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Abstract

Identification of central genes and proteins in biomolecular networks provides credible can-

didates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC

centrality measure predicts central and essential genes and proteins using a protein-protein

interaction network. Network centrality measures prioritize nodes and edges based on their

importance to the network topology. These measures helped identify critical genes and pro-

teins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the

number of interactions of a protein and the gene coexpression values of genes from which

those proteins were translated, as a weighting factor to bias the identification of essential

proteins in a protein interaction network. Potentially essential proteins with low node degree

are promoted through eigenvector centrality. Thus, the gene coexpression values are used

in conjunction with the eigenvector of the network’s adjacency matrix and edge clustering

coefficient to improve essentiality prediction. The outcome of this prediction is shown using

three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different

coexpression measures, and (3) impact of different gene expression data sets. For a total of

seven networks, DiffSLC is compared to other centrality measures using Saccharomyces

cerevisiae protein interaction networks and gene expression data. Comparisons are also

performed for the top ranked proteins against the known essential genes from the Saccharo-

myces Gene Deletion Project, which show that DiffSLC detects more essential proteins and

has a higher area under the ROC curve than other compared methods. This makes DiffSLC

a stronger alternative to other centrality methods for detecting essential genes using a pro-

tein-protein interaction network that obeys centrality-lethality principle. DiffSLC is imple-

mented using the igraph package in R, and networkx package in Python. The python

package can be obtained from git.io/diffslcpy. The R implementation and code to reproduce

the analysis is available via git.io/diffslc.
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Introduction

With the rise of reliable high-throughput data, computational methods that predict essential

genes using protein interaction and gene expression data have shown some promise [1–6].

Protein interaction data, such as those derived from yeast two-hybrid (Y2H) [7, 8], affinity

chromatography [9], co-immunoprecipitation [10, 11] etc. can be used to create a protein-pro-

tein interaction (PPI) network. In a PPI network, nodes represent proteins, and edges connect-

ing those proteins indicate interaction partners. Fig 1 shows a toy PPI network with twenty

proteins P1 to P20. Among these proteins, P1 to P19 have interaction partners, whereas P20

does not interact with any other proteins. Jeong et.al. [1] established the centrality-lethality

hypothesis in yeast protein-protein interaction networks, which state that gene knockouts of

genes representing hub proteins (i.e. a protein interacting with many other proteins) in a pro-

tein-protein interaction network are more likely to be lethal for the organism. Raman et.al.

[12] further verified this finding in over fifteen organisms. For detection of essential genes and

proteins, much research effort has been focused on finding a single measure that can optimally

rank essential proteins based on network topology. Where the centrality-lethality hypothesis is

partially helpful, a stronger essentiality predictive centrality metric has been a challenge.

Of the many ways available to select nodes of importance in a biological network, node cen-

trality analysis provides a fast and reproducible way to rank the nodes based on their location

in a network. A node ranking method designed to look for essential proteins should give

higher rank to essential proteins and lower rank to non-essential ones. These network central-

ity measures often use path length-based or random walk-based metrics to calculate a node’s

relative importance within a network. Closeness, betweenness, node clustering coefficient, and

average path length centrality are examples of such measures. More recent approaches have

utilized eigenvalues [13] and spectra of the adjacency matrix of a graph [14] to rank nodes.

Kim et.al. [15] concluded that shortest-path betweenness was a useful measure to detect genes

that are more likely to acquire essentiality in another organism through orthology; however,

once an essential function was acquired, the genes were again likely to follow the centrality-

lethality principle in the new organism. He and Zhang [16] also showed that betweenness and

closeness by themselves are not predictive of protein essentiality in a protein protein interac-

tion network. Subgraph centrality provides good estimates for ranking based on closely con-

nected network neighborhoods, but its ability to predict protein essentiality in a yeast PPI

network has not exceeded the performance of degree centrality.

There are several methods that utilize multiomics data to aid essentiality detection algo-

rithms. When additional forms of high-quality experimental data such as protein interaction

affinities, canonical gene regulatory networks, metabolic networks, protein co-localizations,

RNAi screens, etc. are available for an organims, they can be utilized as essentiality predicting

feature vectors for a machine learning algorithm [17] or as participants in a consensus building

ensemble methods [18]. More recently, LBCC [19] and Plaimas’ support vector machine (svm)

based method [20] have shown significant improvement in essentiality prediction given the

various types of high-quality experimental data mentioned above. LBCC used protein complex

interaction data along with protein interaction propensities to implement a hypothesis that

essential proteins tend to maintain their interaction complexes through the course of evolu-

tionary time scales. ION [21] utilized the same hypothesis to propose an improvement based

on known orthologs of an organisms. Plaimas et. al.’s method utilized codon recurrences, phy-

letic retention, silent site codon composition, and over twenty other metabolic network

derived features. For an organism or a specific mutant where high-quality multiomics data sets

are available, Zhang et. al.’s expansive review [17] for essential prediction methods may serve

as a useful reference.

A graph centrality to detect essential proteins
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Until an affordable and reliable high-throughput experiment is available for essentiality

detection, a computational approach that can utilize currently available protein interaction

and gene expression data can narrow down candidates to test for essentiality.

The proposed DiffSLC method combines multiple centralities. An investigation in combin-

ing multiple centralities to benefit from strengths of each is underexplored. DiffSLC is aimed

Fig 1. A toy example of a PPI network. A hypothetical PPI network with twenty proteins and their interaction partners. The protein P20 does not have an

interaction partner.

https://doi.org/10.1371/journal.pone.0187091.g001
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at finding essential proteins in a PPI network using graph topological features as well as experi-

mental data. Based on the results showing success of centrality-lethality principle for PPI net-

works [1, 12, 15], DiffSLC uses gene expression data to bias degree centrality towards

interacting proteins that have similar expression profiles from a transcript-based context.

DiffSLC exploits the advantages of eigenvector centrality and edge clustering coefficients.

Eigenvector centrality provides higher ranks to low-degree nodes that are connected to high

degree nodes, while the edge clustering coefficient ranks graph edges based on their involve-

ment in closely connected small subnetworks [22].

DiffSLC and related analyses are tested with a PPI network and gene expression data from

yeast, because high-throughput and reliable experimental data are readily available, and a ref-

erence essential genes list is available from the Database of Essential Genes (DEG) [23]. The

DEG curates results from single-gene knockout experiments reported in Saccharomyces Gene

Deletion Project [24]. DiffSLC is aimed at finding essential proteins in a protein-protein inter-

action network using graph topological features as well as experimental data.

Materials and methods

The DiffSLC measure uses eigenvector centrality to capture low-degree nodes, and biases node

degree computation towards locally central interaction edges and highly coexpressed probesets

corresponding to those interactions. The analysis is done on two different sets of yeast micro-

array experiments, which are combined with a yeast PPI network. Experimental data collec-

tion, processing, and analysis are performed as described below.

Experimental data

Graph centrality analysis was performed on an undirected network, where centrality calcula-

tions were biased towards proteins that interact and have very similar expression patterns. To

test the effect of different gene expression data sets and their contribution in bias levels, two

Saccharomyces cerevisiae (yeast) experiments were used. The data sets described below were

used to create the network. This rich set of experimental data helped investigate the impact of

combining modifications of eigenvector and degree centrality biased by gene coexpression lev-

els, and impact of different gene expression datasets on centrality ranking presented here.

Protein-protein interaction data. Protein-protein interaction data for yeast was obtained

from the Database of Interacting Proteins (DIP) [25, 26] Release Scere20150101. The interac-

tions were downloaded in PSI-MI MITAB v2.5 format [27]. The tab delimited file was pro-

cessed in R [28] using the built-in delimited data table processing function. The data provided

by DIP included interactions of yeast proteins with other organisms as well. To create a yeast-

specific protein interaction network, the non-yeast interactions were removed. After this

removal and removing redundant interactions, the resulting interaction data included 5022

proteins and 22860 interactions.

Additional processing was done to remove interactions where between one and three pro-

teins interacted among themselves, but not with any other proteins. Such interactions create a

one or two edge subnetwork that is disconnected from rest of the PPI network. Without addi-

tional experimental data linking them to rest of the network, such interactions would not add

any useful information for our proposed method, and therefore they were also removed from

the interaction data. This resulted in 4,958 proteins having 22,308 interactions.

Gene expression data. A well-studied yeast gene expression dataset by Tu et.al. [29]

(GEO accession GSE3431) highlights the cyclic nature of yeast gene expression in a wild-type

yeast strain. Tu et.al. performed a whole genome RNA microarray study to understand the

yeast metabolic cycle over 36 time points between approximately 66 to 80 hours after exposure
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to a nutrient-limited condition. They showed that over half of yeast genome was being

expressed at regular intervals during yeast metabolic cycles. The experiment was conducted on

an Affymetrix GeneChip Yeast Genome S98 Array. This array had 9,335 probesets which

mapped to 6,777 genes. A total of 36 GeneChips were used to profile the gene expression of

yeast from continuous culture under nutrient-limited environment. Samples were taken

approximate 25 minutes apart.

To understand the impact of using different gene expression datasets on the centrality cal-

culation, a different yeast gene expression dataset was chosen. This experimental data was gen-

erated by Guan et al. [30] (GEO accession GSE3076). In their time-series experiment, Guan

et al. studied the role of nonsense-mediated mRNA decay (NMD) in a budding yeast global

gene expression profile. The NMD pathway in eukaryotes targets transcripts with premature

stop codons to eliminate translation of potentially harmful proteins [31]. Guan et al.’s experi-

ments observed that a significant subset of all mRNA produced in a cell were targets of NMD

processes. 45% ± 5% of those were direct targets, and 30% of the protein-coding targets

affected either chromosome structure and behavior, or cell surface dynamics. The experiment

was a time series experiment performed at 16 time-points within the first hour of transcription

inhibition signal. The expression profiles were estimated on Affymetrix GeneChip Yeast

Genome S98 array.

Gene expression data processing. For each of the microarray experiments, correspond-

ing CEL files were processed using the affy [32] package in R/Bioconductor [33, 34]. Addi-

tional pre-processing was done to obtain RMA [35] expression values. Relevant data and R
programs are available at http://git.io/diffslc.

List of essential proteins. The Saccharomyces Genome Deletion Project (SGDP) [24,

36] used a PCR-based gene deletion strategy to delete all known ORFs from their start

codon to stop-codon. At the completion of the project, a list of 1,156 essential ORFs was

produced, which is available at http://www-sequence.stanford.edu/group/yeast_deletion_

project/Essential_ORFs.txt. The Database of Essential Genes (DEG) [37] has curated

that list over time, and has provided 1,110 currently accepted known essential yeast genes

along with relevant features and gene name synonyms in their latest release available for

download (DEG v10) [23]. Although a subset of the remaining ORFs and corresponding

genes have undetermined essentiality, all the genes that weren’t specifically in the list of

1,110 essential genes from DEG, are assumed non-essential to ensure a conservative esti-

mate of success.

DIP interactor to gene name mapping. The data from DIP was provided with the

interactor IDs, and their corresponding UniProtKB and Ensembl IDs, if available, at the

time of DIP data release. Of the 4958 interacting proteins, 71 proteins did not have a corre-

sponding verified ID in UniProtKB. For the unmatched DIP interactor IDs, a correspond-

ing Ensembl ID was matched and saved. The Affymetrix supplied annotations (NetAffx

Annotation Release 35) for the GeneChip Yeast Genome S98 array and GeneChip Yeast

Genome 2.0 array provide affy probeset ID to UniProtKB/SwissProt and Ensembl ID map-

ping. By combining the DIP ID to UniProtKB/Ensembl ID mapping, with Affymetrix anno-

tations, the DIP interactor ID to probeset ID mappings were obtained. There were cases

where multiple probesets mapped to a single DIP interactor ID. In such a case, the probeset

with lowest expression was mapped to the DIP interactor ID. This was a conservative esti-

mate, but a useful one because it could assumed that any of the candidate transcripts would

have undergone at least that lowest amount of transcription for the production of a given

protein. The original and filtered data are available along with the source code at http://git.

io/diffslc.
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Gene co-expression and graph centrality measures

Much of the publicly available high-throughput protein interaction data utilize experimental

techniques prone to high false positive rates [38]. Use of gene expression data in conjunction

with protein interactions has yielded improvements in essentiality prediction [39, 40]. The

method proposed by Li et al. [39], and later verified by Tang et al. [40], improved essentiality

predictability by using edge clustering coefficients combined with Pearson correlation between

coexpressed probesets as edge weight.

Protein-protein interaction network. Using the filtered DIP data described in previous

section, an undirected network was created using the DIP interactors as nodes and their inter-

actions as edges. This was an unweighted protein interaction network. Based on the centrality-

lethality hypothesis, node degree was expected to be predictive of protein essentiality in this

network. Wang et.al. [41] showed that using the edge clustering coefficient values (ECC) as

edge weights in a protein interaction network substantially improves essentiality prediction.

The ECC of the protein interaction network will be used as a contributor to the gene coexpres-

sion bias for centrality calculation.

The following two sections define all the gene co-expression measures used for biasing cen-

trality calculations, the variety of centrality measures compared in this study, and the edge

clustering coefficient defined by [22]. The proposed DiffSLC is also defined at the end of the

section.

Gene co-expression measures. To use the gene expression data from Tu et.al. [29] and

Guan et.al. [30] in node centrality calculation, various gene coexpression measures were com-

pared to understand the effect of choosing different coexpression metrics. For genes X and Y,

the following methods can be used to calculate each of the co-expression measures.

X ¼ ðx1; . . . ; xmÞ;Y ¼ ðy1; . . . ; ymÞ

where X, Y are arbitrary genes, and xi, yi are ith observed expression values.

• Pearson correlation coefficient: This measure assumes normal distribution of X and Y, and

estimates a monotonic relationship between the variables. R’s built-in implementation of

Pearson correlation is used for this computation.

pCorðX;YÞ ¼
Pm

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
xi
ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
yi
ðyi � �yÞ2

q

where �x, �y are sample means for X, Y respectively.

• Spearman’s rank correlation coefficient: This non-parametric estimator does not make

assumptions about distributions of X and Y, and estimates monotonic association between

the variables. R’s built-in implementation of Spearman’s rank correlation is used for this

computation.

sCorðX;YÞ ¼ 1 �
6
Pm

i¼1
d2
i

mðm2 � 1Þ

where, di is the difference between ranks of xi and yi.

• Distance correlation: This measure estimates a non-monotonic relationship between X and

Y random variables. A desirable feature of this measure is that a zero distance correlation

implies variable independence [42, 43]. The distance correlation implemented in the

energy [44] package for R is used for this computation. The distance correlation (dCor)
between X and Y is defined in terms of distance covariance (dCov) and distance variance

A graph centrality to detect essential proteins
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(dVar) of both variables. In the following formula, fX and fY are the characteristic functions

of X and Y respectively, while fX,Y is the joint characteristic function.

dCorðX;YÞ ¼
dCovðX;YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðXÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðYÞ

p

¼
k fX;Yðt; sÞ � fXðtÞfYðsÞk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k fX;Xðt; sÞ � fXðtÞfXðsÞk

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k fX;Yðt; sÞ � fXðtÞfXðsÞk

q

Centrality measures. Graph centrality measures are used to provide relative importance

ranking to nodes and edges of a network. For the following centrality definitions, a network is

defined as follows. Let G be an undirected weighted graph, where V is a set of N vertices (or

nodes), and E is a set of edges (or links).

G ¼ ðV;EÞ;

jVj ¼ N

E ¼ fðu; v;wÞju 2 V; v 2 V; u 6¼ v; jðu; vÞj ¼ wg

• Edge clustering coefficient: The edge clustering coefficient is defined as the number of tri-

angles, which include the given edge divided by the number of triangles the edge may partic-

ipate in based on the node degree of its incident nodes. For the graph G, the edge clustering

coefficient (ECC) of an arbitrary edge e connecting nodes u and v can be calculated using the

following method in [22].

ECCð3Þu;v ¼
zð3Þu;v þ 1

min½ðku � 1Þ; ðkv � 1Þ�

Where zð3Þu;v is the number of triangles including the edge e, and ku, kv are number of triangles

u, v participate in.

• Degree centrality: The degree centrality of a node is the number of its adjacent edges in a

graph. For a directed graph, this number can be separated into a node’s “in degree” and “out

degree” referring to the number of edges coming into the node or going away from the

node, respectively. For undirected graphs, a node’s degree is the number of other nodes it is

linked to. For the graph G, degree centrality (DC) of an arbitrary node u can be calculated

using the following formula.

DCðuÞ ¼ jðu; �; �Þ 2 Ej

• Shortest path closeness centrality: The closeness is defined as an inverse of farness, where a

node’s farness is defined as sum of all the shortest path lengths between it and other nodes.

This shortest path-based measure was introduced by Sabidussi [45]. A random-walk based

modification of Sabidussi’s closeness centrality measure was suggested by Noh and Rieger

[46]. Both variations of closeness centrality have been used to understand topology of biolog-

ical networks. In essence, the higher the closeness of a node, the quicker it is to reach other

nodes from that node. For the graph G defined earlier, the shortest path closeness centrality

A graph centrality to detect essential proteins
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(CC) of an arbitrary node u can be calculated using the following formula.

CCðuÞ ¼
X

u6¼v

1

dðu; vÞ

where d(u, v) is the shortest-path distance between nodes u and v.

• Shortest path betweenness centrality: A node that lies along the shortest paths between

many pairs of nodes is considered more important than a node with fewer shortest paths

passing through it. This notion is referred to as the betweenness of a node within a graph.

The shortest path-based betweenness centrality measure was introduced by Freeman [47],

and it was later modified as a random-walk based measure by Newman [48]. For the graph

G defined earlier, the shortest path between centrality (BC) of an arbitrary node u can be cal-

culated using the following formula.

BCðuÞ ¼
X

i6¼u6¼j
i;u;j2V

sijðuÞ
sij

where σij is the number of shortest paths between nodes i and j, and σij(u) is the number of

those paths that pass through node u.

• Eigenvector centrality: The values of the eigenvector corresponding to the greatest eigen-

value of the graph’s adjacency matrix is used as nodes’ centrality score [49], called the eigen-

vector centrality. The popular PageRank™ [50] algorithm used by Google™Search is a

modification of eigenvector centrality, where the eigenvalue of interest is calculated using a

power iteration method. In essence, eigenvector centrality score ranks nodes based on how

many other high ranking nodes a given node connects to. For the graph G defined earlier

with the adjacency matrix A, the eigenvector centrality (EC)—assumed to be a positive num-

ber —can be calculated using the following method described by Newman in [13].

Let xu be the EC of vertex u.

ECðuÞ ¼ xu ¼ 1
l

Pn

j¼1

Aujxj, where λ is a constant.

Let x = (x1, x2, . . .) be the vector of EC’s.

This gives us λx = A � x.

Thus, x is an eigenvector corresponding to the largest eigenvalue λ of A.

• Subgraph centrality: The subgraph centrality measure was introduced by Estrada and

Rodriguez-Velazquez [14]. It quantifies the influence of a node in a subgraph of the given

graph using the spectra of the given graph’s adjacency matrix. This measure gives more

weight to smaller subgraphs than larger ones, thus making it a good measure for understand-

ing network motifs. For the graph G defined earlier, the subgraph centrality (SC) of an arbi-

trary node u can be calculated using the following steps described in [14].

Let λ1, λ2, . . ., λn be the eigenvalues of A, the adjacency matrix.

Let nij be the ith component of the jth eigenvector associated with λj eigenvalue.

Then, SCðuÞ ¼
PN

j¼1

ðnuj Þ
2 exp lj

• DiffSLC: DiffSLC is defined as a weighted combination of the eigenvector centrality and the

coexpression-biased degree centrality. While degree centrality is able to capture many of the

essential proteins in the top 20% of degree sorted nodes, it also misses several known essen-

tial proteins with fewer interactions within the DIP interaction dataset. Many of these low-
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degree nodes are connected to other higher degree nodes. Eigenvector centrality (EC) ranks

such nodes higher; hence DiffSLC captures additional essential proteins by giving partial

weight to nodes ranked highly by EC.

Furthermore, the co-expression bias for each pair of interacting proteins is weighted by the

coexpression amount and by the edge-clustering coefficient. The coexpression bias detects

interacting proteins that are also highly co-expressed in a given gene expression condition.

The edge clustering coefficient (ECC) bias promotes protein interactions that may affect

other interactions of its interacting proteins, or be affected by other interactions of its inter-

acting proteins. These contributions are captured here via the β and ω parameters, which

vary the levels of contributions from each set of experimental data and centralities. S2 Table

shows the results of varying both parameters.

For the graph G defined earlier, the DiffSLC of an arbitrary node u can be calculated as fol-

lows, where the BDC(u) is the biased degree centrality of a node u.

BDCðuÞ ¼
Xm

i¼1

½ðb � dCorðuiÞÞ þ ðð1 � bÞ � ECCðuiÞÞ�

where, u has m incident edges, and β 2 [0, 1].

DiffSLCðuÞ ¼ ðo � ECðuÞÞ þ ðð1 � oÞ � BDCðuÞÞ

where, EC is the eigenvector centrality, and ω 2 [0, 1].

In this case, BDC is a weighted using the distance correlation. For both of the datasets used

in the analysis, gene expression profiles are better estimated using distance correlation metric

compared to either of the linear correlation metrics. For a case where a monotonic relationship

can better estimate the gene coexpression, Spearman’s Rank correlation (sCor) may be a more

appropriate replacement for dCor. Additional details are provided in the Discussion section.

Performance estimates. For the yeast dataset, where both positive and negative samples

of protein essentiality exist, a node centrality method designed to prioritize essential proteins

can be treated as a binary classifier. A perfect prioritization method would rank the essential

yeast proteins at the top of its ranking, and rank the non-essential yeast proteins lower in the

list. The following three metrics can be used to estimate the performance of the ranking

method: Receiver Operating Characteristic (ROC) curve, area under the ROC curve (AUC of

ROC), and Precision-Recall (P-R) curve.

• Receiver Operating Characteristic (ROC) curve: The ROC curve shows relationship

between True Positive Rate (TPR) and False Positive Rate (FPR) for a binary classifier. These

rates can be obtained from a 2x2 confusion matrix as shown in Table 1.

Table 1. 2x2 confusion matrix.

Known positive Known negative

Predicted positive True Positive (TP) False Positive (FP)

Predicted negative False Negative (FN) True Negative (FN)

True Positive is the number of correctly identified positive samples. True Negative is the number of

correctly identified negative samples. False Positive is the number of negative samples identified as

positive, and False Negative is the number of positive samples identified as negative by the given method.

https://doi.org/10.1371/journal.pone.0187091.t001
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Using the confusion matrix, TPR and FPR are calculated as below.

TPR ¼
TP

TPþ FN

FPR ¼
FP

FPþ TN

The canonical representation of the ROC curve is plotted with 1 − FPR on the x-axis and

TPR on the y-axis.

For the ROC curve, the area under the curve (AUC of ROC) is estimated using a trapezoid

area computation algorithm described in [51]. For a perfect binary classifier, the AUC of ROC

curve would be 1. If a sample instance is randomly chosen, the area under the ROC curve rep-

resents the probability that the selected random sample is ranked higher if it is a positive

instance, and ranked lower if it is a negative instance.

• Precision-Recall (P-R) curve: A P-R curve shows a relationship between precision (also

known as positive predicted value), and recall (also known as true positive rate or sensitiv-

ity). These values can be computed from the 2x2 confusion matrix shown in Table 1.

For clarity, precision and recall variables defined in the ROC section above, are reused here.

Precision ¼
TP

TPþ FP

Recall ¼
TP

TPþ FN

The canonical representation of P-R curve is plotted with Recall on x-axis and Precision on

y-axis.

Results

The DiffSLC was evaluated via the ROC curve, the AUC of the ROC, and the P-R curve. The

ROC curve and the AUC of the ROC curve help determine effectiveness of DiffSLC as a dis-

crimination method for essential versus non-essential proteins of each network. The P-R curve

estimates the extent to which DiffSLC is able to provide useful results at high false negative, or

in other words, detecting essential proteins within top few percent of DiffSLC ranked proteins.

Once the cleaned and curated data for our yeast PPI network were ready, the association of

node degree to protein essentiality as suggested by centrality-lethality hypothesis for a PPI

network was verified. Additional graph centrality measures were applied to the network to

quantify their predictability of protein essentiality for a yeast PPI network. Without further

modifications, degree centrality (DC) provided the best predictability (AUC of ROC = 0.64)

for protein essentiality as compared against betweenness (BC), closeness (CC), eigenvector

(EC), and subgraph (SC) centralities. Betweenness had been hypothesized as a measure predic-

tive of detecting genes acquiring essentiality evolved through orthology [15], and for those pre-

dicted essential genes, the centrality-lethality hypothesis was shown to be an identifying

feature of essential proteins for a PPI network in yeast and mice. Given a better predictability

of DC compared to other centralities, gene co-expression measures were used to bias the

degree calculation for each node. EC based ranking had ranked low-degree essential protein

nodes highly. This made EC an ideal candidate to combine in DiffSLC. A co-expression biased

DC combined with EC, thus, was determined to be able to detect critical nodes of a network

that either DC or EC would have missed on their own.

A graph centrality to detect essential proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0187091 November 9, 2017 10 / 25

https://doi.org/10.1371/journal.pone.0187091


The performance of DiffSLC was compared against the commonly used centralities for PPI

network node prioritization. The number of essential proteins detected by all centrality meth-

ods in the top 1% to 25% were also reported to highlight the advantage of each method. Com-

parisons were performed between PPI network without biasing factors (i.e. gene co-expression

values and edge clustering coefficients) and networks with the biasing factors. Contribution

weights (i.e. values of β and ω) were chosen based on S2 Table to compare against the optimal

cases.

There were 7 different networks generated for analysis and comparison of the proposed

method. Table 2 lists these networks and their properties relevant to DiffSLC results. A✓ indi-

cates the property included in a network.

The centrality-lethality hypothesis suggests that a protein with many interaction partners is

more likely to be an essential protein than a protein with fewer interactions; assuming that

removal of such central protein would disrupt an organism’s growth. Therefore, in a protein

interaction network, nodes with higher degree centrality are more likely to correspond to

essential genes. To assess this suggestion, the node degree from network N0 was used as a pre-

dictor of protein essentiality. Fig 2 shows the ROC curve of node degree’s ability to predict

gene essentiality. Also compared were CC, BC, EC, and SC for the same network.

Fig 2 results show that the best results are generated using DC. The centrality-lethality prin-

ciple has been observed in yeast multiple times, and this result shows that the data being uti-

lized for DiffSLC analysis also conforms to that expectation.

Over 70 essential genes were low degree nodes in the N0 centrality ranking results, which

were within the top-25% of eigenvector centrality (EC) ranked nodes. In other words, these

nodes were missed by the top-25% DC ranked nodes; however, EC was able to rank them

higher. Other centralities also detected the low degree nodes at varying amounts.

DiffSLC, and the effect of different co-expression measures

Degree centrality was chosen as the base implementation to improve on the results seen in the

analysis of network N0. Li et.al. [39] have shown usefulness of the Pearson correlation coeffi-

cient in estimating pairwise gene coexpression for the Tu et.al. experiment [29]. Three net-

works–NT1, NT2, and NT3–were generated to understand the effect of three common gene

coexpression measures as described in Methods. The NT1 network was generated by assigning

the Pearson correlation of the gene expression values from the Tu et.al. experiment as the edge

weights for the N0 network. The other two networks, NT2 and NT3, were generated similarly

Table 2. Networks being tested for DiffSLC.

Network ID pCor sCor dCor ECC EC

PPI N0 – – – – –

PPI + Tu2005 NT1 ✓ – – ✓ ✓

PPI + Tu2005 NT2 – ✓ – ✓ ✓

PPI + Tu2005 NT3 – – ✓ ✓ ✓

PPI + Guan2006 NF1 ✓ – – ✓ ✓

PPI + Guan2006 NF2 – ✓ – ✓ ✓

PPI + Guan2006 NF3 – – ✓ ✓ ✓

PPI—a network created from only DIP data. PPI + Tu2005—using gene expression data from [29] to bias the centrality calculation for PPI. PPI + Guan2006

—using gene expression data from [30] to bias the centrality calculation for PPI. The column titles of the table indicate which biasing factors were used to

weight edges for DiffSLC computation.

https://doi.org/10.1371/journal.pone.0187091.t002
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using the Spearman’s rank correlation and the distance correlation of gene expression, respec-

tively. For networks NT1, NT2, and NT3 corresponding to the Tu et.al. dataset, Fig 3 shows

the ROC comparisons of calculating DiffSLC with biased degree centrality (BDC) based on

ECC and corresponding co-expression of adjacent edges to a given node. The ROC was calcu-

lated on DiffSLC function defined earlier. For these networks, DiffSLC was computed using β
= 0.8, ω = 0.1. DiffSLC was tested by varying β, ω in the [0.05, 1.00] range. The specific values

were chosen based on the best AUC of the ROC reported for each. Different co-expression

measures required different β and ω values in some cases. The best results from each of the co-

expression measures are provided in Fig 3.

Fig 3 shows that the impact of choosing different coexpression measures is negligible for

the Tu et.al. data set. In their analysis, Tu et.al. showed that the expression of genes follows

Fig 2. N0_ROC: ROC curves for using various centralities as essentiality predictors. ROC curves of DC, CC, BC, EC, and SC are plotted along with

their corresponding AUC.

https://doi.org/10.1371/journal.pone.0187091.g002
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periodic metabolic cycles, with around 9 cycles for their experimental result. Because a dis-

tance correlation measure is designed to estimate non-monotonic relationship between two

random variables, it is better suited for this method. Keeping that in mind, the NT3 network

will be used to compare against the the chosen network from the NF1,2,3 networks.

The results of Saccharomyces Genome Deletion Project [24] suggested that less than 20% of

yeast genes were essential genes. As such less than top 25% of the ranked proteins in the yeast

networks are of interest. These top ranked nodes of the network should provide a targeted list

of candidates to be considered for essentiality verification. Results from Fig 3 suggest that the

number of detected essential proteins may not be very different; however, for experimental

verification, even a difference of 20–30 gene knockout candidates can make a big difference.

Fig 4 shows unique matched counts at various percentage level. These counts are the number

Fig 3. NT1,2,3_ROC: ROC curves for using various gene coexpression measures as biasing factors in DiffSLC. ROC curves of NT1, NT2, and

NT3 networks are plotted along with their corresponding β,ω, and AUC. The differences in AUC is negligible.

https://doi.org/10.1371/journal.pone.0187091.g003

A graph centrality to detect essential proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0187091 November 9, 2017 13 / 25

https://doi.org/10.1371/journal.pone.0187091.g003
https://doi.org/10.1371/journal.pone.0187091


of essential proteins detected by each ranking method in the top 1–25% that the other methods

did not detect.

Fig 4 shows that at each of the percent cutoff levels, the NT3 network marginally outper-

forms the NT1 network in detection of more essential genes. This reaffirms the choice of NT3

as a reasonable choice to compare against the chosen one among the NF1,2,3 networks.

Fig 4. NT1,2,3_Top ranked proteins. Counts of unique essential genes ranked by various DiffSLC variants in the top 1%, 5%, 10%, 15%, 20%, and 25%

are shown in the plot. These counts are only for a set of genes that were detected by one of the networks but not the others.

https://doi.org/10.1371/journal.pone.0187091.g004
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DiffSLC, and the effect of different gene expression experiment

To assess the differences in predictability of DiffSLC, a different gene expression dataset was

utilized. Guan et.al. [30]’s experiment was chosen, which is performed on a different strain of

yeast, but using the same Affymetrix GeneChip Array platform. The networks NF1, NF2, and

NF3 were created using the Pearson correlation, the Spearman’s rank correlation, and the dis-

tance correlation of gene expression profiles, respectively, as the edge weights of the network

N0. For the networks NF1, NF2, and NF3 corresponding to this dataset, Fig 5 shows the ROC

comparison of calculating DiffSLC with the biased degree centrality (BDC) based on the ECC

and the corresponding co-expression of the adjacent edges to a given node. The ROC was cal-

culated using the same method as the previous analyses.

Fig 5 shows that similar to the case of the NT1,2,3 networks, the choice of coexpression

measures has a negligible impact for the Guan et.al. data set. It is unclear as to which of the

Fig 5. NF1,2,3_ROC: ROC curves for using various gene coexpression measures as biasing factors in DiffSLC. ROC curves of NF1, NF2, and

NF3 networks are plotted along with their corresponding β,ω, and AUC.

https://doi.org/10.1371/journal.pone.0187091.g005
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NF1,2,3 networks produced a better result than the others. Because the Guan et al. data set is a

time series experiment with the global gene expression varying drastically when under influ-

ence of nonsense-mediated mRNA decay (NMD) [30], it is difficult to pick one coexpression

measure as being a better choice solely based on the the gene expression profiles.

The top ranked nodes of the network ranked by DiffSLC were compared to estimate the

success of the prioritization method. The performance of the rankings was evaluated by com-

paring the top ranked proteins against the known essential proteins, as shown in Fig 6. Results

from Fig 5 suggest that the number of detected essential proteins may not be very different,

therefore similar to the NT1,2,3 networks, only the unique matched counts at various percent-

age level are shown. These counts are the number of essential proteins detected by each rank-

ing method in the top ranks that the other methods did not detect.

Fig 6 shows that at each of the percent cutoff levels, either the NF1 or the NF3 networks

detect a marginally higher number of essential genes. To compare the NF1,2,3 network results

against the NT1,2,3 network results with minimal variability, the NF3 network is chosen to

evaluate the differences between two networks.

The effect of choosing different gene expression dataset for centrality biasing was also nota-

ble. While there were roughly same number of essential proteins detected in top 25% ranked

proteins, different expression datasets resulted in a number of different proteins being detected

in those top ranked proteins. Fig 7 shows the number of shared and different proteins ranked

in NT3 and NF3 networks.

Evaluation of DiffSLC performance

In addition to a better detection of essential proteins in the top-25% ranked proteins shown

through the ROC curve evaluation, to assess the improvement resulting from combination of

both the centrality and the biases, Fig 8 shows precision-recall curves of EC, DC, and DiffSLC.

The higher the curve, the better the corresponding metric at discriminating between essential

and non-essential proteins.

Fig 8 shows that results from the NT3 and the NF3 networks are similar to each other, and

both are better than the DC and the EC measures alone.

Discussion

DiffSLC is an effective computational method to discover essential proteins in a protein-pro-

tein interaction (PPI) network. It combines node and edge centrality methods with gene

expression data to obtain improvements in detection of protein essentiality in yeast protein

interaction networks.

Comparison with other methods

There are at least three similar and often cited measures that also try to tackle the protein

essentially prediction. These are PeC [39], Weighted Degree Centrality [40], and weighted

degree applied to an active network construction [52]. We had reached out to the correspond-

ing authors of these methods to obtain their source data and an implementation of their soft-

ware; however, we had not received any response. The performance claims presented in the

respective publications could not be verified as-is. Because the Weighted Degree Centrality

was presented as a more generalized approach to PeC, and it had outperformed PeC based on

their publication, the DiffSLC source code available at git.io/diffslc includes an implementa-

tion of Tang et.al.’s Weighted Degree Centrality. The comparison based on this implementa-

tion did not corroborate with the data published in the original publication, therefore the

comparisons were ommited for Tang et.al.’s Weighted Degree Centrality based measures in
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this publication. The results of this comparison are still comparable by running the methods in

DiffSLC source code.

There are two additional methods that showed promise in essentiality predictions for yeast:

LBCC [19] method, and Plaimas et.al.’s support vector machine based [20] method. LBCC

uses protein interaction data and combines it with protein complex interaction propensities to

weigh a subset of interaction more or less than the other. This method shows noticeable

Fig 6. NF1,2,3_Top ranked proteins. Counts of unique essential genes ranked by various DiffSLC variants in the top 1%, 5%, 10%, 15%, 20%, and 25%

are shown in the plot. The counts are only for a set of genes that were detected by one of the networks but not the others.

https://doi.org/10.1371/journal.pone.0187091.g006
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improvement over methods utilizing only the protein interaction data sets. LBCC was tested

on yeast and human interaction data. Although this method shows a concrete advancement in

predicting yeast gene essentiality, the improvement of LBCC over traditional centrality meth-

ods is specifically due to known protein complexes and their propensities. Whether this

method is advantageous in absence of high-quality protein interaction propensity data or not

is unclear. A possible direction or comparison could be to perform de novo protein interaction

prediction to estimate interaction propensities, and then check if those improve the perfor-

mance of the LBCC measure. While useful, this exercise is beyond the scope of DiffSLC publi-

cation. In Plaimas et.al. [20], the authors have proposed a support vector machine based

method which utilizes several biologically relevant features in addition to protein interaction

to predict yeast gene essentiality. These features include number of codons, phyletic retention,

base composition at silent site, and over twenty other features related to metaboloic networks.

While this svm method with metabolic network features excels in the eukaryotic organisms it

is tested in, its applicability in organisms whose metabolic network are not well-studied, is

unknown. Whether a computationally predicated network would provide the same benefits

claimed in the Plaimas publication is also unclear. That exercise might be a useful alternate

direction to investigate in future publications.

While the methods that use various types of biological data such as cellular localizations of

proteins, protein interaction affinities, and disease causing genes can often show improved

essentiality prediction in eukaryotes and yeast, their results are dependent on having all the

various types of biological experimental data for a specific organism that the essentiality pre-

diction methods need to be applied to. Protein interaction and gene expression experiments

are typically the only available data sets for many of those organisms, which makes a method

that relies on expression and interaction experiments is widely applicable and worth a consid-

eration. DiffSLC is designed to meet that criteria. If additional curated and verified biological

data such as metabologic networks, gene regulatory networks, phyletic retention, gene

Fig 7. Number of shared top ranked proteins for NT3 and NF3. For top 25% of DiffSLC ranked proteins,

different gene expression data resulted in different proteins being ranked higher. This Venn diagram shows

the comparison of NT3 network to NF3 network’s ranked results. The full list of shared and different proteins is

available in S1 Table.

https://doi.org/10.1371/journal.pone.0187091.g007
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silencing, etc. exist for an organism of interest, a relevant metric to incorporate those data

sources can be investigated. An expansive review of recent advances in essentiality prediction

methods for such circumstances was published in [17], which would be of a reader’s interest.

Evaluating the results and performance of DiffSLC

Testing the accuracy of a network centrality based predictive ranking method requires a veri-

fied reference list to compare against the method results. Yeast is the only eukaryotic organism

Fig 8. Precision-Recall curve comparing EC, DC, and DiffSLC. The precision-recall curves are plotted to show enhancement of the degree

centrality by biasing coexpression, and combining the eigenvector of the adjacency matrix.

https://doi.org/10.1371/journal.pone.0187091.g008
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for which a genome-wide single gene knockout experiments and corresponding fitness data is

publicly available. These results from Saccharomyces Gene Deletion Project (SGDP) [24, 36]

have been curated as an essential genes list by Database of Essential Genes (DEG) [23, 37]. The

Database of Interacting Proteins (DIP) [25, 26] as a source of experimentally determined inter-

actions between proteins was used to create a protein interaction network. DIP provided a

mapping between interacting proteins and their UniProtKB/SwissProt identifiers and Ensembl

gene identifiers. These were matched against the annotations provided in Affymetrix Yeast

Genome S98 array, which was used by the gene expression experiments utilized to implement

expression biasing in DiffSLC. In order to create a network with verifiable relevant informa-

tion, unmatched proteins were removed. The list of matched and unmatched DIP interactor

proteins, along with relevant codes are made available at http://git.io/diffslc.

DiffSLC is able to better discriminate the essentiality due to three important features.

• DiffSLC keeps nodes with high degree centrality rank as-is, while incorporating low-degree

ranking nodes that are essential by giving additional weight to high eigenvector centrality

ranked nodes.

• DiffSLC promotes proteins involved in interactions where more interaction partners tend to

interact with each other. This idea is captured through the edge clustering coefficient.

• DiffSLC ranks the interacting proteins that are result of highly coexpressed genes higher

than the ones that are not. This usage assumes that essential genes would be highly coex-

pressed with several other genes, and that that effect would be noticed post translationally as

well. For DiffSLC, gene coexpression provides additional ranking contribution from gene

expression data.

For experiments with many observations of gene expression (e.g. several time points or

experimental conditions), the distance correlation provides better estimate of gene coexpres-

sion. When many experimental conditions or time points in a long time course are observed, a

safer assumption is to assume that the gene expression would increase or decrease at different

conditions or time points for different genes, and that many genes may have cyclic spikes or

dips in gene expression levels. A non-monotonic correlation is better suited to estimate the

gene coexpression in such cases than a monotonic correlation measure. On the other hand,

complex expression profiles are not detectable when coexpression is estimated based on just a

few observations per gene. A monotonic correlation provides a reliable estimate for such

experiments. This may explain the improved results of distance correlation in DiffSLC com-

pared to either the Spearman’s rank correlation or the Pearson correlation.

DiffSLC estimate has two weighting parameters: β and ω. The β parameter scales contribu-

tion of gene coexpression values (dCor), which depend on the gene expression data; and the

edge clustering coefficient (ECC), which depends on the graph topology derived from protein-

protein interaction data. The success of a low β values suggest that for the context of biasing

the degree centrality, the topological position of edges in reference to their neighbors is a

stronger indicator of essentiality than the pair-wise correlation of the gene expression profiles.

However, both are poor predictors of the essentiality on their own. On the other hand, the ω
parameter weigh the eigenvector centrality (EC) of a node against the biased degree centrality

computed using dCor and ECC. The success of a high ω value in the results indicate that in the

context of supplementing BDC, the EC heavily contributes towards the improved essentiality

detection of DiffSLC. The results also indicate the decisions that drive the choice of β and ω
parameter values. For experiments with high number of replicates per experimental condition,

the gene coexpression measure and edge clustering coefficient will have weights that are closer

to each other, resulting in a β� 0.5. The ω� 0.9 produced the best results for all the variations
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of the networks that were considered. This may indicate that for a medium sized mixed net-

works created using gene co-expression and protein interaction evidence, the EC provides a

high amount of gene essentiality relevance. Additional experiments would be necessary to pre-

scribe a concrete range of values for each of the parameters given the various types and sizes of

gene expression and protein interaction data.

When comparing the two networks NT3 and NF3 for the effect of different gene expression

datasets, Fig 7 shows that approximately 6.8% ( 88

1295þ44þ44
) of the detected essential genes were

different based on the choice of gene expression data set. This may indicate that for a context-

specific or experimental condition-specific detection of essential genes, a modified DiffSLC

measure may be useful. Additional work would be necessary to validate this hypothesis. The

precision-recall curve plotted higher in the plot represents a better binary classifier, because it

suggests that the method is able to maintain low false positive numbers even with high false

negative numbers (i.e. low recall—high precision cases). As the number of false negatives

increase, the method represented by curve at the top of the plot is able to maintain higher pre-

cision than other methods. Looking at Fig 8, the top curves representing DiffSLC method sug-

gest that essential protein detection is improved by combining the eigenvector centrality and a

biased degree centrality. The EC and the DC individually perform worse than either of the

DiffSLC curves plotted. This is because although the EC and DC detect several essential pro-

teins in top ranked nodes of the network, they are non-overlapping low number of proteins.

The DiffSLC metric is able to combine the results noticed in both. No clear evidence suggests a

significant difference between the DiffSLC implementations in two different networks pre-

sented here.

The presented DiffSLC implementation is heavily dependent on the network topology, and

hence the results are at most only as reliable as the network itself. Although this work utilizes a

set of microarray experiments, the method is equally applicable to a next-generation sequenc-

ing data generated via an RNA-Seq platform. Ballouz et al. [53] have discussed the merit of uti-

lizing RNA-Seq for generating reliable co-expression networks similar to microarray datasets.

Iancu et al. [54] had shown that de novo coexpression networks constructed for tissues from

two different mice strains using RNA-Seq experiments had a majority of the subnetworks that

corresponded well to their microarray experiment counterparts. On the other hand, Giorgi

et al. [55] and Han et al. [56] showed that the coexpression networks built by RNA-Seq and

microarray experiments only had a small subset of similar subnetworks. The reliability and

robustness of co-expression network construction is a topic better addressed elsewhere; how-

ever, the work reviewed above concluded that in an RNA-Seq experiment with a high number

of samples (more than 20 according to [56]) and a high read depth (more than 10 million

according to [56]), the coexpression networks would be generally reliable and relevant net-

work analysis methods would produce useful results.

More than a general-purpose centrality method, DiffSLC proposes the use of experimen-

tally relevant biases, and constraints geared towards specific networks. The same general

framework of DiffSLC implementation can be utilized for biasing other graph centrality mea-

sures. For example, a network where some known critical nodes are most associated with the

shortest-path betweenness centrality, the edge weights and path lengths can be weighted by

edge-clustering coefficient (ECC), and also forced to meet weight or path length constraints.

Biasing the betweenness centrality with such modifications would relax the shortest path com-

putation to allow for longer paths that satisfy specific constraints, or eliminate shortest paths

with low ECC (or gene coexpression level, if utilized). This would be a useful feature for use in

the biological networks where the known biological information is not encoded in the network

structure. Constraint driven analysis has already shown promise [57, 58], and a separate
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investigation will be required to understand the role of constraint-based centrality methods in

protein essentiality prediction.

Conclusion

DiffSLC is an effective computational method to discover essential proteins in a protein-pro-

tein interaction (PPI) network. It combines node and edge centrality methods with gene

expression data to obtain improvements in detection of protein essentiality in yeast protein

interaction networks. The effectiveness of DiffSLC was demonstrated using three variations of

networks: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coex-

pression measures, and (3) impact of different gene expression data sets. For a total of seven

networks, DiffSLC was compared to other centrality measures using Saccharomyces cerevisiae
protein interaction networks and gene expression data. When DiffSLC ranked genes were

compared against the known essential genes from the Saccharomyces Gene Deletion Project,

DiffSLC detected more essential proteins with a higher area under the ROC curve than other

compared methods. This made DiffSLC a stronger alternative to other centrality methods for

detecting essential genes using a protein-protein interaction network that obeys centrality-

lethality principle.

Supporting information

S1 Table. Difference in top ranked proteins between NT3 and NF3 networks. DiffSLC
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