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Identifying Windows of 
Susceptibility by Temporal  
Gene Analysis
Kristin P. Bennett1,2,3, Elisabeth M. Brown1, Hannah De los Santos1, Matthew Poegel1, 
Thomas R. Kiehl4, Evan W. Patton3, Spencer Norris3, Sally Temple4, John Erickson2, 
Deborah L. McGuinness   2,3,5 & Nathan C. Boles4

Increased understanding of developmental disorders of the brain has shown that genetic mutations, 
environmental toxins and biological insults typically act during developmental windows of 
susceptibility. Identifying these vulnerable periods is a necessary and vital step for safeguarding 
women and their fetuses against disease causing agents during pregnancy and for developing timely 
interventions and treatments for neurodevelopmental disorders. We analyzed developmental time-
course gene expression data derived from human pluripotent stem cells, with disease association, 
pathway, and protein interaction databases to identify windows of disease susceptibility during 
development and the time periods for productive interventions. The results are displayed as interactive 
Susceptibility Windows Ontological Transcriptome (SWOT) Clocks illustrating disease susceptibility over 
developmental time. Using this method, we determine the likely windows of susceptibility for multiple 
neurological disorders using known disease associated genes and genes derived from RNA-sequencing 
studies including autism spectrum disorder, schizophrenia, and Zika virus induced microcephaly. SWOT 
clocks provide a valuable tool for integrating data from multiple databases in a developmental context 
with data generated from next-generation sequencing to help identify windows of susceptibility.

Development of an organism requires an intricate interplay of expansion, differentiation, and integration of 
numerous cellular components in order to build a typical adult. Controlling this process requires coordination 
of multiple signaling inputs across both time and space. Disruptions in the action or timing of these signals 
potentially have drastic consequences for the development of an organism. Exposure of mothers and their fetuses 
during gestation to a wide array of biological and chemical agents has been linked to multiple developmental dis-
orders1–4. Determining the windows of susceptibility (WOS) to environmental or immune insult and the potential 
link to a developmental disease is a significant challenge due to the complexity of developmental systems.

Temporal analysis of expression data has focused on identifying genes that change over time and then using 
clustering approaches to group genes by temporal profile together. These clusters are then used in a variety of 
enrichment tests in combination with biological databases such as Gene Ontology (GO) to assign biological 
meaning to each cluster. Current bioinformatic tools such as DAVID5, DOSE6, and other enrichment tools or 
algorithms such as goseq7 can be utilized to find enrichment of ontological terms or pathways associated with a 
gene list. These tools in combination with disease-gene databases, such as OMIM, have been used in a wide vari-
ety of studies to try and translate gene expression changes into etiological mechanisms underlying disease. None 
of these approaches have attempted to identify the WOS for a disease and place the expression changes linked to 
a disease in a developmental context.

Currently, identifying periods of susceptibility to insult by external factors requires careful experimenta-
tion2,8–11. For instance, a number of studies have examined the role environmental agents play in precipitating 
neurodevelopmental disorders4,12–16. Yet, ascertaining the timing and duration of exposure needed to cause 
harm during human development is a difficult and costly undertaking, due to both ethical and technological 
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constraints. However, the rise of human pluripotent stem cell (hPSC) technology and invention of protocols 
simulating development has provided methods to ethically and inexpensively investigate the factors contributing 
to developmental disorders. Proof of concept experiments testing for toxicity using hPSC developmental models 
have already demonstrated the validity of this system for screening possible toxins17. Yet, using these methods 
requires significant resources and time to uncover WOS and only work on a case-by-case basis.

Here, we have set out to develop a quick and cost-effective method to identify WOS. We utilize a computational 
method to predict WOS to injury from disrupting agents, using publicly available hPSC temporal gene expres-
sion databases along with a semantic infrastructure that combines statistical and linked data analysis18,19. This 
infrastructure links the transcriptomics data with disease-gene, pathway, gene ontology, and protein-interaction 
databases and then dynamically applies statistical analysis and visualizations to predict WOS for developmental 
diseases and to suggest potential mechanisms. The method is generally applicable to time-course expression data 
derived from hPSC models, which can be analyzed for WOS for a wide range of developmental disorders. As 
proof of concept, we utilized expression data covering a time-course of human cerebral cortex development from 
hPSCs20 and identified putative periods of vulnerability for a variety of diseases that impact neurodevelopment, 
including autism spectrum disorder, schizophrenia and ZIKV-virus-induced microcephaly.

Methods
Cortecon Dataset.  For this analysis RNA-seq data from an in vitro human pluripotent stem cell model of 
cortical development, CORTECON (GEO: GSE56796), was obtained. An R session containing a matrix of nor-
malized counts via the DESeq2 and EdgeR methods was downloaded from http://cortecon.neuralsci.org/ and 
used for all subsequent analysis.

SVD analysis.  Let X be the m × n matrix of normalized RNA expression data, where each row corresponds 
to a differentially expressed gene in the CORTECON dataset. Each was standardized to have mean 0 and stand-
ard deviation 1 over the time course. Standardization was done to account for different expression amplitudes 
between genes. Each column corresponds to a time-point. Then xij is the standardized expression level of the ith 
gene in the jth time-point. Computing the singular value decomposition of the data, we have X = USVT where U is 
a m × n matrix, S is a n × n matrix and VT is a n × n matrix. The columns of U are called the left singular vectors. 
They form an orthonormal basis of the day expression profiles. The rows of VT are the right singular vectors, and 
form an orthonormal basis for the gene transcriptional profiles. S is a diagonal matrix, with the singular values in 
descending order down the main diagonal. The transcriptomic clock is formed by projecting the genes on the first 
two right singular vectors, [xi. v1. v2]. These vectors explain the most variance in the data. The genes are ordered 
in the heatmaps by their angle in the clock computed using the four-quadrant inverse tangent of their projected 
genes.

Clustering analysis.  The normalized counts were clustered using the Fuzzy C-Means algorithm21, and then 
each gene was assigned to its highest probability cluster. To obtain the clusters, minimize ‖ ‖∑ ∑ −= = u x ci
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1 ≤ m < ∞, where xi is the ith gene, cj is the jth cluster center and 0 ≤ uij ≤ 1 is the degree of membership of xi in the 
cluster j. We selected 6 clusters using the Silhouette function in Matlab22. Six clusters were shown to have high 
silhouette values while describing the data sufficiently. Increasing the number of clusters did not improve the 
solution. Stability analysis used 30 trials of the algorithm made by changing the starting points based on a random 
seed to derive different solutions for the same C. The mean Adjusted Rand Index comparing this clustering with 
30 additional trails of Fuzzy C-Means started with different random starting points was 0.996 which was close to 
1 (identical partitions), indicating strong agreement between the clusters in each trial.

Enrichment analysis.  After finding the cluster membership for each gene, enrichment analysis using the 
CORTECON dataset as the background was provided for each disease studied. Using a contingency table (pro-
vided below), the Log Odds Ratio (LOR) was computed for each cluster and disease, as well as the p-values using 
Fisher’s Exact Test corresponding to the disease and cluster. If the LOR is negative, the cluster is likely to be 
depleted for that certain disease, with more negative numbers indicating a stronger depletion. A positive LOR 
indicates that the cluster is likely to be enriched for the certain disease, with more positive numbers showing a 
stronger enrichment. We then calculated 2-sided p-values for these LOR based on the Fisher’s Exact Test to eval-
uate the statistical significance of these results at the 0.05 level. From this analysis, the enrichment and depletion 
of the genes for each stage of development became evident. Statistically significant enrichment suggested that 
development during that stage was likely linked to the formation of that disease, indicating a potential window 
of susceptibility to the disease. For each disease p-values were adjusted across stages by the Benjamini–Hochberg 
procedure to control FDR.

Semantic integration to drive visualization using a lightweight object notation for linking 
data.  In order to ensure our pipeline and technique could easily be adapted to other developmental systems, 
we have taken advantage of the World Wide Web Consortium’s (W3C) recommendation for representing mul-
tidimensional data (called the Data Cube Vocabulary) which allows for easy integration of multidimensional 
data across organizations using a series of modular vocabularies creating semantically linked data. The cluster 
memberships were modeled as observations using the Data Cube Vocabulary and the associated provenance 
of the transformations was modeled using the W3C’s recommended language for encoding provenance (called 
the PROV Ontology)23. Using this structured representation, we generated semantic links to a number of estab-
lished, curated datasets, including NLM’s Unified Medical Language System (UMLS)24, Ensembl25, Uniprot26, 
StringDB27, Online Mendelian Inheritance in Man (OMIM)28, iRefIndex29, DrugBank30, DISEASES31, and 
CORTECON20.
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The data in these structured sources are used to construct a network of protein-protein and protein-disease 
interactions from a set of protein-coding genes. Such a set can be provided by specifying a list of genes or by spec-
ifying a disease, which is then semantically enhanced by identifying phenotype-genotype relations in the linked 
datasets. The output network structure includes the provenance of which dataset each relation originated from to 
provide attribution and identify areas where there is overlapping support from structured content. The output is 
serialized in JavaScript Object Notation with Linked Data (JSON-LD) to both publish our enhanced linkset back 
to the community and drive browser-based visualizations.

SWOT clocks.  Each SWOT Clock illustrates the heat map of gene transcription in CORTECON and 
protein-protein interactions between the genes in a specified set such as those related to a certain disease. The 
heat map around the outer edge of the chord diagram tracks the activity of the genes at nine intervals from the 
original CORTECON study: days 0, 7, 12, 19, 26, 33, 49, 63, and 77. The width of the gene is determined by the 
number of connections. The thickness of the chord between two genes shows their measure of connectedness, or 
Combined Score as determined by StringDB. Each connection has eight numerical measures associated with it: 
neighborhood, fusion, co-occurence, homology, co-expression, experimental, knowledge, and text-mining. The 
Combined Score is computed by combining the probabilities from the measures and correcting for the probabil-
ity of obtaining the results by chance. The dominant cluster, or dominant stage, for each disease is defined as the 
cluster with positive log odds ratio with the lowest p-value using the Fisher’s Exact Test.

The SWOT Clocks are created using a Node.js application. The SWOT Clock build process is generalized to 
encompass arbitrary sets of genes or predefined sets pertaining to either a disease or a KEGG pathway; the only 
requirement is that the input exists in the database. The diagrams are created from the JSON-LD data obtained 
by consuming the API described above. The visualization relies on D3.js, an open source JavaScript library 
for manipulating HTML and SVG objects based on attached data to create powerful visualizations on the web 
(https://SemNExT.tw.rpi.edu/swotclock/). The chord structure in the center of the diagram uses the D3 Chord 
Layout to calculate and draw the arcs between the genes. The heat map around the outside of the chord diagram 
was created by drawing a series of arcs using the angle of each gene found by SVD. The color scale for the heat 
map has a domain of the mean plus or minus twice the standard deviation to avoid overcompensation for outliers. 
The heat map and protein-protein interaction data can be downloaded for each disease though the download 
function.

Autism and Schziophrenia analysis.  Gene lists for the autism32,33 analysis were obtained from the litera-
ture and SFARI website. In the case of the autism list from32 the top 200 genes (defined by reported p-values) were 
selected for the analysis. The gene list for schizophrenia were obtained from34.

ZIKV analysis.  SRA files were obtained from GEO:GSE78711, which contains Paired-end RNA sequencing 
data covering ZIKV infection of hPSC derived cortical progenitors35. Files were converted to FastQ format using 
the NIH sratoolkit and STAR aligner36 was used to map them to UCSC hg19 using gencode.v19.annotation.GTF. 
Differential gene expression was determined using the DEseq and edgeR packages in R, and genes with an FDR 
p-value < 0.05 were selected as significantly different between infected and control cells. Additional details can 
be found in Supplemental Experimental Procedures which contain the R code and session information. Genes 
significantly changing in ZIKV infected cells were identified and intersected with the microcephaly associated 
genes. Interactions between these genes were collected from the STRING dB along with the first degree neigh-
bors, then the new gene list was filtered through the ZIKV and CORTECON data sets. The process was then 
repeated with the new list once. STRINGdb collects gene interaction data for a wide variety of organisms from a 
multitude of databases, for our study we used the human gene identifiers. The interaction data for the expanded 
microcephaly network was then downloaded and the network was analyzed using Cytoscape37. Communities 
were identified using the GLay algorithm in the ClusterMaker app38. Then using the AutoAnnotate app with 
the Word cloud-Biggest Words feature in combination with Gene Ontology categories, we identified the most 
associated biological processes with each community. Finally, for readability’s sake, the network was filtered by 
removing those nodes with a betweenness centrality less than 0.02 for display purposes only.

STAR settings and R session info and code can be found in Supplemental Experimental Procedures.

Results
Discovering windows of susceptibility during development.  The RNA-seq expression data used in 
this analysis was derived from an in vitro model of cerebral cortical development, covering nine distinct develop-
mental time points (days 0, 7, 12, 19, 26, 33, 49, 63, 77) identifying 14,065 significantly changing transcripts20. In 
the original study, time points were assigned to specific developmental periods parallel to human development 
from hPSCs to deep and upper cortical layer production (Fig. 1A) based on a marker enrichment analysis20. In 
the present analysis, expression values were the averages of at least two measurements taken for each gene at each 
of the 9 time points. Each gene is further normalized to have a mean of 0 and standard deviation of 1 over the 
time course in order to make accurate comparisons between genes with different sizes and abundances. Due to 
the large amount of expression changes over several time points, it is beneficial to reduce the dimensionality of 
the data to more clearly identify differential expression. Singular Value Decomposition (SVD) is an ideal choice 
for this, as it linearly reduces the data without making nonlinear assumptions about the data or needing to choose 
various parameters, as in kernel PCA or t-SNE, and is a well-established technique from prior studies39,40. We 
then performed a SVD analysis to precisely characterize the temporal signatures. SVD decomposes the tran-
scriptome into factors and virtual eigengenes that capture the variation attributed to the genes and time-points 
(Fig. 1B). In the context of temporal expression analysis this technique has previously been utilized with cyclic 
biological processes occurring over the short-term39 but not with long term linear developmental processes such 
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Figure 1.  SVD reveals a developmental clock in expression data. Singular Value Decomposition (SVD) was 
used to analyze gene expression data derived from RNA-seq over a developmental time-course covering 
corticogenesis. (A) Diagram illustrating how each time point in the protocol relates to human development 
based on the marker analysis from20 and human cortical development72,73. (B) Heatmaps of decomposition 
the transcriptome by SVD into factors and virtual eigengenes that capture the variation attributed to the genes 
and time points (days). Matrices U and V are left and right singular vectors of the scaled expression data. 
The most significant eigengenes are found in the diagonals of S. (C) Heatmap of scaled expression data. (D) 
Corticogenesis clock formed by genes plotted in space spanned by first two left singular vectors colored by their 
corresponding Fuzzy C-Means clusters which match the stages of corticogenesis. The average cluster profiles 
from Fuzzy C-Means are shown placed at their position in the clock.
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as corticogenesis. SVD uses the following equation X = USVT, where X is the scaled CORTECON data and the 
matrices U and V are its left and right singular vectors (Fig. 1). The most significant eigengenes are determined by 
the top singular values that are found in the diagonals of S. The ith column of U explains the contribution of the 
genes to the ith eigenday. The ith row of the transformation matrix VT represents the expression of ith eigengene 
across time. SVD succinctly captures temporal dynamics of corticogenesis since 83% of the variation is explained 
by the first three rows of VT, which have a clear temporal interpretation (Fig. 1B). The first two left singular vec-
tors are then used to order the genes. Each gene is represented by the point in the first two left singular vectors, 
and then the angular distance is computed from this point to the y-axis, much like time on a clock. The genes are 
sorted by these angular distances. The heatmap of the ordered genes clearly demonstrates this approach delineates 
a unique molecular signature with different waves of gene transcription during cortical development (Fig. 1C).

In order to understand more fully how gene expression changed over time, we utilized a Fuzzy C-means 
clustering analysis with the mean Adjusted Rand Index cluster validation technique. Fuzzy C-means’s probability 
assignments allow for “softer” clusters than those produced by other clustering algorithms, such as k-means. This 
is advantageous in situations like ours where the clusters are not easily separable. Fuzzy C-Means is an iterative 
clustering algorithm which allows data points to belong to more than one cluster with a certain probability. Using 
silhouette analysis in combination with Fuzzy C-Means clustering we determined our data contained 6 clusters 
with distinct molecular signatures. To visualize these signatures, each genes’s normalized expression profile is 
mapped in the subspace spanned by the first two left singular vectors, scaled by the singular values (columns of 
US) and then plotted in the subspace colored by cluster. The clusters of genes form a developmental “Clock” with 
the Pluripotency stage beginning at the 12 o’clock position and progressing through the stage of corticogenesis 
in a clockwise manner (Fig. 1D). To validate the clusters, we ran 30 trials of Fuzzy C-Means clustering and com-
pared the resulting clusters to the clusters found in the original run of the data. To measure the overall clusters’ 
similarity, we calculated the Adjusted Rand Index (a similarity measure between clusters adjusted for chance) 
between our original partitioning of the data and each new partitioning and then averaged the results. The means 
of the six clusters for each of the days of the analysis shown in the six inset plots appear in a clear sequence along 
the hour positions of our ‘clock’ plot (Fig. 1D). These clusters have a temporal ordering directly corresponding 
to the five stages of corticogenesis previously identified20, plus one additional stage previously undescribed that 
includes about 1/7 of the genes. This stage was found to be enriched for processes related to Neuroectoderm 
using enrichment analysis by DAVID5. This resulted in the following stages: Pluripotency (PP), Neuroectoderm 
(NE), Neural Differentiation (ND), Cortical Specification (CS), Deep Layers generation (DL), and Upper Layers 
generation (UL) (Fig. 1D). The molecular signatures represented by this temporal transcriptomic ‘clock’ allow 
us to understand the temporal pattern of expression of each gene during corticogenesis with respect to these 
developmental stages.

The clock enables us to putatively identify the temporal roles of groups of genes in corticogenesis. Current 
enrichment approaches for expression data are often clustered, then checked for which diseases or terms are 
enriched using the entire genome or genes from a microarray41,42. This utilizes enrichment tools such as DAVID5 
or GOSeq7. However, by taking this direction of analysis, one loses inherent structure between clusters, as is true 
of the relationship between stages of development and our clusters. By choosing to perform enrichment based 
on the subset of genes corresponding to each disease in each cluster, we will retain the link between the stages of 
development and disease, leading to a more accurate WOS. To achieve this the uploaded gene list is intersected 
with the genes in the cortecon dataset first, then the intersected gene list is used for the enrichment analysis. Thus, 
due to the need for each gene to be in a cluster to compute enrichment analysis, enrichment was performed using 
the CORTECON dataset as the background. We then identify WOS for developmental diseases by identifying 
groups of genes associated with developmental diseases using a literature based disease-gene association data-
base31. Then, after creating an intersected gene list, we perform the gene set enrichment analysis using Fisher’s 
Exact test to identify which stages of development are most likely to be windows of susceptibility. To further 
gain insight we can also determine the windows for susceptibility for a Kegg pathway, a set of genes associated 
with a disease, or any set of genes. These capabilities are made available via an interactive SWOT (Susceptibility 
Windows Ontological Transcriptome) Clock web tool (https://semnext.tw.rpi.edu/chem-dev/).

In the SWOT-Clock, the user can query the potential WOS for genes, pathways, or any groups of genes 
dynamically and results are presented visually and statistically in the web tool. To enable the SWOT-Clock to 
be highly extensible, we developed a semantic numeric exploration technology (SemNExT) approach that sup-
ports integration and linking of diverse data and ontologies from online resources closely coupled with dynamic 
enrichment analyses of that linked data (Fig. 2)18. SemNExT simultaneously links the experimental data, prior 
analysis results from SVD and clustering, and dynamic results from enrichment analyses with established curated 
datasets such as disease-gene associations, pathways, and protein-protein interactions.

The semantics powers a novel visualization called a SWOT (Susceptibility Windows Ontological 
Transcriptome) Clock that combines the associative visual of chord diagrams and the simplicity of a time-based 
heat map and leverages domain ontologies to facilitate linking between the two. First, the SWOT-Clock iden-
tifies the set of genes associated with a disease or pathway or the user can provide a customized set. Then, the 
SWOT-Clock determines the association of the genes with stages of corticogenesis, performs enrichment anal-
ysis of the stages as outlined above, and provides an interactive visualization of the result. The viewer is able to 
simultaneously analyze the connections between transcriptomes and the experimental time series data, facili-
tated using the SWOT Clock web tool (https://SemNExT.tw.rpi.edu/swotclock/). The chords in the center of the 
diagram illustrate the connections between the genes based on the STRINGdb database27, while the heat map 
depicts the RNA-Seq expression data measured over the nine time points with day 0 in the inner ring and day 77 
in the outer ring. The SVD analysis orders the genes clockwise showing the wave expression moving clockwise 
from PP to UL (Fig. 2). The interactive web-based visualization allows the viewer to engage with the Clock by 
highlighting different connections to get more information about the entity or connection using the knowledge 
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graph, and to filter connections for particular stages or genes that are of interest. Alongside the SWOT Clock, the 
tool also provides an enrichment analysis calculating the Log Odds Ratio and p-value for each stage in a given 
Clock. Using this information, we define the dominant stage as the stage with positive logs and lowest p-value. 
This allows the user to quickly identify stages that are significantly enriched or depleted for a disease, pathway or 
other transcriptome set.

Using this application in combination with a literature based disease-gene association database31, we per-
formed enrichment analysis to determine whether each stage of cortical development was enriched or depleted 
for a neurodevelopmental disorder. This was done by computing the Log Odds Ratio (LOR) for each cluster and 
disease, as well as the p-values corresponding to the disease and stage. A positive LOR indicates that the cluster 
is likely to be enriched for genes associated with that disease, with more positive numbers showing a stronger 
enrichment. If the LOR is negative, the cluster is likely to be depleted for genes associated with that certain dis-
ease, with more negative numbers indicating a stronger depletion. We then calculated 2-sided p-values using 
the Fisher’s exact test to evaluate the statistical significance of these results. Stages with positive LOR and small 
p-values are identified as potential WOS to biological or environmental agents in the development of a disease 
(Table S1).

Uncovering WOS for autism spectrum disorder and schizophrenia.  From the SWOT clock analysis, 
the enrichment and depletion of disease genes for each stage of development becomes evident. Several studies 
have outlined similarities in the development of schizophrenia and autism (reviewed in43–45) indicating potential 
common pathways leading to each disease. Moreover, defects in the prefrontal cortex are consistently implicated 
in schizophrenia46 and autism47 making the CORTECON dataset ideal for querying these diseases. Autism is 
a neurodevelopment disorder with symptoms typically appearing in children before their third birthday and 
resulting in daily and lifelong struggles with the disease48. Autism spectrum disorder (ASD) in the vast majority 
(80–90%) of cases is believed to be a complex and heterogeneous disorder caused by multiple genes influenced 
by environmental factors2,49,50. The diagnosed cases of autism spectrum disorders have been on the rise in the US 
since the 1980’s and an impressive number of studies have looked at the contribution of environmental factors to 
increased autism prevalence (reviewed in50–52). Yet, uncovering the factors contributing to the increase in autistic 
patients has been hampered, as ascertaining the timing of exposure needed to cause harm during human devel-
opment has been a difficult and costly undertaking.

Using the SWOT clock technology and the DISEASES database31, we generated an ASD SWOT clock and 
determined three periods during corticogenesis as likely periods of susceptibility for ASD: ND, CS and UL stages 
(Table 1, Fig. 3A) which are equivalent to ~4–10 (first trimester) and ~18–30 weeks post conception (mid-second 
to early third trimester), respectively (Fig. 1A). A previous study associated exposure to air pollution of pregnant 
women in the 3rd trimester as a potential WOS for increasing autism risk in their fetus, which is in agreement 
with our prediction53. The SWOT Clock web tool also provides the user with the ability to upload their gene list to 
identify a potential WOS for their gene set of interest. This can allow researchers studying a particular disease to 
enter their significant genes into the tool to determine if the WOS identified using genes from the database agree 
with the WOS identified by their genes. This can help place their study in a neurodevelopmental context with 
already established disease associated genes and provide insight into the underlying etiology of the disease. To 
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demonstrate this aspect of the SWOT clock tool, we first took advantage of the autism candidate genes identified 
in the SFARI database (https://www.sfari.org/resource/sfari-gene/). We took the genes scored as a 1, 2, or 3 by 
their gene scoring system, with 1 being highly confident and 3 being suggestive evidence, to examine with the 
SWOT tool. Using the SFARI genes we identified the CS stage as a period of susceptibility (Fig. 3B). We then com-
piled the top 200 protein coding genes by multiple test corrected p-value identified by the largest post-mortem 
transcriptome analysis of frontal cortex of 48 ASD and 49 control subjects32. Using this gene list and the SWOT 
clock tool, we determined a potential WOS during CS as well (Fig. 3C), which further supports the early WOS 
identified by ASD SWOT clock. Furthermore, the ASD study demonstrated a decrease in cortical patterning in 
ASD patients which agrees with CS as a critical period for the development of ASD32.

One potential confounding factor that could be affecting our analyses is the source tissue for the tested gene 
list could be biasing the results, i.e. a gene list from a neural progenitor could give us an earlier WOS than if the 
source was from adult brain. To examine the potential effect of the source tissue we took advantage of a study 
using brain organoids to study differentiation in idiopathic ASD hPSC33. In this study the authors examined 
two time points, one at day 11 and the other at day 31 of an organoid differentiation. The organoids at day 11 are 
primarily composed of progenitors (correlated primarily to 9 pcw of human brain tissue) and at day 31 a signif-
icant correlation can be seen with 16 pcw brain tissue making this dataset ideal for testing the effect of the tissue 
of origin on identifying a WOS. Using the differentially expressed genes between the controls and ASD at each 
time point we identified a WOS of ND and UL for both the day 11 (Fig. 3D) and day 31 (Fig. 3E) gene lists. This 
fits with two of the WOS predicated by the gene list from the DISEASES database, but doesn’t overlap with the 
CS WOS predicted by either the SFARI or post-mortem ASD study. This could be due to the type of organoids 
generated and their regional specificity, it could be an effect of using genes identified in the adult vs. a developing 
tissue, or it could be due to the inherent variation in ASD patients. Regardless, the WOS predicated by both the 
adult and organoid data fall in line with the WOS established by the ASD genes in the DISEASES database. The 
organoid data does demonstrate that within the same study across a broad range of developmental time; the 
SWOT clock technique gives the same WOS. This data proves the ability of the SWOT clock technique to consist-
ently identify a WOS within an experiment and illustrates the flexibility of the approach to identify WOS with a 
variety of experimental designs.

Disease/Pathway Pluripotency Neuroectoderm
Neural 
Differentiation

Cortical 
Specification

Deep 
Layers

Upper 
Layers

ASD
log odds −0.6105 −0.6856 0.3684 0.3429 −0.1548 0.5814

fdr 0.0006 0.0008 0.0497 0.0529 0.5053 0.0000

SFARI ASD
log odds −0.782 −0.1037 0.2052 0.5521 0.6255 0.08299

fdr 0.0084 0.7371 0.7371 0.018 0.7371 0.7371

ASD Study
log odds −0.04536 −0.2711 −0.5014 0.8136 0.06404 −0.2652

fdr 1 0.8991 0.8991 0.0858 1 0.8991

ASD Study D11
log odds 0.1489 −1.234 0.3796 −0.293 −0.49 0.6644

fdr 0.329 3.22E-07 0.05565 0.21828 0.0565 1.56E-05

ASD Study d31
log odds 0.03817 −0.9796 0.1687 −0.1863 −0.2289 0.665

fdr 0.6569 2.83E-14 0.1626 0.1626 0.1544 5.97E-14

Schizophrenia
log odds −0.5267 −0.6698 0.2424 0.1266 0.0159 0.656

fdr 0.0004 0.0003 0.1689 0.4638 0.9346 0.0000

Schizophrenia Study
log odds −0.09114 0.06393 0.0136 −0.01265 −0.6167 0.3459

fdr 1 1 1 1 0.0498 0.0582

Microcephaly
log odds −0.02455 1.082 −0.1372 −0.2407 −0.6943 −1.057

fdr 0.9318 4.05E-11 0.7734 0.57405 0.0332 0

Spliceosome
log odds −0.1351 2.363 −1.331 −1.492 −3.219 −3.748

fdr 0.7122 4.71E-26 0.0139 0.0039 0 2.38E-08

ZIKV Infection
log odds −0.1089 0.5893 −0.3573 −0.1085 −0.0213 −0.2774

fdr 0.4608 4.28E-08 0.0484 0.57036 0.9463 0.0484

ZIKV Up
log odds 0.3762 −0.9827 −0.7971 0.5256 0.4118 −0.2389

fdr 0.0348 0.0006 0.0184 0.5256 0.4118 0.291

ZIKV Down
log odds −0.4443 1.345 −0.3621 −0.8335 −0.2096 −0.6638

fdr 0.0054 1.03E-25 0.11148 0.0004 0.3156 0.0004

ZIKV + Microcephaly
log odds −0.6459 3.227 −1.983 −2.144 −2.039 −2.568

fdr 0.2716 7.92E-13 0.0828 0.0828 0.0828 0.0165

ZIKV + Expanded 
Microcephaly 
Network

log odds −0.8777 3.459 −2.181 −2.341 −2.237 −2.765

fdr 0.1067 7.92E-17 0.03408 0.03408 0.03408 0.0042

Table 1.  Highlighted disease for WOS identification with Swot Clock. The log odds and FDR corrected p-values 
after Fischer exact test across time for Swot Clocks throughout the study. Bolded text represents a significant 
enrichment based on an FDR adjusted p-value < 0.01.
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Autism Spectrum Disorder

Schizophrenia

Schizophrenia Study
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Autism Spectrum Disorder 
Study (PMID:27919067)

Top 200 Genes

A
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C
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E
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Figure 3.  SWOT Clocks for ASD and Schizophrenia across datasets. Each SWOT clock shows the connections 
between genes involved in each disease while simultaneously illustrating each gene’s expression in developmental 
time and calculating the enriched stages and likely WOS. (A) SWOT clocks for genes associated with autism 
spectrum disorder, (B) SFARI candidate genes scored as 1–3, (C) the top 200 genes identified in a large 
post-mortem brain study of gene expression in ASD32 (D), and differential genes at Day 11 or Day 31 (E) of 
an organoid protocol between controls and ASD organoids33. (F) SWOT clocks for genes associated with 
schizophrenia (G) and from an expression study of schizophrenia34. SWOT clock for Microcephaly associated 
genes. (D) SWOT clock for genes associated with the ‘Spliceosome’ and ‘Cell Cycle’ (KEGG pathway database). 
Both the ‘Cell Cycle’ and ‘Spliceosome’ clock demonstrates a similar profile to the SWOT clock for Microcephaly. 
The initials for enriched stages in each SWOT clock are stated. All gene disease associations are from derived 
from the Diseases database (http://diseases.jensenlab.org/Search) unless otherwise stated. Legend: Pluripotency 
(PP); Neuroectoderm (NE), Neural Differentiation (ND), Cortical Specification (CS), Deep Layers (DL), Upper 
Layers (UL). Significant enrichment or depletion is based on a FDR adjusted p-value < 0.1.
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We next sought to use the SWOT clock technique with another neurodevelopmental disease. Schizophrenia is 
a severe neurodevelopmental disorder characterized by defects in cognition, brain structure, and the perception 
of reality. The schizophrenia SWOT clock identifies a potential WOS during UL (Table 1, Fig. 3F). To further 
examine the WOS for schizophrenia, we took a list of genes identified by a post-mortem transcriptomics analysis 
of 9 schizophrenia and 9 control patients34, and once again identified a WOS during UL in agreement with the 
schizophrenia SWOT clock (Fig. 3G). The SWOT clock tool predicts a common WOS for schizophrenia and 
ASD during the UL stage bolster the idea of a shared mechanism. However, the SWOT clock for ASD illustrates 
an earlier WOS during the ND and CS stages demonstrating potential differences and alternative pathways in 
precipitating ASD compared to schizophrenia.

Using SWOT clocks to identify potential disease pathogenesis.  We examined the SWOT clock for 
microcephaly, a disease linked to early brain development, and found a WOS at the NE stage (Fig. 4A). In line 
with the predicted WOS for microcephaly, multiple studies have linked the proliferation of early neural progen-
itors to the pathogenesis of this disease54. To further investigate potential pathways underlying microcephaly, 
we have incorporated the KEGG pathways55 into the database underlying the SWOT clock tool. Using these 
additional analyses can indicate which signaling pathways likely contribute to disease pathogenesis by looking 
for overlapping enrichment between the disease WOS and the pathways. For instance, we found statistically 

Microcephaly

Spliceosome

NE p<0.01

NE p<0.01

A

Cell cycle

NE  p<0.01

B C

Pluripotency
Neuroectoderm

Neural 
Differentiation

Cortical 
Specification
Deep Layers

Upper Layers

Legend

All p-values are FDR adjusted p-values
for enrichmenht

Figure 4.  SWOT clocks related to Microcephaly. (A) SWOT clock for Microcephaly associated genes. (B) 
SWOT clock for genes associated with the ‘Spliceosome’ and (C) ‘Cell Cycle’ (KEGG pathway database). Both 
the ‘Cell Cycle’ and ‘Spliceosome’ clock demonstrates a similar profile to the SWOT clock for Microcephaly. 
The initials for enriched stages in each SWOT clock are stated. All gene disease associations are from derived 
from the Diseases database (http://diseases.jensenlab.org/Search) unless otherwise stated. Legend: Pluripotency 
(PP); Neuroectoderm (NE), Neural Differentiation (ND), Cortical Specification (CS), Deep Layers (DL), Upper 
Layers (UL). Significant enrichment or depletion is based on a FDR adjusted p-value < 0.1.
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significant enrichment for the ‘Spliceosome’ and ‘Cell Cycle’ during the NE stage overlapping with the WOS for 
microcephaly, further supporting a role for disruptions in splicing and cell cycle control leading to microcephaly 
as indicated in the literature54,56,57 (Fig. 4B,C). Recently, a viral infection of pregnant women has been linked to 
microcephaly in their offspring4,58.

The recent epidemic of Zika virus (ZIKV) in Brazil became a global health crisis when patients infected with 
ZIKV exhibited serious neurological conditions. Multiple cases of microcephaly and Guillain-Barré syndrome 
associated with ZIKV infection have been reported in the Brazilian epidemic58–62. In response, the WHO has 
determined a primary objective of research efforts should be on the pathogenesis of ZIKV infection and neuro-
logical disorders63. Several recent studies have examined the role of ZIKV infection in the pathogenesis of micro-
cephaly, including those using hPSC models35. As already demonstrated, the WOS for microcephaly is in the 
NE stage of corticogenesis. To further investigate the potential effects of ZIKV infection and the WOS for ZIKV 
related microcephaly, we retrieved recently published gene expression data obtained from human cortical pro-
genitors derived from pluripotent stem cells infected with the ZIKV35 and reanalyzed using the DESeq and edgeR 
packages. We identified 1431 significantly changing genes, with 539 being up-regulated and 892 down-regulated 
in the ZIKV infected cells (Table S2). We then constructed SWOT Clocks for all significantly changing genes and 
both the down-regulated and up-regulated genes using the SWOT clock web tool (Table 1, Fig. 5A).

When examining both the down-regulated subset and complete set of changing genes, the WOS for ZIKV 
infection was identified as the Neuroectoderm stage, similar to the microcephaly SWOT Clock. Recall that the 
‘cell cycle’ and ‘spliceosome’ KEGG pathways are also enriched in the Neuroectoderm stage. The down-regulated 
subset is also enriched for the ‘cell cycle’ KEGG pathway (Table S3), similar to the WOS genes for microcephaly. 
This subset, however, was not enriched for the ‘spliceosome’ KEGG pathway, illustrating that the ZIKV may not 
depend on altering splicing to induce microcephaly. When considering the up-regulated subset, a different pic-
ture emerges, with the SWOT Clock indicating a role for these genes in the CS and DL stages. In the up-regulated 
genes the ‘Protein processing in endoplasmic reticulum’ pathway is enriched and the CS stage also shows an 
enrichment for this pathway in agreement with the up-regulated ZIKV WOS. Overall, this data analysis estab-
lishes a very early WOS for ZIKV-induced microcephaly, which is in agreement with studies of ZIKV infection 
and microcephaly64,65.

To gain insight into how ZIKV could lead to microcephaly, we examined the intersection between known 
microcephaly genes changing during development and the ZIKV affected genes and found a small but significant 
overlap (Fig. 5B). To help address the underlying mechanisms precipitating microcephaly during ZIKV pathogen-
esis, we generated an expanded microcephaly network which would include genes potentially involved in micro-
cephaly but have yet to be directly tested for involvement in or added to available databases in association with 
this condition. We expanded our microcephaly network by taking the 1st degree neighbors from STRINGdb27 of 
the genes from the intersection, then re-filtering the new list of genes through the time-course data and ZIKV 
data. We then took the new list and once again took the 1st degree neighbors from STRINGdb27 and re-filtered 
the expanded list through the time-course and ZIKV data to generate an expanded microcephaly network. By 
expanding the network in this way we only add those genes which are connected directly to ZIKV infection, 
microcephaly, and corticogenesis in a continuous network. We constructed a SWOT Clock of the expanded net-
work (Fig. 5B) and found that the vast majority of genes in the network are down-regulated by ZIKV infection. 
Additionally, microcephaly-related genes impacted by ZIKV are most active in the earliest stages of neural devel-
opment (NE stage), the foundation of building the cerebral cortex. A network analysis using Cytoscape37 identi-
fied three distinct communities underlying the function of intersection genes (Fig. 5C, Table S4). The two largest 
communities were closely related and primarily associated with “Chromosome Organization”, “DNA metabolic 
Processes”, and “anatomical structure development” Gene Ontology categories. This analysis reveals a subset of 
genes affected by ZIKV infection but not implicated previously in microcephaly as potential candidates for fur-
ther study (Table S3).

Discussion
The rise of human pluripotent stem cell technology and the continuing invention of protocols simulating develop-
ment provides an opportunity to ethically and inexpensively investigate the factors contributing to developmental 
disorders. By integrating expression data with multiple databases and constructing a powerful visualization tool, 
we have developed a method to reveal potential windows of susceptibility to a variety of environmental insults 
leading to neurodevelopmental disorders. As a proof of concept we utilized expression data from two neurode-
velopmental disease studies and a study of ZIKV infection to identify likely WOS and shed light on the etiologies 
of these disorders.

The SWOT clock generated from the DISEAESE database for autism identified ND, CS, and UL stages as 
potential WOS. Moreover, SWOT clocks generated from multiple studies and the SFARI autism candidate genes 
also pointed to either the ND, CS, or UL stages of development as WOS. Interestingly, the studies conducted from 
adult tissue and the organoid models did not identify the same WOS. In the organoid model the ND and UL 
stages were designated as WOS, and a recent study demonstrated that over-production of upper layer neurons led 
to ASD phenotypes in mice66. A similar increase of neurons was observed in a study of postmortem brains from 
children67, however other work suggests a loss of this phenotype with age68. A study in rhesus monkeys exposing 
mothers to an immune challenge during either the first or second trimester demonstrated behavioral defects 
reminiscent of schizophrenia and autism69. In this case the early and late exposures are occurring roughly during 
the same developmental time frames as the CS and UL stage, which are the WOS predicted by the ASD SWOT 
clocks. Each group exhibited both shared and distinct behaviors with the CS exposed group demonstrating more 
abnormal social behaviors in line with ASD patients and supporting the CS WOS identified by the post-mortem 
study and the SFARI candidate genes (Fig. 3A,B). The exposed groups also exhibited behaviors in line with the 
WOS identified for schizophrenia. A recent study implicated deep layer neurons in ASD pathogenesis which runs 
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Figure 5.  Genes down-regulated by ZIKV infection of cortical progenitors reveal a SWOT clock similar to 
microcephaly. Expression data for ZIKV infected cortical progenitors were re-analyzed using more stringent 
criteria to establish significantly changing genes and SWOT Clocks of the (A) all genes (left), down-regulated 
(middle) and up-regulated genes (right) were generated. The down-regulated SWOT Clock showed a similar 
profile to the Microcephaly clock. (B) Intersection of Microcephaly genes with the ZIKV genes filtered through 
the developmental time-course data (left). To examine a broader range of genes potentially contributing to 
the microcephaly phenotype the 1st degree neighbors of the intersection SWOT clock were retrieved from 
STRINGdb then re-filtered through the time-course data and ZIKV data, then the process was repeated 
again to generate an expanded network (right). The Legend: Pluripotency (PP); Neuroectoderm (NE), Neural 
Differentiation (ND), Cortical Specification (CS), Deep Layers (DL), Upper Layers (UL). (C) Network analysis 
of Intersection genes shows distinct three communities contribute to the gene intersection. Significant 
enrichment or depletion is based on a FDR adjusted p-value < 0.1.
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contrary to the SWOT clock prediction70. However, the expression data they utilized to generate the co-expression 
networks found an enrichment for ASD genes from 10–24 pcw. This time period has a large overlap with the UL 
stage (~18 pcw onward) which indicates the coexpression networks could be enriched during UL stage as well. 
Additionally, the design of that study chose specificity over sensitivity whereas our approach prioritizes sensitivity 
giving this approach an advantage in detecting more temporal defects.

The SWOT clock technique can also be used to help generate new hypothesis about the mechanism under-
lying disease pathology. Using the SWOT clock method we determined a WOS during the NE stage for micro-
cephaly. Then using the KEGG pathway database we found biological pathways enriched during the same time 
period. Both splicing and cell cycle changes have been linked to the etiology of microcephaly previously. In the 
case of microcephaly induced by maternal ZIKV infection a WOS during the first trimester identified by our 
method was upheld by a study of 442 women in the US with likely ZIKV infection71. By utilizing an expanded 
microcephaly network, we were able to illuminate a potential role for chromosome organization in this disease 
and reveal multiple genes as potentially pathogenic. These results highlight the potential of our approach for eth-
ically, inexpensively, and quickly determining potential WOS of developmental diseases. In future cases similar 
to the ZIKV epidemic, our approach could help identify the WOS of a developmental defect from a biological or 
chemical agent and provide clinicians with pertinent information for their patients.

There are limitations to our approach based on the SemNext architecture. For instance, SemNext does not 
directly account for biases of individual datasets and the calculated WOS depends heavily on the quality of the 
temporal expression data utilized as a base for the technique. For the CORTECON dataset the genes changing 
with time were initially isolated by EdgeR and DESeq2, but improved techniques for uncovering differentially 
expressed genes in a time course could yield a more accurate WOS. Our approach finds associations between 
developmentally changing genes, diseases, and pathways that are not likely to be the result of chance. The SWOT 
clock technique is designed to help in the generation of hypotheses; however, further study is required to investi-
gate the hypotheses generated since the analysis is correlative and does not establish the underlying mechanisms. 
The enrichment of different stages for sets of genes does potentially reflect systematic differences for different 
diseases and pathways, even if individual genes are mistakenly added or missed in prior analyses. Yet, results for 
individual genes may not be valid due to the bias of previous studies. In the case of the CORTECON data, it is 
derived from a single in-vitro model of human development20, and thus more expression data from a broader set 
of sources would strengthen the hypotheses generated. The analysis pipeline, however, could be readily adapted 
to these further studies and other datasets. The method could be further improved by meta-analysis approaches 
and adjusting for individual uncertainties of each dataset. Future work will be focused on collating these other 
data sets and creating a more comprehensive tool with additional linked data and statistical analysis. The SWOT 
clock is available for exploration and collaboration and could be applied to a broad spectrum of developmental 
disorders in other organ systems as more developmental expression time course data is generated.

Data Availability
All data presented in this manuscript are available from the following sources: https://semnext.tw.rpi.edu/
chem-dev/; http://cortecon.neuralsci.org/; GEO: GSE56796; GEO: GSE78711; https://www.synapse.org/#!Syn-
apse:syn4587609. Github: https://github.com/mpoegel/SemNExT-Visualizations.
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