 13 out of 12 or 18,

respectively (based on group size by Z-test, SigmaStat). After

normalization procedure (Log2-Quantile; FlexArray version 1.6

[28]), differential expression of a gene between two groups was

tested by unpaired Cyber t-test for the comparison between groups

at baseline and paired t-test for the comparison between patients at

baseline and after two weeks of EPO treatment [29]. A. P-

value,0.05 was considered significant. To investigate the effects of

EOP, genes that were significantly differentially expressed were

analyzed by hierarchical clustering, with Euclidean distance as a

similarity measure and clustering was based on average-linkage

correlation (Multi-experiment-Viewer, MeV, version 4.8 [30]). To

construct the heat-map, relative expression levels for each gene

and each individual were calculated as a ratio between the actual

signal for that gene and the average signal for that gene at

baseline. Common oxidative stress-, inflammation- and RAS-

related genes were specifically addressed to search for differences

between healthy controls and patients, and for the effect of short-

term EPO treatment in patients. Moreover, because of the

relevance of inflammation for monocyte function, we subdivided

the group of patients into three tertiles of CRP levels and

investigated whether CRP levels were associated with different

transcriptomes at baseline by comparing the lowest and highest

tertiles. Finally, variation in the normally distributed log2 ratios of

each of the patients’ baseline datasets was individually compared

to variation of the control datasets. This provided further insight in

the homogeneity of the baselines samples.

For real-time qPCR analysis, software version 2.0.6 was used for

Ct determination from the reaction chambers on the array. Linear

baseline correction was applied and the Ct threshold method

selected was ‘Auto (Global)’. Average Ct values per gene for each

sample were calculated for data that passed amplification curve

quality thresholds (default value 0.65). GAPDH served as

housekeeping gene, since this gene was considered most stable

when comparing 18S, b-Actin, RPL13a and GAPDH in both

NormFinder and GeNorm. Normalized gene expression (Ct gene

of interest–Ct GAPDH; DCt) was related to normalized gene

expression in the reference group (DDCt). Fold changes were

calculated by 22DDCT [20,21]. Gene expression differences

between healthy controls and patients, and effects of EPO

treatment were tested by Student’s t-test and paired analyses

respectively. P-value,0.05 was considered significant.

Accession codes
The data discussed in this publication have been deposited in

MIAME compliant NCBI’s Gene Expression Omnibus [31] and

are accessible through GEO Series accession number GSE17582

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE17582).

Results

Study population characteristics
Baseline characteristics of patients with CRS and anemia and

age- and gender-matched controls are described in table 1. After

the baseline measurement, twelve out of 18 patients were started

on EPO treatment. After 18 days, Hgb was not increased

significantly compared to baseline (delta Hgb 0.561.0 g/dl in

EPO-treated group vs. 20.461.0 g/dl in non EPO-treated group;

p = 0.133). The short-term EPO treatment did trigger the

hematopoietic system as indicated by increased reticulocyte counts

(0.0560.02 vs. 0.0760.02610e12/l; p,0.001). Whole blood

mononuclear cell (MNC) counts were not different in patients

compared to healthy controls (6.3(3.2) vs. 5.1(2.0)6106 MNC/ml

whole blood; p = 0.215) and remained unchanged after short-term

EPO treatment (6.3(3.2) vs. 6.8(2.7)6106 MNC/ml whole blood;

p = 0.420).

Erythropoietin receptor expression on monocytes
All monocyte samples showed a significant gene expression of

the EPO receptor (EPO-R), reflected by Ct values of 18.060.5 on

real-time qPCR. Slightly higher EPO-R gene expression was

Table 1. Baseline characteristics.

Healthy
controls Patients P-value

(n = 12) (n = 18)

Age (years) 68612 70611 N.S.

Male gender (%) 8 (67%) 12 (67%) N.S.

Body mass index (kg/m2) 23.761.9 26.764.5 0.019

Estimated creatinine
clearance (ml/min)

69619 36611 ,0.001

Hemoglobin (g/dl) 14.060.8 11.860.9 ,0.001

Total cholesterol (mmol/l) 5.0861.26 4.3961.52 N.S.

HDL (mmol/l) 1.3960.37 1.2160.29 N.S.

LDL (mmol/l) 3.3161.07 2.3861.17 0.039

Triglycerides (mmol/l) 0.8460.50 1.7561.70 N.S.

hsCRP (mg/l) 1.0 (0.8) 4.0 (8.0) 0.007

Ejection fraction (%) - 4664

Systolic blood pressure (mmHg) 129624 129618 N.S.

Diastolic blood pressure (mmHg) 8167 7068 0.001

Diabetes Mellitus (%) - 6 (33%)

Smoking (%) 2 (17%) 3 (17%) N.S.

Medication

- Acetylsalicylic acid (%) - 8 (44%)

- Statin (%) - 10 (56%)

- Angiotensin blockade (ACEi/ARB)
(%)

- 16 (89%)

-b-blockade (%) - 13 (72%)

- Spironolactone (%) - 4 (22%)

Values are expressed as mean 6 SD, number (percentage) or median
(interquartile range).
hsCRP: high sensitive C-reactive protein; ACEi: angiotension-converting enzyme
inhibitor; ARB: angiotensin II receptor blocker; N.S. not significant.
doi:10.1371/journal.pone.0041339.t001
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found in patients compared to controls (fold change 1.2; p = 0.05).

EPO treatment for 18 days did not significantly alter EPO-R

expression (fold change 1.0).

Monocyte gene expression profile in cardiorenal
syndrome patients compared to healthy controls

Global gene expression profile changes, hierarchical

clustering. We compared monocyte gene expression profiles

of CRS patients (n = 18) and healthy controls (n = 12) at baseline.

Out of 25,528 genes explored, signals of 12,165 exceeded

background in at least one of the two groups; 471 genes were

differentially expressed in CRS patients vs. healthy controls (p-

value,0.05; 1.8% of total assessed genes). Correction for multiple

testing, for example by applying FDR, was not performed because

of the very small sample size. Fold changes were low, ranging from

0.3–1.7. Cluster analysis of differentially expressed genes did not

separate patients from controls. Clustering of genes could also not

be explained by gender or age of the investigated subjects.

Specific gene expression changes. In CRS patients, 214

genes displayed increased and 257 decreased expression compared to

healthy controls. Table 2 gives an overview of the 15 most induced

and downregulated genes for this comparison. A table with all genes

with changed expression can be found in table S1. Patients showed

lower expression of the transcription factors EGR1 and FOS.

Furthermore, patients showed decreased expression of hemoglobin-

related genes HBA2 and HBB compared to healthy controls.

Additional experiments with extra washing steps of isolated monocyte

samples suggest that expression of these two genes could possibly be

attributed to reticulocyte contamination (data not shown).

We specifically addressed whether inflammation and oxidative

stress in CRS patients were reflected by monocyte gene

expressions. Several interesting genes involved in inflammation

(i.e. IL8, IL17, IL1RAP, CX3CR1, and several TLRs) and

oxidative stress (i.e. DUSP1, GPX3, DHRS9) were indeed

modulated in CRS patients (table 3, and table S2 for the entire

panel of genes). Remarkably, some of these genes exert pro- and

others anti-stimulating activities. With regard to SNS, only

ADRB2 was induced in patients. Differential expression of IL8,

FOS, EGR1, CX3CR1 and ADRB2 was confirmed by qPCR

(figure 1).

Subanalysis with respect to CRP. After dividing the 18

patients in three groups, we compared the 6 patients with the

lowest CRP levels with the patients with highest CRP levels; the

middle tertile was left out of the comparison. This subanalysis

confirmed that CRP does influence monocyte transcriptomes

(table 4). The group sizes become too small for a detailed

comparison.

Subanalysis with respect to individual variation in gene

expression of the cardiorenal patients at baseline. Because

of the relatively limited differential expression at baseline, we

analyzed the homogeneity of the baseline samples of the CRS

patients compared to the controls by comparing the standard

deviation of the log2 ratios. Indeed, 4 out of the 18 patients showed

substantial variation in log2 ratios whereas the other did show

minimal variation. The number was too small to investigate

whether the response to EPO of these 4 patients was different from

the 14 other patients.

Monocyte gene expression in cardiorenal syndrome
patients after 18 days of currently recommended dose
erythropoietin treatment

Global gene expression profile changes, hierarchical

clustering. The effect of 18 days EPO treatment was assessed

in the 12 CRS patients before and after the initiation of EPO

treatment. Out of 25,528 genes explored, signals of 12,198 genes

exceeded background in the monocyte transcriptome before and/

or after treatment. Of these, 399 genes were significantly

differentially modulated by EPO (p-value,0.05; 1.5% of total

assessed genes; see table S3). Fold changes were low in this

comparison (range 0.58–3.49); differential modulation of 211

genes was .1.10 or ,0.90 fold. Strikingly, Euclidean clustering

with these genes demonstrated that treated patient clustered close

to his/her own baseline gene profile (figure 2 and figure S1).

Although our intervention study was not designed to that purpose.

clustering of patients did not seem to be associated with age,

gender, or the presence of diabetes.

Specific gene expression changes. The 3 EPO injections

only increased HBB and HBA2 expressions significantly with a

fold change.1.35 when comparing group mean gene intensities.

As mentioned, expression of these two genes may be attributed to

reticulocyte contamination. Subsequently, to evaluate if short-term

EPO treatment demonstrated monocyte gene modulations with

regard to inflammation or oxidative stress we assessed gene

expression changes in selected gene panels. None of the genes were

differentially expressed with a p-value,0.05 (table S4).

Individual gene response to erythropoietin. Since the

expression profile of the treated group did not substantially differ

from baseline, we compared gene expression modulations in the

twelve individual patients. The individual gene response to EPO

was remarkably variable in all patients. Only two genes (HBB,

HBA2) were induced and one gene downregulated (RAMP2) in

more than two patients after treatment.

Discussion

The present study is based on three of our recent studies in

humans. The first showed altered leukocyte gene expression in

untreated hypertensive patients, which was strongly attenuated in

matched, well-treated patients [16]. In the other two papers,

monocytes gene expressions in CKD [20] and end-stage renal

disease [21] patients showed induction of the so-called suppressors

of cytokine signaling, which modulate the Jak/Stat transcription

pathway and steer the actions of IFNc and IL6 [32]. Therefore,

we hypothesized that monocytes, as cells involved in atheroscle-

rosis [15,33], could function as biosensors of the systemic

environment of CRS patients with anemia and of the effects of

short-term EPO treatment.

When comparing monocyte transcriptomes in CRS patients to

healthy controls, one of the most remarkable observations is the

limited number of changes, which could have a number of

potential explanations. First, the study subjects were carefully

selected, stable cardiorenal failure patients; the regular treatment,

including angiotensin blockade (89%), statins (56%), acetylsalicylic

acid (44%) and b-blockers (72%) may have dampened gene

expression changes, even though the inflammatory environment

was not completely normalized as judged from increased hsCRP

levels. In this regard, monocytes displayed slightly higher numbers

of genes with modulated expression in subjects with higher CRP

values, than in subjects with lower CRP values. Unfortunately, the

sample size is too small and the percentage of patients on

medication too high to separate out the influence of any of the

individual drugs. Second, it may be that the monocyte has adapted

to the continuous exposure of stimuli, e.g. inflammation and

oxidative stress. However, if this were the case, we would expect to

see more ‘imprints’ of such adaptations in the transcriptome (e.g.

more pronounced induction of anti-oxidant genes). Third, critical

changes in monocytes of cardiorenal patients may be not achieved

Monocyte Transcriptomes in Cardiorenal Syndrome
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at the level of gene transcription but at the level of protein

synthesis, modification and trafficking. It is unlikely that the choice

of Illumina arrays underlies the paucity of changes, since this

platform provided highly reproducible results and revealed

important biological processes in monocytes [34]. In our own

laboratory, the same platform yielded very strong transcriptional

responses of endothelial cells in culture to IFNc and IL6 [35].

Regarding the methodology applied in the present study, we did

not correct for multiple testing using methods such as FDR,

because of the small sample size. Therefore, the possibility exists

that some of the reported changes in expression could be false

positives. In another EPOCARES sub-study, which evaluated the

responses of plasma hepcidin to the same short-term low dose

EPO stimulation [24], we found clear responses in plasma

hepcidin levels and reticulocyte numbers, clearly indicating that

the dose of EPO was sufficiently strong to appreciably affect iron

metabolism and erythropoiesis [23]. A last explanation is that the

group is quite heterogeneous, as exemplified by the analysis of

variation in log2 values of each patient.

The pathophysiology of CRS is complex and likely involves

disruption of the pro-/anti-inflammatory and pro-/anti-oxidant

balance, and enhanced activity of the SNS. We investigated

whether monocytes reveal imprints of such alterations. Earlier

studies in our group reported modulated expression of SOCS

genes in monocytes of CKD patients [20]. We found increased

CX3CR1 expression in CRS patients. CX3CR1 binds fractalkine

(CX3CL1), a CX3C chemokine, which is expressed by activated

endothelial cells and mediates adhesion and chemotaxis of

CX3CR1 expressing monocytes and accumulation of macrophag-

es in atherosclerotic lesions [36]. Transcription of some genes that

stimulate inflammation (e.g. IL8, IL1RAP) was decreased in CRS

patients compared to healthy controls, which may indicate

negative feedback in response to inflammation. All-in-all, our

analysis does not point to the cytokines IL6, IFNc and TNFa, that

have classically been associated with low grade inflammation in

Table 2. Top 15 of induced and downregulated genes in CRS patients vs. healthy controls.

UPREGULATED (ranked by descending fold change)

Accession Number Symbol Description Fold change P-value

NM_018487.2 HCA112 Transmembrane protein 176A 1.695 0.037

NM_012456.1 TIMM10 Translocase of inner mitochondrial membrane 10 homolog 1.591 ,0.0001

NM_017911.1 C22ORF8 Family with sequence similarity 118, member A 1.582 0.012

NM_001337.3 CX3CR1 Chemokine (C-X3-C motif) receptor 1 1.491 ,0.0001

NM_006498.2 LGALS2 Lectin, galactoside-binding, soluble, 2 1.464 0.028

NM_000024.3 ADRB2 Adrenergic, b2-, receptor, surface 1.446 0.002

NM_005771.3 DHRS9 Dehydrogenase/reductase (SDR family) member 9 1.434 0.008

NM_198097.1 C7ORF28B Chromosome 7 open reading frame 28B 1.428 0.005

NM_001343.1 DAB2 Disabled homolog 2, mitogen-responsive phosphoprotein 1.425 ,0.001

NM_016021.2 UBE2J1 Ubiquitin-conjugating enzyme E2, J1 1.424 ,0.001

NM_030670.1 PTPRO Protein tyrosine phosphatase, receptor type, variant 6 1.385 ,0.0001

NM_001008566.1 TPST2 Tyrosylprotein sulfotransferase 2 1.379 0.001

NM_030671.1 PTPRO Protein tyrosine phosphatase, receptor type, variant 5 1.372 ,0.001

NR_003038.1 SNHG5 Small nucleolar RNA host gene 5 1.359 0.037

NM_080914.1 ASGR2 asialoglycoprotein receptor 2 1.358 0.003

DOWNREGULATED (ranked by ascending fold change)

NM_000518.4 HBB Hemoglobin, b 0.297 0.001

NM_000517.3 HBA2 Hemoglobin, a2 0.376 0.003

XM_936120.1 HLA-DQA1 PREDICTED: major histocompatibility complex, class II 0.474 0.006

NM_000584.2 IL8 Interleukin 8 0.584 ,0.001

NM_005252.2 FOS V-fos FBJ murine osteosarcoma viral oncogene homolog 0.606 0.012

NM_006732.1 FOSB FBJ murine osteosarcoma viral oncogene homolog B 0.608 ,0.0001

NM_001964.2 EGR1 Early growth response 1 0.646 0.008

NM_004417.2 DUSP1 Dual specificity phosphatase 1 0.678 0.003

NM_004666.1 VNN1 Vanin 1 0.680 0.003

NM_024933.2 FLJ12056 Ankyrin repeat domain 53 0.692 0.012

NM_005502.2 ABCA1 ATP-binding cassette, sub-family A, member 1 0.707 0.009

NM_020152.2 C21ORF7 Chromosome 21 open reading frame 7 0.710 0.009

NM_017933.3 FLJ20701 Phosphotyrosine interaction domain containing 1 0.725 ,0.001

NM_002612.2 PDK4 Pyruvate dehydrogenase kinase, isozyme 4 0.736 0.017

NM_021732.1 AVPI1 Arginine vasopressin-induced 1 0.737 0.006

doi:10.1371/journal.pone.0041339.t002
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cardiovascular disease [37] and renal failure [38]. Nevertheless,

the transcriptome seemed to be responsive to the level of

inflammation, since higher CRP levels were associated with more

changes in monocyte gene expression.

Considering the pro/anti-oxidant balance in CRS patients,

expression changes were modest. Downregulation of genes

encoding for proteins with anti-oxidative action is suggested (e.g.

GPX3, PRDX3), though others were induced (DHRS9). De-

creased expression of oxidative stress responsive gene DUSP1 and

markers of early activation FOS and EGR1 possibly reflects

downregulation of gene expression in activated cells from our

patients. This phenomenon has been reported previously in

patients with coronary artery disease [39].

The only change in CRS patients related to the SNS was

increased expression of ADRB2, the adrenergic receptor b2

subtype that binds epinephrine and norepinephrine [40]. This

gene is involved in coupling the SNS to immune cell function [41].

Sympathetic hyperactivity is present in patients with heart [42]

and failure [43]. It was expected that chronic sympathetic

hyperactivity would lead to downregulation of adrenoceptor

density [44], which underlies the decrease in b-adrenoreceptor-

mediated responsiveness characteristic [45,46]. However, b-

blockade was previously shown to increase adrenoreceptor density

in leukocytes. Patients with the highest catecholamine levels had

the greatest rise in receptor density following b-blockade [44].

Albeit speculative, since 72% of our patients received b-blockade,

higher ADRB2 expression levels may indicate higher baseline

sympathetic activity compared to our healthy controls.

Our second aim was to evaluate short-term treatment with a

currently recommended EPO dose for renal anemia in this patient

Table 3. Induction and downregulation of oxidative stress and inflammation related genes in CRS patients vs. healthy controls.

Transcript Symbol Definition Fold change P-value

INFLAMMATION RELATED GENES

Cytokines and cytokine receptors

NM_000628.3 IL10RB Interleukin 10 receptor 1.15 0.044

NM_005535.1 IL12RB1 Interleukin 12 receptor, b1 1.10 0.006

NM_001560.2 IL13RA1 Interleukin 13 receptor, a1 1.15 0.037

NM_014339.3 IL17R Interleukin 17 receptor 1.19 0.012

NM_004633.3 IL1R2 Interleukin 1 receptor, type II 0.83 0.044

NM_002182.2 IL1RAP Interleukin 1 receptor accessory protein 0.89 0.017

NM_173842.1 IL1RN Interleukin 1 receptor antagonist 0.94 0.052

NM_181078.1 IL21R Interleukin 21 receptor 1.10 0.066

NM_004843.2 IL27RA Interleukin 27 receptor, a 1.22 0.001

NM_000584.2 IL8 Interleukin 8 0.58 0.001

NM_001557.2 IL8RB Interleukin 8 receptor, b 0.87 0.079

Chemokines and chemokine receptors

NM_002982.3 CCL2 Chemokine (C-C motif) ligand 2 0.77 0.008

NM_002983.1 CCL3 Chemokine (C-C motif) ligand 3 0.86 0.027

NM_001001437.3 CCL3L3 Chemokine (C-C motif) ligand 3-like 3 0.77 0.019

NM_001337.3 CX3CR1 Chemokine (C-X3-C motif) receptor 1 1.49 ,0.001

Inflammatory response

NM_003264.3 TLR2 Toll-like receptor 2 1.16 0.015

NM_006068.2 TLR6 Toll-like receptor 6 1.09 0.021

NM_016562.3 TLR7 Toll-like receptor 7 1.20 0.040

Interferon transcriptional regulation

NM_002200.3 IRF5 Interferon regulatory factor 5 1.44 0.051

OXIDATIVE STRESS RELATED GENES

Antioxidants

NM_002084.2 GPX3 Glutathione peroxidase 3 0.88 0.017

NM_006793.2 PRDX3 Peroxiredoxin 3 0.85 0.061

NM_203472.1 SELS Selenoprotein S 0.94 0.060

NM_005771.3 DHRS9 Dehydrogenase/reductase (SDR family) member 9 1.33 0.006

Genes involved in ROS metabolism

NM_024505.2 NOX5 NADPH oxidase, EF-hand calcium binding domain 5 1.05 0.052

NM_001141.1 ALOX15B Arachidonate 15-lipoxygenase, second type 0.93 0.084

NM_004417.2 DUSP1 Dual specificity phosphatase 1 0.68 0.003

doi:10.1371/journal.pone.0041339.t003
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population. In another arm of this study, there was a clear

decrease in hepcidin, an increase in reticulocytes, an increase in

serum transferrin receptor and in iron saturation [24] after 2

weeks of EPO. At 26 weeks, all of the patients except for 2 had a

clear increase in haemoglobin levels [47], and/or had been

subjected to phlebotomy (this is in the group in which in the longer

run, Hgb levels were kept stable by phlebotomy). We postulated

previously that EPO may dampen activated inflammatory and

oxidative stress systems in CRS patients [5]. By evaluating

transcriptomes after 18 days of EPO therapy, direct effects of

EPO should be discriminated from hematopoietic effects. How-

ever, EPO treatment did not substantially modulate the monocyte

transcriptome in our study. The transcriptome after short-term

EPO therapy closely clustered with to the baseline expression

profile for every patient in our cluster analysis. This suggests that

individual differences overrule the direct, short-term effects of

EPO. Furthermore, we found a highly variable gene expression

response to EPO in all patients, which hampers the detection of

group differences. The finding that EPO response at gene

expression level is so diverse may point at the variable clinical

response to EPO.

Several reasons may underlie the unexpected lack in differential

gene expression in response to EPO treatment. First, it was

remarkable that individual responses to EPO were so variable,

which hinders detection of global gene expression changes

between groups. Despite careful selection of patients and optimally

standardizing medical treatment, individual variations still seem to

dominate the effect of EPO therapy. Microarray technology has

shown to reflect the clinical response to medical therapy [16,17].

Our study certainly does not rule out that transcriptome analysis

on circulating cells could be applied to monitor early responses to

EPO, however, another cell type may better reflect the changes

induces by EPO [15]. One could think of endothelial progenitor

cells, that might better reflect the response of a target tissue to

EPO, or reticulocytes, that might better reflect the response of the

bone marrow to EPO. Studying targets organ cells per se

obviously is more invasive. Second, the dose and duration of

EPO treatment must be considered. Various animal studies have

shown protective effects of EPO in acute ischemia/reperfusion

injury of the heart and kidney [13,14]. EPO doses used in these

studies are considerably higher, ranging from 3000–5000 U/kg,

which is much higher than the dosages usually applied in CKD

and end-stage renal disease patients. However, recent evidence

from the CHOIR study shows that chronic administration of high

EPO dose (mean dose 11215 IU/wk) is associated with adverse

clinical events. Since we treat our patients up to 1 year, we chose a

currently recommended dose for the treatment of renal anemia of

50 IU/kg/wk (i.e. approximately 3000 IU/wk), and not a short-

term high dose treatment. As alternative to the present design, that

aimed to study both short and long term effects of EPO which did

not justify using a higher dose, one could possibly safely study the

effect of one single dose of a higher concentration of EPO in

humans. Altogether, the present data do not support a beneficial

role for non-hematopoietic, short-term effects of low dose EPO.

More importantly, using monocyte transcriptomes, we were

unable to demonstrate any harmful effects.

In summary, we demonstrate that differences in the gene

expression of monocytes, being biosensors of the pro-atherogenic

environment and mediators of early atherosclerosis, are limited in

our study subjects. Nevertheless, the observed changes point at two

of the systems we have proposed as important connectors in

combined heart and renal failure, being inflammation and

Table 4. Number of differentially expressed genes at
different expression and significance levels in patients with
low CRP and high CRP compared to healthy controls at
baseline.

CRP Low Middle High

N = 6 6 6

CRP (average, min-max) 1.2 (1–3) 4.2 (3–6) 21.7 (7–53)

Differentially expressed
genes vs. controls

# of genes # of genes

P,0.05 717 771

P,0.01 125 192

P,0.001 17 25

P,0.0001 1 10

P,0.05 & FC,0.74 or .1.35 16 58

P,0.001 & FC,0.82 or .1.2 8 21

P,0.0001 & FC,0.91 or .1.1 1 10

doi:10.1371/journal.pone.0041339.t004

Figure 1. Validation of differentially expressed genes on microarray by quantitative polymerase chain reaction. *P-value,0.05 for
gene expression in patients at baseline vs. healthy controls as determined with qPCR technique; oP-value,0.05 for gene expression in patients at
baseline vs. healthy controls as determined with microarray technique. ADRB2 adrenergic receptor, b2; CX3CR1 chemokine (C-X3-C motif) receptor 1;
EGR1 early growth response 1; FOS FBJ murine osteosarcoma viral oncogene homolog; GPX3 glutathione peroxidase 3; IL8 interleukin 8; qPCR
quantitative polymerase chain reaction.
doi:10.1371/journal.pone.0041339.g001
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oxidative stress. We also demonstrate that in monocytes, response

in gene expression to short-term administration of the currently

recommended dose of EPO is very limited, indicating that a dose

that is commonly used to combat the EPO deficiency of renal

anemia does not exert important non-hematopoietic effects on this

pivotal cell. Fortunately, we also have been unable to identify any

undesirable effects of this widely applied dose of EPO. Further

studies are necessary to investigate whether other immune cells

involved in the inflammatory response and in atherosclerosis may

be more sensitive to this recommended dose of EPO and whether

higher doses of EPO as used in cardiovascular trials do affect

monocyte gene expression.
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