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Abstract

Recent technical advancements in neural engineering allow for precise recording and con-

trol of neural circuits simultaneously, opening up new opportunities for closed-loop neural

control. In this work, a rapid spike sorting system was developed based on template match-

ing to rapidly calculate instantaneous firing rates for each neuron in a multi-unit extracellular

recording setting. Cluster templates were first generated by a desktop computer using a

non-parameter spike sorting algorithm (Super-paramagnetic clustering) and then trans-

ferred to a field-programmable gate array digital circuit for rapid sorting through template

matching. Two different matching techniques–Euclidean distance (ED) and correlational

matching (CM)–were compared for the accuracy of sorting and the performance of calculat-

ing firing rates. The performance of the system was first verified using publicly available arti-

ficial data and was further confirmed with pre-recorded neural spikes from an anesthetized

Mongolian gerbil. Real-time recording and sorting from an awake mouse were also con-

ducted to confirm the system performance in a typical behavioral neuroscience experimen-

tal setting. Experimental results indicated that high sorting accuracies were achieved for

both template-matching methods, but CM can better handle spikes with non-Gaussian

spike distributions, making it more robust for in vivo recording. The technique was also com-

pared to several other off-line spike sorting algorithms and the results indicated that the sort-

ing accuracy is comparable but sorting time is significantly shorter than these other

techniques. A low sorting latency of under 2 ms and a maximum spike sorting rate of 941

spikes/second have been achieved with our hybrid hardware/software system. The low sort-

ing latency and fast sorting rate allow future system developments of neural circuit modula-

tion through analyzing neural activities in real-time.
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Introduction

Recording action potentials from neurons in the brain gives neuroscientists the ability to study

neural circuits with single cell accuracy [1–6] Typically neural spikes (or action potentials) are

recorded extracellularly with a metal or glass electrode inserted into the brain of an animal or a

human patient [7,8]. By contrast, intracellular or patch clamp recordings with glass pipettes

are much less common in vivo because pulsation, movement of brain tissue and electrode con-

tamination make them very challenging. Therefore, electrodes are typically placed within the

extracellular space between neurons to capture neural spikes extracellularly. In this extracellu-

lar configuration, neural spikes generated from several adjacent neurons are often captured by

the electrode at the same time, hereafter referred to as multi-units, making it challenging to

determine the activity patterns of single neurons included in the recording. These multi-unit

recordings are especially common when signals are measured from brain areas densely packed

with neurons. For this reason, spike sorting algorithms are often used off-line to separate the

neural spikes and assign them to different cluster groups [9–12]. The underlying principle of

spike sorting relies on the fact that neural spikes originating from different neurons will have

different temporal profiles. The temporal profiles of these neural spikes are dependent on the

impedance of the extracellular fluid between the neurons and the electrode, the currents pro-

duced by each neuron, as well as the cell membrane area from which the ionic currents can

reach the metal electrode [1,7,8].

There has been a sustained effort to develop better spike sorting algorithms aimed at

increasing both the accuracy and the speed of the sorting process. From a mathematical per-

spective, spike sorting can be considered as an unsupervised classification problem, and several

classification algorithms, including K-means, Expectation Maximization (EM) and Multivari-

ate Gaussian Mixture, have been used to sort neural spikes [9,11]. Besides these classification

algorithms, superparamagnetic clustering (SPC) was specifically designed for neural spike

sorting [9]. SPC borrows the physical concept of magnetic thermal interaction and models

neural spikes as magnetic spin elements. As the temperature rises, the neural spin elements

fracture into distinct groups for spike classification. Aksenova et al. modeled neural spikes as

self-oscillating nonlinear oscillators and can be expressed by trajectories in the phase space

described by a perturbated ordinary differential equation [13,14]. Caro-Martin et al also

extracted linear independent spike features based on shape, phase and distribution features for

the spikes and sort neural spikes using the spike features based on a modified k-mean tech-

nique [15]. The advantage of using phase space features instead of temporal shapes to sort neu-

ral spikes is less prone to amplitude fluctuation and non-Gaussian distributed cluster

structures. In addition, there are several other off-line spike sorting algorithms that the cluster-

ing is based on consensus-based modified k-mean techniques [16], variational Bayes [17,18],

and maximum a posteriori [19] to improve sorting speed and accuracy.

In recent years, newer developments in spike sorting algorithms were focused on classifying

a larger number of neural spikes measured from a neural probe with multiple recording sites

or from an electrode array. Also, efforts were made to separate temporally overlapping neural

spikes to improve sorting accuracy. Less sophisticated sorting algorithms typically reject these

temporally overlapping neural spikes, while newer algorithms typically employ additional pro-

cessing steps to handle neural spike duplication measured from multiple arrays and temporal

spike overlapping within the same electrode. For spatial neural spike duplication, since neural

spike currents emitted from a neuron reach the electrodes approximately at the same time or

with a slight delay of no more than 1 ms [20], these newer spike sorting algorithms implement

spatiotemporal masks to identify similar neural spikes in a nearby region arriving roughly at

the same time and ascribed these duplicated spikes as the same spike [12,21]. Another
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approach is to choose the largest neural spike among all the measured signals as the represen-

tative spike for sorting [22]. Following these ideas, Masked-EM is an off-line neural spike sort-

ing technique that can theoretically sort neural spikes recorded from a dense electrode with

thousands of recording sites, and a mask was used to reduce the amount of neural data to be

processed to the vincity of adjacent electrodes [12,23]. Jun et al. used a fast density-peak fitting

method to rapidly process neural spikes recorded from high density probes [24], while Yger

et al. also took a density approach and GPU parallelization to handle recording from thou-

sands of electrodes [21]. For temporally overlapping neural spikes within the same electrode,

the overlapping spikes can be temporally separated by matching the temporal shapes to a

superimposed shape constructed from the non-overlapping neural spikes. Pachitariu et al.

minimized the difference between the time-trace only containing the overlapping neural

spikes to a superpositioned time-trace constructed from the non-overlapping spikes, and the

firing times of spikes originating from different neurons were recovered from the overlapping

spikes using this approach [20].

Despite the considerable progress towards achieving higher accuracy in spike sorting,

almost all of these algorithms examine the entire recording based on an interative approach to

optimize the sort. Therefore, these algorithms are fundamentally designed to sort pre-recorded

neural spikes, making these algorithms difficult to be used in real-time to sort streaming neural

spikes with almost immediate sorting outcomes, which is required for real-time closed-loop

control. In addition, these algorithms commonly require a powerful computer equipped with

multiple CPU or GPU cores to accelerate the calculation for the iterations, making these tech-

niques difficult to be implemented with lightweight processing units for system miniaturiza-

tion—but note that these algorithms are also designed to sort a large amount of neural spikes

from multiple channels simultaneously.

Another approach is to use simpler and iterative-free algorithms to sort streaming neural

spikes in real-time. These algorithms can typically be implemented using lighter weight pro-

cessing electronics, such as a small integrated circuit (IC) chip, such that the electronics may

be miniaturized for portable closed-loop neural controls in the future [25]. Closed-loop neural

control is a neural control scheme in which the state of a brain or a neural circuit is determined

by analyzing the measured neural signal or spikes, and intervening in the neural circuits based

on the analyzed result in real-time. Under this closed-loop neural control scheme, low compu-

tational latency (i.e. less than 10 ms) to analyze the input neural data is desirable to allow an

immediate feedback control [26,27]. This “closed-loop” approach is particularly important for

experiments involving light-sensitive opsins, or optogenetic proteins, to manipulate neural cir-

cuits by optical illumination [28–30]. This new biochemical technique opens up new opportu-

nities to manipulate neural circuits based on neural activity, and closed-loop neural control

may be used in the future to manage neural disorders or to reduce side-effects during deep

brain stimulation treatments [31]. Early attempts to develop an IC for neural recording were

realized by Olsson and Wise [32]. In their design, the IC was capable of recording from multi-

ple neurons and an efficient compression circuitry was implemented to allow transmission of

a large amount of recorded data out of the IC for further analysis. Soon after, Chae et al. imple-

mented a 128 channel neural recording IC with feature extraction to simplify the massive

amount of collected data and to allow transmission through wireless communication without

including spike sorting [33]. It wasn’t until Rutishauser used a high-performance computer

system to realize spike sorting in real-time. With their efforts, neural spikes pre-recorded from

the human medial temporal lobe were sorted using a software algorithm with satisfactory

results, but the system remained large in size [34]. Integrating a spike sorting algorithm into

an IC to reduce system size was first demonstrated by Karkare et al. in which a Euclidian dis-

tance based sorting algorithm was used [35,36]. Later, Gibson et al. developed an FPGA system
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in which the spike sorting algorithm used by Rutishauser was implemented, increasing the

sorting speed 25 fold, with a worst-case latency of 11 ms [34,37]. Park et al. [38] designed a

real-time spike sorting system based on Rutishauser with the abilities of online training and

classification, their work also optimized memory usage during the template training phase.

Franke et al. and Dragas et al. [39,40] employed a template matching filter with the advantage

of doing the spike detection and classification at the same time, their work also had the capac-

ity to classify overlapping spikes. Wouters et al. [41] proposed a similar template matching fil-

ter design as Franke, their system was optimized for threshold-based spike sorting system

through suppressing interfering spikes. These template matching based spike sorting systems

were verified to be effective but considerations of commonly seen non-Gaussian distributed

spikes, such as burst firing and electrode drifting, is lacking. Despite all these efforts to create a

real-time spike sorting system, some of the sorting algorithms used in these systems remain

basic and more technical efforts are required to improve on sorting streaming neural spikes in

real-time.

In the past, we developed a monolithic integrated circuit (IC) integrated with a low-noise

high input impedance neural amplifier and a high current power source to simultaneously

record neural activity and inhibit neural activity with optical illumination [8]. However, the IC

has yet to be used for closed-loop neural control since it does not include spike sorting or pro-

cessing units to analyze neural spikes to determine brain states in real-time. In order to fill this

gap, this work builds upon our previous results to develop a low sorting latency and high

throughput spike sorting unit on a field programmable gate array (FPGA), assisted by a desk-

top computer. Our FPGA has the capability to perform real-time spike sorting by matching

cluster templates pre-calculated by the desktop computer with neural spikes collected during a

short training period. In order to ensure proper template generation, the templates were gen-

erated by a desktop computer using a more sophisticated neural spike sorting algorithm—SPC

[42]. The cluster templates were then transferred to the FPGA module for subsequent real-

time spike sorting through matching the incoming neural spikes to these cluster templates

[43]. In order to allow the FPGA to achieve optimal sorting accuracy under different noisy

conditions, two template matching methods–Euclidean distance (ED) and correlational

matching (CM)–were also implemented in the FPGA and the two methods are selectable by

investigators to achieve optimal sorting accuracy according to the type of noise during experi-

ments. Rigorous testing determined that ED yield slightly better sorting accuracy when the

spikes are contaminated by Gaussian noise. CM, on the other hand, can handle spike ampli-

tude fluctuations caused by the metal electrode slowly drifting away from its initial implanted

position within the brain better, such as in long-term (minutes to hours) behavioral neurosci-

ence studies performed on awake behaving animals. The algorithm was also compared with

several off-line spike sorting algorithms indicating that the template matching technique

achieves comparable sorting accuracies but has a three order-of-magnitude shorter sorting

time.

With our approach, a maximal spike sorting rate of 941 spikes/second was achieved for a

single electrode. This sorting rate is several times higher than the typical firing rates of neu-

rons, preventing accidental loss of neural spikes in the sorting. The sorting latency of process-

ing a neural spike was measured to be less than 2 ms, which should be fast enough to be used

to analyze neural spike data in closed-loop neural control settings. The sorting rate and latency

are approaching the theoretical limits set since the natural spike width of an action potential is

~1 ms, making the theortical maximum sorting rate ~1000 spikes/second for a single electrode.

In addition, the FPGA can also handle a maximum of eight neural clusters, which is generally

more than the number of neurons a middle to high impedance metal electrode can simulta-

neously record. The FPGA module implements all the necessary processing sub-units at the
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hardware level and does not rely on the assistance of the desktop computer once the cluster

templates are transferred. The system was tested in a behavioral experiment in which neural

spikes were recorded and sorted from the olfactory bulb of awake male C57BL/6 mouse in

real-time, and the system was also compared to other off-line sorting algorithms with high

sorting agreements.

Methods

System implementation

The system was comprised of software and hardware components–a desktop computer run-

ning a spike sorting algorithm (software) to generate cluster templates during a short training

period, and a FPGA module (hardware) to rapidly sort streaming neural spikes through tem-

plate matching. Fig 1 is a schematic diagram illustrating the signaling between the desktop

computer and the FPGA module, as well as the supporting electronic components for the

desktop computer and the FPGA. In terms of functionality, the two components contain dif-

ferent processing sub-units to perform various tasks. The desktop computer has three software

units to perform 1) raw data smoothing, spike detection and feature extraction, 2) spike sorting

on the trained neural spikes using the SPC algorithm, and 3) template estimation based on the

Fig 1. Block diagram of the real-time spike sorting system. The system is comprised of a desktop computer and an FPGA module.

The system can measure extracellular neural spikes from an animal with a neural amplifier and an analog-to-digital converter

(ADC), or alternatively be directly injected with digitized pre-recorded neural voltages for system testing. The desktop computer

contains three sub-processing units– 1) raw data smoothing, spike detection and feature extraction, 2) spike sorting using SPC and 3)

template estimation. The FPGA module also contains four sub-processing units– 1) raw data smoothing, peak detection and spike

isolation, 2) feature extraction, 3) neural spike sorting based on template matching, and 4) calculation of spike count statistics.

https://doi.org/10.1371/journal.pone.0225138.g001
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classification result. The FPGA module has four hardware units to perform 1) raw data

smoothing, peak detection and spike isolation, 2) feature extraction, 3) streaming neural spike

sorting based on template matching, and 4) calculation of spike count statistics based on the

real-time sorting results. Here, units 1 and 2 were duplicated in the software and hardware sys-

tems to allow data comparison between real-time and off-line sorting. Despite the units being

duplicated–one in software and one in hardware, only one was operating at a time. That is

because once the cluster templates were estimated by the desktop computer and transferred to

the FPGA, there was no need for the desktop computer to process the real-time data. The desk-

top computer, however, saved the real-time neural voltage trace, streaming from the FPGA, in

its storage for performance evaluation.

For measuring neural spikes from the brain of a behaving mouse, an external low-noise

amplifier (RHD2216, Intan Technologies, Los Angeles, CA) was used in front of the FPGA.

The external amplifier has an internal band-pass filter for local field potential removal with a

passband frequency from 300 to 5000 Hz. After the local field potential was filtered, an internal

Analog to Digital Converter (ADC) digitized the analog neural voltage to an array of digitized

voltage trace (12 bit) with a sampling frequency of 24 kHz, as shown in Fig 1. The digitized

voltage trace was sent to the FPGA and passed to the desktop computer for cluster template

estimation during the training period. In order to avoid excessive use of animals and to sim-

plify the evaluation process, the external amplifier could be bypassed, and pre-recorded digi-

tized neural spikes could be fed to the input of the FPGA in which all processing and

calculation steps were identical to real-time animal recordings.

Desktop computer for cluster template estimation. The desktop computer contains a

relatively powerful microprocessor (Intel Pentium i7), compared to the FPGA, and is capable

of handling sophisticated spike sorting algorithms to allow more accurate estimation of cluster

templates. Here we chose to use SPC as our spike sorting algorithm for cluster template gener-

ation. The advantage of SPC is that it does not require an estimation of the number of spike

clusters contained in the digitized neural voltage x[n], as in the case for other simpler cluster

algorithms (k-means), and is a well-accepted off-line spike sorting method in the neuroscience

community. The desktop computer software contains three major processing sub-units– 1)

spike detection and feature extraction, 2) SPC calculation, and 3) cluster template estimation–

coordinating to generate accurate cluster templates for the FPGA.

Spike detection and feature extraction in the phase space. Digitized neural voltage x[n]

measured during the training period was streamed from the FPGA to the desktop computer

through a USB-UART port for cluster template estimation (details of measuring and convert-

ing the analog neural voltage to the digitized neural voltage is described in the FPGA hardware

section). The digitized neural voltage x[n] can first be processed by an averaging filter to

smoothen high frequency noise in the action potential signals (local field potential has been fil-

tered before transferred to the computer, see below). In the literature, several signal enhance-

ment methods have been used to determine the neural spike peak locations, including

amplitude thresholding [42], nonlinear energy operator [33,35,44,45] and stationary wavelet

transformation [46–48]. In our design, Nonlinear (or Teager) Energy Operator (NEO) was

chosen to enhance the measured signal for better peak identification since NEO enhances both

the instantaneous amplitude and the signal energy of the neural spikes [44]. NEO energy

xNEO[n] was calculated based on the following equation.

xNEO½n� ¼ x½n�2 � x½n þ 1� � x½n � 1� ð1Þ

A threshold value xp, either three times the standard deviation of xNEO[n], or a value specified

by investigators, was then used to compare to the calculated xNEO[n] for peak identification.

Low-latency real-time neural spike sorting system
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After the peaks were identified, neural spikes were then isolated from the continuous neural

voltage trace x[n] into isolated arrays xi[n], where i was the sequential index for each isolated

neural spike, and n = 0 to 31 for the 32 data points centering against the spike peak center.

Phase space features can be extracted from the isolated neural spikes using wavelet trans-

form (WT). In contrast to WT, principal component analysis (PCA) is a more commonly used

method and has been used by many off-line spike sorting algorithms to extract features from

neural spikes [46,49,50]. However, PCA needs to determine the principal components using

the recorded neural spikes before it can be used to extract phase space features, which can

increase the training time for the system. One alternative technique is to use a set of predeter-

mined functions as the principal components (or basis functions). Compare to PCA, WT can

extract features in real-time through a set of predetermined wavelet functions. However, it is

important to note that the quality of the extracted features is highly dependent on the wavelet

functions chosen. Therefore Haar wavelets were used in our design due to the robustness of

the Haar wavelets in recovering features from noisy spikes [42]. The mathematical expressions

of the Haar wavelets are listed in Eqs (2) and (3), where m is the scale level; k is the time trans-

lation; l is spike window length; and φ[n] is the Haar mother wavelet [51].

Ψm;k n½ � ¼ 2
m
2φ n �

k
2m� 1

� �

ð2Þ

φ n½ � ¼

1 0 � n <
l
2

� 1
l
2
� n < l

0 otherwise

ð3Þ

8
>>>><

>>>>:

The features w in the phase space at scale level m can then be calculated using the following

equation,

w½n� ¼ 2
m
2 �
P1

k¼� 1x½n� �Cm;k½2
mn � k� ð4Þ

Template estimation based on Superparamagnetic Clustering. After the phase space fea-

tures were extracted, SPC was employed to estimate cluster templates. Mathematically speak-

ing, all spike sorting algorithms can be considered as unsupervised clustering methods in

which neural spikes with similar features are assigned to the same cluster group. Therefore,

many standard unsupervised clustering techniques, including K-means, K-means++ and

Fuzzy c-means, have been used for spike sorting [33,46]. However, all of these clustering tech-

niques require prior knowledge of the cluster number (the value K), which is often unknown

during an experiment. The cluster number also depends on many experimental parameters,

such as the relative position of the measuring metal electrode to the neurons. For this reason,

nonparametric clustering algorithms were used in our design. SPC is an unsupervised spike

sorting method that is well accepted by the neuroscience community for off-line spike sorting

studies [9,42,49]. SPC has been demonstrated to improve sorting accuracy compared to other

parametric sorting methods. An overview and comparison between the spike sorting tech-

niques can be found in [49]. In short, the SPC algorithm was inspired by statistical mechanics

in which phase transitions of micro magnetic domains occur as ambient temperature increases

in a magnet. Based on this idea, the SPC algorithm randomly assigns the extracted features in

the phase space of a neural spike with a spin value, and the spin values of all the spikes consti-

tute a spin state of the entire recording. The total internal energy of a spin state can be calcu-

lated by summing the mutual interaction energies of all the spin states in which the mutual

Low-latency real-time neural spike sorting system
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interaction energy is not zero and depends on the mutual distance only when the two spikes

have different spin values. The probability distribution of the total internal energy of the spin

state follows the Boltzmann distribution, as in a real physical magnetic system. Monte-Carlo

techniques (Swendsen-Wang or Wolff techniques) are used to select a limited number of spin

states to approximate the total probability distributions, and in turn, these spin states are used

to estimate the clustering of micro-domains within the system [52–56]. The micro-domains

tend to align uniformly at low temperature but align randomly at high temperature. This is

due to the fact that lower energy states are more favorable at low temperature (ferromagnetic)

and higher energy states are allowed as the temperature rises (paramagnetic). SPC occurs at a

transition temperature between the ferromagnetic and paramagnetic states in which nearby

neural spikes are clustered into a micro-domain. At this transition temperature, the center of

these clusters can be considered as cluster templates to allow rapid matching to features of

incoming neural spikes converted to the phase space.

The in-house software of the desktop computer was written in Python with the QT library

for the user interface. The software then integrated the SPC algorithm to sort the neural spikes

recorded during the training period to estimate for the cluster centers. After the cluster tem-

plates were estimated, the cluster templates were transferred to the FPGA module through the

USB-UART port for real-time spike sorting during experiments.

FPGA module for sorting streaming neural spikes in real-time. After receiving the clus-

ter templates expressed in the phase space from the desktop computer, streaming neural spikes

can be sorted by the FPGA hardware in real-time through template matching. The FPGA

module was implemented using an Arty FPGA development board (Xilinx, San Jose CA)

which contains an Artix-7 35T FPGA chip. The FPGA was programmed using the Verilog

hardware description language (HDL) with the Vivado Design Suite (Xilinx, San Jose, CA).

Data communication between the desktop computer and the FPGA was through a 12 MBPS

Fig 2. A block diagram illustrating the hardware implementation of the spike detection and isolation. An 8-sample smoothing

filter was used to remove high frequency noise from the input neuron signal, followed by a peak detection module based on the NEO

algorithm to detect a neural spike for isolation. A 64-sample FIFO was used to temporarily store the isolated data stream. A peak index

counter and a peak height register worked synergistically to determine the peak index to correctly isolate the neural spike maximum. A

32-sample neural spike arrays centering against the spike peak center were outputted from the module for downstream feature

extraction.

https://doi.org/10.1371/journal.pone.0225138.g002
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USB-UART board (FT4232H; Future Technology Devices International, Glasgow, Scotland).

Once the real-time spike sorting began, the raw neural voltage trace was continually trans-

ferred from the FPGA to the desktop computer for storage purposes and the neural spikes

were only processed by the FPGA during rapid sorting.

Spike detection and Feature Extraction on the FPGA. As shown in Fig 2, the same method

used in the desktop computer software for spike detection, isolation and feature extraction were

implemented on the hardware level, and only specific hardware implementation of these meth-

ods are described in this section to avoid duplication. Compared to the desktop computer soft-

ware where the system memory is virtually unlimited, isolating a neural spike from the

streaming neural voltage is much more challenging with hardware that has a very limited mem-

ory and computation capability. In our hardware implementation, an array of 32 data points

was used to store the isolated neural spikes for subsequent data processing. However, simply

isolating a neural spike based on the first peak crossing the threshold is problematic since noise

contaminated neural spikes may have multiple peaks during which the highest peak should

instead be chosen as the spike center. In order to correctly isolate a neural spike, 64 points of

neural voltage data centered around the first peak position were temporarily stored in a piece of

First-In-First-Out (FIFO) memory. A peak index counter was used to determine the offset

value of the maximum peak height away from the first peak. A peak height comparator was

then used to search for the maximum voltage after the first peak position and stored the offset

to the peak index counter. Once the maximum peak was determined, the peak counter contain-

ing the offset value was used to reduce the 64 data points to 32 data points with the peak maxi-

mum is now placed at the center. The isolated neural spike array xi[n] was then sent to the

hardware module implemented with a Haar wavelet transformation for feature extraction.

The Harr wavelet transformation module was hardware optimized for parallel computation

to minimize the sorting latency. In the parallel design, the Haar transformer was divided into

four levels and was implemented in the FPGA based on the following equations [57],

Level 1 di
1
n½ � ¼

xi½2n� � xi½2nþ 1�
ffiffiffi
2
p

ai
1
n½ � ¼

xi½2n� þ xi½2nþ 1�
ffiffiffi
2
p

for n ¼ 0 . . . 15

ð5Þ

Level 2 di
2
n½ � ¼

ai
1
½2n� � ai

1
½2nþ 1�
ffiffiffi
2
p

ai
2
n½ � ¼

ai
1
½2n� þ ai

1
½2nþ 1�
ffiffiffi
2
p

for n ¼ 0 . . . 7

ð6Þ

Level 3 di
3
n½ � ¼

ai
2
½2n� � ai

2
½2nþ 1�
ffiffiffi
2
p

ai
3
n½ � ¼

ai
2
½2n� þ ai

2
½2nþ 1�
ffiffiffi
2
p

for n ¼ 0 . . . 3

ð7Þ
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Level 4 di
4
n½ � ¼

ai
3
½2n� � ai

3
½2nþ 1�
ffiffiffi
2
p

ai
4
n½ � ¼

ai
3
½2n� þ ai

3
½2nþ 1�
ffiffiffi
2
p

for n ¼ 0 . . . 1

ð8Þ

In this four level calculation, the Haar wavelet feature array w!i was constructed using the

outputs in which w!i ¼ fai
4
; di

4
; di

3
; di

2
; di

1
g. The hardware implementation details of the Haar

wavelet transform were described in the S1 Text.

Sorting streaming neural spikes using template matching. The extracted features were

then used to compare to the cluster templates in the phase space for neural spike classification.

In our design, not all 32 wavelet features were used since significant classification information

mostly gravitates towards the lower level features. Therefore, the template matcher was imple-

mented to allow a maximum of 20 features to save system memory. Two template matching

methods–ED and CM—were implemented in the FPGA for the classification of spikes. The

method of sorting was determined by the users during the experiment. Generally speaking, ED

gives a slightly higher sorting accuracy when the incoming neural spikes are mostly contami-

nated by Gaussian noise, and CM yields a better sorting accuracy for neural spikes mostly con-

taminated with non-Gaussian fluctuations (see results).

Euclidean distance classifier. The ED classifier implemented in the FPGA calculates the

standard ED between the spike feature w!i to the eight cluster templates wt
!a

(a = 1. . .8). The

equation for the ED of the cluster templates wt
!a

is

di
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P31

n¼0½ðwi½n�Þ2 � ðwa
t ½n�Þ

2
�

q

ð9Þ

In the FPGA implementation comparing two ED values, a square operator ðdi
aÞ

2
was imple-

mented instead of a square root operator, to reduce the complexity in constructing the com-

parators at the hardware level without scarifying accuracy.

Correlational matching classifier. A CM classifier was also implemented in the FPGA and

was designed to handle up to eight cluster templates, and any unused correlators can be

switched off if desired to save operational energy. Pearson’s correlation coefficient ri
a between

the feature vector w!i of spike i with the cluster template wt
!a

(a = 1. . .8) is defined as

ri
a ¼

w!i � wt
!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw!i � w!iÞðwt

!a
� wt
!a
Þ

p ð10Þ

Where

w!i � wt
!a
¼

1

32

P31

n¼0
ðwi½n� � �wiÞðwa

t ½n� � �wa
t Þ ð11Þ

w!i � w!i ¼
1

32

P31

n¼0
ðwi½n� � �wiÞðwi½n� � �wiÞ ð12Þ

wt
!a
� wt
!a
¼

1

32

P31

n¼0
ðwa

t ½n� � �wa
t Þðw

a
t ½n� � �wa

t Þ ð13Þ
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�wi ¼ 1

32

P31

n¼0
wi½n� and �wa

t ¼
1

32

P31

n¼0
wa

t ½n� are the averages of the wavelet features of the

spike w!i and of the cluster template wt
!a

respectively. As shown in Fig 3 and for each corre-

lator, wi[n] was first summed together and subsequently right-shifted by 5 bits (equivalently

divided by 25 = 32) to calculate the average feature �wi. wi[n] was also stored in a FIFO and then

subtracted by the average �wi to calculate the difference ðwi½n� � �wiÞ. Note that the two square-

roots can be pre-calculated by the desktop computer using the cluster templates to reduce cal-

culation burden for the FPGA hardware. The difference was then multiplied with the pre-cal-

culated template difference ðwa
t ½n� � �wa

t Þ, summed together, and right-shifted by 5 bit to

calculate the covariance w!i � wt
!a

. In order to avoid calculating the square-root in the FPGA,

the comparison between two correlation coefficients (ri
a and ri

a0) was implemented with the

expression below:

ðw!i � wt
!a
Þ � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wt
!a0

� wt
!a0

r

Þ > ðw!i � wt
!a0

Þ � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wt
!a
� wt
!a

q

Þ ð14Þ

After three stages of comparison with eight comparators in total, the cluster template w!t b
best matching to the spike wavelet feature w!i was determined. In order to screen out abnormal

spike shapes, for instance two very closely timed neural spikes that are overlapping and not

well-matched to any of the cluster templates, a final comparator with a user-specified rejection

threshold ρth was added at the end of the calculation pipeline to reject the outlier spikes that

are not suitable to assign to any one of the eight clusters:

ðw!i � w!t bÞ
2
> ðw!i � w!iÞðw!t b � w

!
t bÞrth ð15Þ

All the covariance and operator units were implemented in a parallel structure to maximize

speed and reduce sorting latency. Detailed hardware implementation of the covariance units,

the operator units, and the ED classifier were shown by the sub-figures of Fig 3.

Spike count statistic module. A real-time statistics unit was implemented to perform sta-

tistical analysis at the final stage of the FPGA. The spike rates (spikes per second) of each clus-

ter were calculated based on the output of the classifiers. Eight counters with programmable

timers were added to count the spikes that were classified to one of the eight cluster groups.

The calculated firing rates were also transferred to the desktop computer through the

USB-UART port for real-time monitoring using the custom software.

System assessment with published data and actual neural recording

The system was evaluated using both publicly available neural spike data, pre-recorded neural

data that were obtained via extracellular recordings from an anesthetized Mongolian gerbil,

and real-time in vivo recording in an awake and behaving mouse.

Public extracellular spike data. A publicly available extracellular neural recording dataset

was used to evaluate our system and details about the dataset can be found in [42]. The neural

spikes in the dataset were labeled and therefore can be used to compare to the sorting results

obtained from our system. The dataset contains 23 sets of data with different degrees of signal-

to-noise ratios. Particularly, there are 20 sets of data that were contaminated with Gaussian

noise and 3 sets of data that were contaminated with non-Gaussian noise, which allows the use

of ED and CM methods in the template matching to compare sorting accuracies under differ-

ent noise conditions. The dataset was also used to compare the sorting accuracies and time

between ED and CM to several off-line spike sorting algorithms.

Pre-recorded neural spikes of a gerbil. A previously recorded extracellular voltage trace

measured with a high-impedance Tungsten metal electrode (WEPT33.0B10, MicroProbes,
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Gaithersburg, MD, USA) from the fifth nerve (trigeminal) within the brainstem of an

Fig 3. Hardware implementation of the CM and ED classifiers. Investigators can select one of the two classifiers through the “Select CM/ED” pin. Within the

CM classifier, there are in total 8 covariance units (Cova) and 7 operator units (OperatorM) for determining the maximum correlation coefficient for the

incoming spike to the eight cluster templates. Based on this design, the covariance calculations are performed in parallel to achieve minimum calculation

latency. The hardware implementation of the covariance units, the operator units, and the ED classifier are also shown in detail on the top two sections and the

bottom section of the figure.

https://doi.org/10.1371/journal.pone.0225138.g003
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anesthetized Mongolian gerbil (Meriones unguiculatus) was used to assess the system’s perfor-

mance. All experimental procedures complied with all applicable laws and National Institutes

of Health guidelines and were approved by the University of Colorado Institutional Animal

Care and Use Committee (IACUC). The details of the experimental setup and the recording

procedure were discussed in our previous publication and are not repeated here [8].

Real-time spike sorting with an awake behaving mouse. Two male C57BL/6 mice (8–16

weeks old) were used for the recording. The mice were purchased from the National Rodent

Experimental Animal Seed Center (Shanghai, China) and were housed in the animal facility at

the Xuzhou Medical University. All experiments were performed according to protocols

approved by the Xuzhou Medical University Institutional Animal Care and Use Committee.

Fine wire electrodes were implanted into the olfactory bulb of the mouse for the recording.

These fine wire electrodes were inserted 4.0 mm anterior to bregma and 1.0 mm lateral from

the midline into the animal’s skull, and were driven to an average depth between 1.8 and 2.0

mm targeting the ventral mitral cell layer [58,59]. These electrodes were nichrome wires coated

with polyide (single-wire diameter 0.0005” 12.7 μm, coating 1/4 hard PAC, item no. PF000591.

RO-800, Sandvik, Stockholm Sweden). The output ends of the electrodes were jammed elec-

tronically to gold-plated holes of an electrode interface board (EIB-16, Neuralynx, Bozeman,

MT) with gold connection pins (EIB Pins Large, Neuralynx), and a screw used as the signal

ground was secured to the animal’s skull 1 mm posterior from the bregma and 1 mm from the

midline. The electrodes, the ground screw, and the interface board were sealed and fixed to the

animal’s skull using dental acrylic. A custom aluminum head plate was also attached to the ani-

mal’s skull using several stainless-steel screws and dental cement for securing the animal’s

head to a stationary mount during recording experiments.

After the mice were fully recovered from surgery, the mice were transferred to an induction

chamber and fixed to a stationary mount using the aluminum head plate on the animal’s head.

The stationary mount prevented any movement of the head of the animal, which allows stable

neural spike recording in real-time. The animals were also supported by an air-buffered Styro-

foam sphere, allowing the mice to freely walk on top of the sphere. Real-time neural recordings

were performed using the electrode interface board on one of the fine wire electrodes. The

measured neural spikes were sent to the FPGA and the custom software on the desktop com-

puter generated spike templates. After the spike templates were generated, the templates were

transferred to the FPGA for spike clustering of subsequent incoming neural spikes in real-

time. A supplemental video (S1 Video) recorded during the experiment shows the real-time

process of spike sorting with neural spikes recorded from an awake behaving mouse.

Results

In this section, experimental results based on a publicly available dataset [42], pre-recorded

neural data from an anesthetized Mongolian gerbil, and neural spikes recorded from an awake

behaving mouse and sorted in real-time were used to evaluate the performance of the system.

Performance of the FPGA real-time module

The maximum spike sorting rate was first measured to characterize the FPGA performance.

The maximum spike sorting rate was measured by monotonically reducing the temporal dif-

ference between the peaks of two spikes until the FPGA module can no longer differentiate the

second spike from the first spike. Two neural spikes each with a data length of 32 time bins

were selected from the previously recorded gerbil data and the two spikes were pieced together

with a time difference tdiff, as shown in Fig 4. If the temporal spacing between the two spikes

was larger than the 32 time bins of the spikes, additional data points with no spike features
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were padded in the gap space, and if the spacing was less than the span, the data points of the

overlapping space were averaged between the two spikes. The FPGA module was implemented

with a digital output to indicate the successful sorting of the input spikes, as illustrated in Fig 4.

Since the neural data was measured with a sampling rate of 24 kHz and if the two neural spikes

were connected together back-to-back with no temporal padding, i.e. tdiff = 1.33 ms, a 750

spikes/second sorting rate will be obtained (Note that the spike itself is less than 32 time bins).

The system can actually handle neural spikes more closely spaced together, making the maxi-

mum spike sorting rate higher than this number. In order to estimate the maximum sorting

rate, the time difference between the two spikes was further reduced to allow overlaps, and the

measured results indicated that the time difference between the two pulses could be as short as

1.06 ms (tmin = 1.06 ms). Thus, the maximum spike sorting rate of the FPGA module was

determined to be 941 spikes/second.

The sorting latency of analyzing a neural spike for the FPGA module was also estimated

and the data processing time for each of the sub-processing units are listed in Table 1. The

sorting latency is the time required to sort a neural spike by the system from the time to start

measuring the neural spike to the time delivering a sorting result. Comparatively, the sampling

Fig 4. Estimate of maximum spike sorting rate and sorting latency for the system. Two neural spikes extracted from the neural

recording of a gerbil were pieced together with a time difference tdiff to create an artificial voltage trace, which was sent to the FPGA

hardware to estimate the maximum spike sorting rate. As the time difference tdiff between two spikes was monotonically reduced to tmin,

the FPGA hardware could no longer separate the two neural spikes and the voltage trace was considered as a single spike, resulting in

missing classification for the second spike. The spike sorting latency of the system was also estimated by measuring between the time

when the neural spike entered the FPGA for sorting and the time the FPGA resulted in a classification label for the neural spike.

https://doi.org/10.1371/journal.pone.0225138.g004
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frequency (using an external analog-to-digital converter) in digitizing the neural voltage is 24

KHz, or 41.7 μs/sample, while the FPGA system clock frequency is 100 MHz, or 0.01 μs/clock,

for data processing and calculations. Since the FPGA clock frequency is significantly higher

than the sampling frequency, most of the latency resulted from the waiting time to collect

enough data points to perform the sorting. Here the estimation of the sorting latency is briefly

described. For the latency of data smoothing, an 8-point average moving filter was used in

which the filter was required to wait for 4 additional digitized samples to be loaded into the fil-

ter before it could perform the smoothing calculation of the current data point. In addition, 2

additional FPGA processing clock cycles were required to calculate the average. Thus, the total

processing time for the smoothing was 166.7 μs. For peak detection, the NEO algorithm was

required to wait for 1 additional sample and 2 FPGA processing cycles for the calculation,

equivalent to a latency of 41.7 μs. The spike isolation module was most time-consuming and

thus was the dominant contributor to the sorting latency besides signal sampling. The module

needs 32 sampling cycles to store the entire spike to its FIFO and another 10 additional sam-

ples to allow alignment of spikes with uneven spike shapes to the array center, and also

required 32 FPGA processing clock cycles for the spike readout, which translates to a latency

of 1750.3 μs. After the neural spike was isolated to 32 time bins, no additional data waiting was

needed for the processes of Haar transformation, template matching and firing rate calcula-

tion, resulting in a relatively short processing latency. For the Haar transformation, template

matching and statistical calculations, 58, 72 and 2 FPGA processing cycles were required

respectively, and the corresponding processing time was only 0.58, 0.75, and 0.02 μs, which is

almost negligible. Therefore, the total sampling and processing clock cycles of all the sub-pro-

cessing units were 47 and 168, which attributed to a total sorting latency of ~1.96 ms. If the

input signal already has a high SNR, the smoothing module can be bypassed by the users and

the sorting latency could further be reduced to ~1.79 ms. These latency results were also con-

firmed with simulations with Vivado Simulator (Xilinx; San Jose CA) included in Vivado at

the gate level.

For the use of the FPGA resource, the implementation used about 65% of the FPGA slice

look-up tables (slice LUTs). Additionally, the amount of slice registers, block memories and

bonded input-output blocks (IOBs) were accounted to be 14.5%, 9% and 13.3% of the total

available resources respectively.

Spike sorting accuracy comparing CM and ED using publicly available

neural datasets

The sorting accuracy of the FPGA module was also evaluated using publicly available neural

recording data [42]. Cluster classification of both CM and ED were evaluated to illustrate the

Table 1. Sorting latency of the FPGA based real-time spike soring module.

FPGA sub-processing unit Clock Cycle Latency(μs)

Sampling(24Khz) Processing(100Mhz)

Data smoothing 4 2 166.7

NEO peak detection 1 2 41.7

Spike isolation 42 32 1750.3

Haar transformation NA 58 0.58

Template matching NA 72 0.72

Firing rate statistics NA 2 0.02

Total sorting latency 47 168 1960.0

https://doi.org/10.1371/journal.pone.0225138.t001
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difference between the two techniques. The information gives an indication of which tech-

nique is best to use under certain experimental conditions for optimal sorting.

Twenty-three sets of artificial neural spike trains, pre-labelled with predetermined classifi-

cation groups and also contaminated with different types of noise and fluctuations from

Ref. [42], were used to test the FPGA module. Among the 23 sets of data, 20 sets of data con-

tained artificial neural spikes contaminated with different degrees of Gaussian noise and the

final 3 sets of data were corrupted by non-Gaussian spike height fluctuation. For the 20 sets of

data contaminated by Gaussian noise (where σ in Fig 5 denotes the standard deviation of the

Gaussian noise function), 12 data sets (8 for EasyGroup1 and 4 for EasyGroup2) were con-

structed by easily separable neural spikes and 8 sets of data (4 for DifficultGroup1 and 4 for

DifficultGroup2) were constructed by neural spikes having very similar temporal shapes. The

3 non-Gaussian fluctuation groups were constructed to mimic spike height changes due to var-

ious physiological conditions (electrode drifting, cell bursting activity, and local field poten-

tials). Since all data sets were pre-labeled with predetermined cluster groups, it allowed us to

compare the sorting results from our system to calculate the sorting accuracy. For each set of

data, the first 20 seconds of the data were used as in the training phase to build cluster tem-

plates with SPC. The remaining 40 seconds of neural spikes was classified based on template

matching, using both matching techniques of CM an ED. The classification results were then

compared to the labels of the respective spikes to calculate the sorting accuracy.

Fig 5 illustrates the sorting accuracy of both CM and ED against the 23 data sets. Here sort-

ing accuracy is defined as the ratio between the numbers of spikes that are correctly clustered

against the total numbers of spikes. CM showed a slightly better overall sorting accuracy than

ED of the 23 datasets examined. Looking more closely at the sorting results, for the 20 sets of

data that were contaminated by Gaussian noise (first four groups in Fig 5), ED was actually

performing slightly better than CM and the accuracy difference was only about 2%. On the

other hand, for the 3 sets of non-Gaussian fluctuation, CM had a significantly better sorting

accuracy than that of ED, especially for one set of data that simulated amplitude fluctuation

caused by the positional drifting of the metal electrode within the brain during long duration

experiments. Under this particular experimental condition, ED had about 80% sorting accu-

racy while CM could achieve a sorting accuracy as high as 92% (a 12% accuracy

enhancement).

Additional tests were performed to help understand why CM had a better performance

than ED particularly for the experimental scenario of electrode drift. Electrode drift contrib-

utes to non-Gaussian noise, therefore a test data set was specifically constructed for this pur-

pose. To construct this test data set, the spikes of three cluster groups contained in one of the

public data sets with a medium level of Gaussian noise (C_Drift_Easy2_noise015.mat) were

chosen to build this data set. Among these three cluster groups, the amplitudes of the spikes in

the first two groups decreased linearly and the amplitude of the spikes in the third group

increased linearly to simulate spike height fluctuations due to electrode drifting. The modified

spikes were then sent to the FPGA system for testing with both CM and ED template match-

ing. The temporal profiles of the three cluster groups with the artificially varying amplitudes

are shown in Fig 6A–6C, Fig 6D shows the sorting accuracy of this test data set using both CM

and ED template matching methods. It is evident that ED has inferior performance than CM

for all three cluster groups. To better understand these results, the correlation coefficients of

any two cluster groups were plotted against one another as shown in Fig 6E and 6F, and the

EDs of any two groups were also plotted in Fig 6H–6J. For CM, it is apparent that spike clus-

ters were clearly separated by the diagonal line and the clusters stayed in their own quadrants.

In contrast, for ED, the two cluster groups in Fig 6H were intermingled, and the lower cluster

groups intrude into the upper quadrant in Fig 6I. These results can be explained by the fact
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that mathematically the correlation coefficient is much less sensitive to amplitude fluctuation

as long as the spike shape is maintained, while ED can change relatively significantly when the

amplitude varies. The results also indicate that separating cluster groups in CM can be

achieved by using simple diagonal lines to separate the cluster quadrants. In contrast, although

several prior studies have used diagonal lines to separate clusters, this is evidently not an opti-

mal technique and more sophisticated comparison algorithms based on cluster boundary seg-

mentation are perhaps required to yield better cluster results for ED [34,36–38,43].

Spike sorting accuracy evaluated by pre-recorded neural spikes of an

anesthetized gerbil

Fig 7A shows a portion (0.5 s) of a raw voltage trace recorded from the brain of a Mongolian

gerbil (the entire recording was 120 s). The neural voltage contained two distinct types of

spikes originating from two close-by neurons that have been identified by the system. Fig 7B

shows the averaged temporal profiles of the two cluster templates estimated by the SPC

Fig 5. Comparison of the spike sorting accuracies for CM (dark) and ED (white) under various noise

contamination conditions. Third party pre-labeled neural spikes were used to estimate the spike sorting accuracy of

our system [42]. The first 20 sets of spike data were contaminated by Gaussian noise and were separated into four

different groups–two groups (EasyGroup1 and EasyGroup2) constructed by spikes that are easily separable and the

other two groups (Diff.Group1 and Diff.Group2) constructed by spikes with similar temporal profiles. The final three

sets of test data were non-Gaussian noise contamination and were constructed to mimic spike shape changes caused by

various physiological conditions (electrical drifting, cell bursting activity, and local field potential occurrence). The

results indicate that CM can achieve higher sorting accuracies over ED, especially for neural spikes contaminated with

non-Gaussian noise.

https://doi.org/10.1371/journal.pone.0225138.g005
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algorithm on the desktop computer, and the template creation used 20 seconds, or 16.6%, of

the recorded data. The cluster templates were then transferred to the FPGA for sorting the

remaining 100 seconds of data. Fig 7C is the sorted result using CM and represented by a cor-

relational plot of Pearson’s correlation coefficients ri
a of the two groups. The neural spikes

were highly clustered into two groups, indicating that the spikes were well separated. Finally,

Fig 7D shows the two time traces of the firing rates of the two cluster groups over the 100 sec-

ond period. The first neuron maintains a higher firing rate of about 50 to 70 spikes/second, in

contrast to the second neuron that fired less than 10 spikes/second for the entire recording.

Spike sorting agreement evaluated by real-time recordings of an awake

behaving mouse

Real-time spike sorting was performed on an awake behaving male C57BL/6 mouse and suc-

cessfully classified the streaming neural spikes using our system, as described in the methods

section. During the pre-training period, 4 cluster templates were identified and determined

using 2361 of neural spikes with a recorded time of 300 sec. After transferring the template

clusters to the FPGA, 2738 of neural spikes were classified in real-time with an experimental

time of 300 s. The experiment was repeated 7 trials using the same pre-training templates, with

a total experimental time of 2100 s. Once the real-time recording experiments were concluded,

a commercial spike sorting software (Offline Sorter, Plexon Inc, Dallas TX) based on k-means

clustering was used to sort the same recorded neural spikes off-line. The obtained sorting

results were used to compare with those obtained from our real-time template matching meth-

ods. In order to calculate the sorting agreements for the two template matching techniques,

the off-line sorting results obtained using K-means were considered as the “ground truth”

results, and the sorting agreements were calculated by dividing the number of spikes classified

to the same group by both the real-time and off-line techniques to the number of spikes classi-

fied to the off-line technique only. Fig 8A shows the sorting agreements of ED and CM tech-

niques to the off-line k-means technique. Generally, the two real-time sorting methods have

agreements of higher than 80% to the off-line result, and can reach up to 96%. It is also notice-

able that CM shows a slightly higher sorting agreement than that of ED (94% vs 87%), and this

result is consistent with the results obtained with the publicly available datasets.

Fig 8B shows the temporal spike shapes of four cluster groups sorted by off-line k-means

and template matching with both ED and CM modes using our real-time system. As shown in

the Fig 8B, both real-time template matching techniques yielded comparable temporal spike

shapes and similar total number of sorted spikes for the clusters to those using off-line k-

means clustering, which demonstrated the high sorting capability of our real-time system.

Comparing the two template matching techniques, ED could occasionally classify a mis-

matched spike to a cluster group, as indicated by a red arrow of the third cluster for the ED

technique. This is likely due to the fact that ED only calculated the vector distances between

the templates to the neural spike, and if this spike happened to have the shortest distance tem-

plate, it was classified to this cluster group even if the shapes were different. In contrast, CM

was more sensitive to the general temporal shape of the spike and would reject this spike that

had a different temporal spike shape.

Fig 6. Comparison between CM and ED using neural spikes artificially constructed to simulate electrode drifting. (A) and (B) Temporal profiles of two

artificial neural spike clusters with linearly decreased spike amplitudes. (C) Temporal profiles of the third artificial neural spike cluster with linearly increased

spike amplitudes. (D) Sorting accuracies of the three neural clusters using CM and ED. (E) to (G) Correlational plots between each of the three correlational

coefficients in CM and the figures show clean separation among the cluster groups along the diagonal line. (H) to (J) The diagonal line cannot separate the

clusters in ED sorting and significant overlaps can occur.

https://doi.org/10.1371/journal.pone.0225138.g006
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Comparing template matching to other off-line spike sorting algorithms in

sorting accuracy and time

The sorting accuracy and sorting time between ED and CM template matching techniques to

six other off-line spike sorting algorithms was compared in Fig 9. The six off-line spike sorting

algorithms used in the comparison are Phy [12,23], Wave_Clus (SPC) [42], Bayes, Support

Vector Machine (SVM), K-means and Artificial Neural Network (ANN) [60] Particularly,

Phy, which as based on masked EM, is a state-of-the-art spike sorting algorithm for multi-elec-

trode recording, and Wave_Clus, which is based on SPC, is a non-parametric neural spike

sorting algorithm for single electrode. Spike sorting with Bayes, SVM, K-means, and ANN

techniques are performed with our in-house python software using software routines from the

Scikit-learn library. The neural spike data used in the comparison were the same 23 sets of

neural spikes used previously in comparing CM and ED techniques [42]. It has been deter-

mined that roughly 30 neural spikes are required to generate a good quality cluster template

for each neuron, which is in agreement with the findings of Karkare et al [36]. The calculation

time for the desktop to determine the templates was measured to be 78.3 seconds, and the

times listed in Fig 9 only reflect the processing time of the FPGA hardware to sort a streamed

neural spike. The percentages of correctly classified (black), misclassified (red) and unclassified

Fig 7. Real-time spike sorting results based on pre-recorded neural spikes from an anesthetized gerbil. (A) 0.5 s of neural voltage trace recorded

from the brain stem of an anesthetized gerbil. The green stars and red triangles at the top of the figure indicate the locations of neural spikes of two

neurons co-recorded by the same electrode. (B) Temporal profiles of the two cluster templates of the two neurons estimated by SPC. (C) Phase plot of

the two cluster groups (green star and red triangle) with each marker representing a neural spike. (D) The firing rates of the two clusters calculated

over the 100 seconds of neural data by the FPGA hardware.

https://doi.org/10.1371/journal.pone.0225138.g007
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(blue) neural spikes are plotted in Fig 9A. The results indicate that CM and ED have compara-

ble sorting accuracies to all the other spike sorting algorithms. In addition, the sorting times

Fig 8. Real-time spike sorting results based on an awake behaving mouse. (A) Real-time spike template matching (ED and CM) compared to off-line k-

means classification recorded from the olfactory bulb of an awake behaving mouse. The sorting agreement is higher than 80% for all clusters. (B) Temporal

spike profiles (Trial 3) of four clusters sorted by off-line K-means, real-time ED and real-time CM. The numbers at the top of each plot indicate the number of

spikes classified to the cluster, and the results indicate similar performance of the three techniques. The red arrow indicates a spike sorting anomaly, likely

caused by using vector distances as the sole classification criterion in ED.

https://doi.org/10.1371/journal.pone.0225138.g008
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required for the spike sorting techniques to sort the test data are plotted in Fig 9B. EM and CM

template matching methods have the shortest sorting time (1.97 ms) among all the methods,

and all the other techniques require a sorting time over several seconds.

Discussion

We developed a real-time rapid neural spike sorting system by matching neural spikes to a

group of pre-calculated cluster templates using a hybrid software/hardware approach. This

approach significantly reduces the sorting time by matching a neural spike to estimated cluster

templates in a single pass using custom digital hardware, eliminating the need for performing

sophisticated spike sorting calculations in an iterative manner on a powerful computer. With

this approach, the system achieves a maximum sorting rate of 941 spikes/second and a sorting

latency of less than 2 ms for a single electrode. This performance is approaching the physiolog-

ical time characteristics of a neural spike, which has a pulse width of about 1 ms. In addition,

the system is flexible by using two kinds of template matching techniques, either through find-

ing the shortest ED or the maximum correlation coefficient among the templates. These two

methods are selectable by investigators to fit different experimental sorting needs. Our results

indicate that both techniques achieve good sorting accuracies. While ED has a slight edge

(about 2% better for both pre-recorded neural spikes and actual animal experiments) over CM

for sorting spikes contaminated with Gaussian fluctuation, CM can achieve much better accu-

racy for pulses that are changing over slow drift of the electrode position in behavioral experi-

ments. These results provide a guideline for choosing the appropriate template matching

technique to achieve the best sorting accuracies according to the actual experimental

conditions.

Closed-loop neural control is a general technical term referring to interventions of the neu-

ral circuit by analyzing responses, either firing rates from electrophysiological recording or

behavioral responses of the subject under study, of the neural system in real-time. Closed-loop

control provides an exciting opportunity for neuroscience and engineering communities to

look into neural systems not only from a passive observational ground, but also from an active

control paradigm. To that end, the biochemical technique of optogenetics provides a precise

control method that was not available 15 years ago [26,27,29,30,61–63]. Optogenetics allows

researchers to stimulate or inhibit a neural system selectively, or simultaneously stimulate and

inhibit a neural network. Moreover, with proper biochemical techniques, a specific cell type

within the neural target can be specifically or exclusively controlled [29]. Thus combining

optogenetics with feedback control, recent experiments have demonstrated the firing rate of a

neuron can be controlled for a short period of time [27]. These recent developments provide a

good reason for development of rapid spike sorting methods. For instance, the output, such as

the firing rate, of rapid spike sorting can be used as the inputs for the closed-loop control rou-

tines. In these closed-loop control schemes, the inputs have to be “instantaneous” to reflect the

current state of the neural system; thus, rapid sorting and short latency of analyzing neural

spikes become important criteria.

When an electrode is inserted into the brain to measure neural voltages, several different

kinds of perturbations can contaminate the measured signal. The most common contamina-

tion is thermal noise induced by the electrode impedance as well as the intrinsic noise of the

amplifier [7,8,63]. Since these noises are stochastic in nature, their noise distributions are typi-

cally Gaussian [42]. As shown by our results, ED and CM can handle Gaussian noise almost

equally well and the sorting accuracies are good even for low signal-to-noise ratio situations.

Besides Gaussian contamination, there are also other types of contamination that are more

related to the physiological conditions of the neural system, such as large local field potentials
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riding on top of weak action potentials [42]. Particularly, for long-term extracellular in vivo
recordings with freely moving animals, minute movement of the electrodes can change the

Fig 9. Sorting accuracy and time comparison between CM and ED hardware template matching to other off-line

spike sorting algorithms. (A) Percentage ratios of correctly classified (black), misclassified (red) and unclassified

(blue) neural spikes comparing several off-line neural spike sorting algorithms to CM and ED hardware template

matching using the third party labeled neural spikes [42]. The results indicate that CM and ED achieve comparable

sorting accuracies with the other off-line sorting algorithms. (B) Sorting time comparing between hardware CM and

ED template matching to other off-line spike sorting algorithms. While CM and ED template matching requires less

than 2 ms of sorting time, the off-line spike sorting techniques require sorting time in seconds. Other offline sorting

methods used in the comparison: Phy [12,23], Wave_Clus [42], Bayes, SVM (Support Vector Machine), K-means,

Artificial Neural Network (ANN) [60].

https://doi.org/10.1371/journal.pone.0225138.g009
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impedance between the electrode and the neurons, causing the amplitude of the spikes to fluc-

tuate without changing the overall temporal shapes [9,34,42]. Under this scenario, CM has

much improved performance over ED since CM is not sensitive to the amplitude change due

to the inherent normalization to the signal. In contrast, ED strictly measured the distance

between two points in phase space and this distance can change rather substantially as the

spike amplitude fluctuates, as demonstrated by occasional spike anomalies to sorted clusters.

Another advantage of CM is that cluster decimation is relatively simple through disseminating

of the diagonal line, which could further simplify the implementation of CM over ED at the

hardware level.

For our real-time template matching system, the maximum sorting rate was measured to be

941 spikes/second with a sorting latency of less than 1.96 ms for a single electrode. Both num-

bers are not limited by the processing power of the FPGA or the template matching algorithm,

but simply reflect the temporal nature of the neural spikes. Physiologically speaking, a neural

spike has a pulse width of ~1 to 2 ms and a neuron typically cannot fire more than several hun-

dred of spikes per second, both of which are limited by the molecular dynamics of the Na and

K ion channels [63]. Thus, using an analog-to-digital converter with higher sampling fre-

quency will not help to improve the sorting rate simply because the sorting cannot occur with-

out the entire spike being sampled. For this reason, we believe that our current system is

approaching the limits of how fast a system can be in sorting neural spikes, at least in the case

of single channel sorting, unless non-causal techniques are developed to predict spike profiles.

We compared the sorting accuracies and the sorting speed of our system using template

matching techniques to other off-line spike sorting algorithms. Based on the results, the sorting

speed of hardware template matching is three orders-of-magnitude faster than those of the

other methods. This is due to the fact that template matching can sort a neural spike immedi-

ately once it is measured, while the other methods take an iterative approach to examine all the

neural spikes at the same time in order to seek the best possible match. On the other hand, the

comparisons also indicate that the sorting accuracies obtained with template matching tech-

niques are comparable to those of other sorting methods, making template matching highly

attractive for real-time spike sorting applications. Recently, our team published a new spike

sorting algorithm, named Enhanced Growing Neural Gas (EGNG), that utilize this single pass

concept to learn neural spike cluster distributions on the fly and immediately classify neural

spikes in real-time [64]. Not only is this new algorithm fast and implementable using digital

electronic technology with limited computational resources, it is also highly adaptable to

changes in electrophysiological environments. We plan to combine the template matching

techniques with the EGNG algorithm to remove the need of a desktop computer to create a

completely tether-free and portable neural spike sorting IC to demonstrate closed-loop neural

control with animal models in the near future.

The current system is limited to processing neural spikes recorded from a single electrode.

The system, however, can be extended in the future to process neural spikes recording from

multiple electrodes. It is worth mentioning that data sampling and smoothing, peak detection

and spike isolation (1.75+0.1667+0.0417 = 1.958 ms) contribute to 99.9% of the sorting latency

(1.958/1.9660 = 99.9%). This is due to the fact that a biological neural spike has a pulse width

between 1 to 2 ms and template matching cannot be performed until the neural spike was sam-

pled. Once the neural spike was measured and isolated, feature extraction and template match-

ing were extremely fast and only took a very short time to process (0.58 + 0.72 + 0.02 = 1.32 μs

or 0.00132 ms). Therefore, a maximum matching speed of ~0.75 million spikes/second can be

achieved for the template matching alone with our hardware. Therefore, to create a system to

template match neural spikes measured from multiple electrodes, neural amplifiers integrated

with the hardware peak detection and spike isolation units can be designed for each recording
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electrode. A multiplexer with a FIFO memory unit can be used to arrange and store all the iso-

lated neural spikes measured from the electrodes, and the template unit can also be modified

to match all the isolated neural spikes while preserving the originating electrode site indexes.

Additional hardware units can also be developed to handle temporally overlapping spikes,

as well as the same neural spike picked up by multiple closely spaced adjacent electrodes.

Recent off-line spike sorting algorithms used similar methods to sort temporally overlapping

neural spikes by matching the temporally overlapping neural spikes to the single unit neural

spike templates determined during the first processing phase of the algorithm [20]. Using the

same idea, it is possible to design a hardware module to match temporally overlapping neural

spikes to multiple single-unit neural templates in real-time. In addition, closely spaced elec-

trodes that pick up duplicate neural spikes emitting from the same neuron can be correctly

processed by hardware using the unique signal properties these duplicate spikes contained.

The electrode closest to the emitting neuron picks up the largest signal amplitude while the

adjacent electrode has a reduced amplitude inversely proportional to the distance between the

electrode and the emitting neuron [65,66]. The arrival time differences between these neural

spikes are less than 1 ms and the neural spikes can be approximately considered arriving at the

electrodes at the same time [20]. Therefore, a hardware unit can be designed to compare neural

spikes measured from adjacent electrodes and arriving to the electrodes at approximately the

same time to determine the neural spikes with the largest amplitude while rejecting the rest to

avoid counting duplications. We are currently working on the next version of our system that

incorporates these hardware units to allow multiple electrodes and handle overlapping spikes.

We have tabulated some of the features of other recent real-time spike sorting systems

which were implemented with either ASIC or FPGA technologies and compared them to our

system in Table 2. All other systems have also implemented some form of spike detection, fea-

ture extraction, and only ED as their template matching method [36–38,67]. However, our sys-

tem took advantage of these previous developments and demonstrated high sorting accuracies,

tested with public neural data sets, pre-recorded neural spikes and real-time spike sorting of

an awake behaving mouse. Our system is also capable of using either ED or CM template

matching techniques to obtain optimal sorting results based on the neural physiological condi-

tions during the recording. In addition, our system also implemented a real-time statistical

module to calculate the instantaneous firing rates. The real-time statistical module may open

up new opportunities in the future for downstream neural data analysis based on instanta-

neous firing rates, such as in closed-loop neural controls for neurophysiological disease

managements.

Conclusion

We have developed a real-time neural spike sorting with low sorting latency and high sorting

throughput using template matching techniques and compared two template matching meth-

ods (ED and CM) for their optimal uses in real-time neural spike sorting. The system consists

of a desktop computer (software) to generate cluster templates and an FPGA (hardware) to

match subsequent incoming spikes to the templates in real-time. The two template matching

methods are user selectable for best sorting results. Both ED and CM are good for sorting

spikes contaminated by regular Gaussian noise typically introduced by instrumentation and

CM is best for other atypical noise, such as positional drift of electrodes. The system was char-

acterized by publicly available neural spike datasets, pre-recorded neural spikes from an anes-

thetized gerbil. The sorting performance and accuracy of the system was further evaluated by

neural spikes recorded from an awake behaving mouse in real-time, and compared to other

neural spike sorting algorithms, confirming the system is readily usable in real-time neural
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spike analysis applications. The maximum spike sorting rate is 941 pulses/second with a short

sorting latency of less than 2 ms. These characteristic parameters are only limited by the intrin-

sic pulse width of a neural spike (1–2 ms), but not by the calculating performance of the FPGA

and the efficiencies of the template matching algorithms.

Supporting information

S1 Text. Hardware implementation details of spike detection module and Haar transfor-

mation module. The supplementary file describes hardware implementation details of peak

detection, spike alignment on spike detection module, also including Haar transformation

module for extracting the features of detected spikes.

(DOCX)

S1 Video. Demonstrating real-time spike sorting system processing on an awake behaving

mouse.

(MOV)

S1 Data. Two real neural recording datasets are used in this paper. One is recorded from an

anesthetized gerbil, the other is from an awake behaving mouse on in-vivo experiment.

(ZIP)

S1 Code. The functions of the custom-written python program include two parts: 1) per-

forming spike sorting, and 2) extracting templates based on spike sorting results. There is a

readme file to indicate how to use this program.

(ZIP)
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