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A Model of Exposure to Extreme 
Environmental Heat Uncovers the 
Human Transcriptome to Heat 
Stress
Abderrezak Bouchama   1, Mohammad Azhar Aziz2, Saeed Al Mahri1, Musa Nur Gabere3, 
Meshan Al Dlamy1, Sameer Mohammad1, Mashael Al Abbad4 & Mohamed Hussein3

The molecular mechanisms by which individuals subjected to environmental heat stress either recover 
or develop heat-related complications are not well understood. We analysed the changes in blood 
mononuclear gene expression patterns in human volunteers exposed to extreme heat in a sauna 
(temperature of 75.7 ± 0.86 °C). Our analysis reveals that expression changes occur rapidly with 
no significant increase in core temperature and continue to amplify one hour after the end of heat 
stress. The reprogramed transcriptome was predominantly inhibitory, as more than two-thirds of the 
expressed genes were suppressed. The differentially expressed genes encoded proteins that function in 
stress-associated pathways; including proteostasis, energy metabolism, cell growth and proliferation, 
and cell death, and survival. The transcriptome also included mitochondrial dysfunction, altered protein 
synthesis, and reduced expression of genes -related to immune function. The findings reveal the 
human transcriptomic response to heat and highlight changes that might underlie the health outcomes 
observed during heat waves.

Environmental temperatures are increasing throughout the world, including in temperate climatic zones, raising 
concerns about how increasing temperatures might affect human health, given the associated health risks1, 2. 
Indeed, exposure to high ambient temperatures can result in high morbidity and mortality2–5. In July 1995, a heat 
wave in the USA caused 700 excess deaths and more than 3000 emergency room visits in the city of Chicago5. 
More recently, in 2003 and 2010, respectively, two heat wave-related disasters affected Western Europe and 
Russia, resulting in 70,000 and 55,000 excess deaths2, 3. Analysis of “excess” deaths during heat waves revealed 
that heatstroke, a condition characterized by rapidly increasing body temperature and multiple organ failure, 
alone accounted for one-third of the fatalities, whereas the remainder were attributed to heat-aggravated medical 
conditions, particularly cardiovascular and pulmonary diseases4, 5. Despite this established relationship between 
high environmental temperature and morbidity and mortality, the mechanisms by which heat contributes to 
clinical outcome are not fully understood6, 7. It is neither easy to perform studies in humans with heat injury, nor 
to interpret the results, because the dose and duration of heat exposure, as well as the precise onset of heat-related 
complications are difficult to determine. In addition, the data are often confounded by comorbid illnesses and 
concurrent medications4–7. Hence, as yet, there are no specific targeted preventive and/or therapeutic measures 
available other than avoiding heat exposure and physical cooling4, 5, 7.

Heat stress triggers a range of adaptive physiological and cellular mechanisms, including thermoregu-
lation and the cellular stress response (CSR), particularly the induction of heat shock proteins (HSPs) to pre-
vent hyperthermia, cellular damage and death7–10. It is currently believed that cardiovascular stress, imposed 
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by thermoregulation, underlies the maladaptive response to heat stress – a marked increase in cardiac output 
is needed to accelerate the transport of heat to the skin, and thereby to the environment, and this may pro-
gress to cardiovascular failure and death7, 9. At the cellular level, cytotoxicity caused by heat, failure to increase 
the expression of HSPs, excessive inflammation, and the activation of coagulation have also been implicated in 
the pathogenesis of heat injury; including its associated tissue damage, and death7. However, the human stress 
response to passive exposure to environmental heat, by which heat-stressed individuals recover or develop fatal 
heat-related complications, has not been characterized at the transcriptomic level; such an analysis might help us 
to understand the molecular mechanisms that underlie the pathogenesis of heat-related morbidity and mortality.

Transcriptomics have emerged as a powerful approach for investigating the molecular response to environ-
mental stressors, including heat11–14. However, most genomic studies of the CSR to heat stress have used model 
organisms, such as flies, worms and yeast, or used isolated human cells grown in culture10, 12, 14–20. These studies 
revealed that cells activate ancient cellular and molecular protective mechanisms that have evolved from prokar-
yotes to mammalian cells; resulting in rapid and transient reprioritization of the gene expression program in 
response to stress. Genes involved in growth-related processes are suppressed. Energy resources are redirected to 
stress-related functions to allow cells to survive the changing environment. A general stress response common 
to most cells was characterized and found to include the identification and repair of misfolded or aggregated 
proteins or their transport to sites of degradation, cell cycle control to allow stabilization and/or repair of altered 
DNA and chromatin, and regulation of energy metabolism and redox state of the cells12–14. Moreover, in complex 
multicellular organisms, the CSR can activate a cell death program, if the cellular effects of the stress cannot be 
mitigated10, 18–20.

Human studies have focused on exertional heat stress in athletes, and have generally been limited to specific 
pathways, such as the HSP and/or the inflammatory response21–24. Further, the findings were often confounded 
with muscle injury associated with vigorous exercise22, 23. Nonetheless, several components of the general stress 
response were identified that vary with the methods of exertion and the arrays utilized. These include the expres-
sion of genes involved in HSPs, innate immunity and mitochondrial function; as well as genes related to growth 
and tissue repair21–25.

Using a combination of a unique human model of heat-stress with a full recovery phenotype and a 
whole-genome microarray, the purpose of the present study was to characterize, for the first time, the transcrip-
tomic response of peripheral blood mononuclear cells (PBMCs) obtained from healthy volunteers passively 
exposed to a short but extreme environmental heat treatment in a sauna. The model includes young and healthy 
volunteers from the same Arab ethnic group, without comorbid illnesses or concurrent use of medications. 
Similarly, the participants were exposed to a well-defined dose of environmental heat without exposure to ultra-
violet (UV) light. It was thought that a better understanding of the molecular mechanisms of human CSR to heat 
alone could help form the basis of improved prevention of heat-related outcomes.

Results
Physiological Response to Heat Stress.  The physiological characteristics of all of the participants are 
presented in Table 1. Compared to females (n = 8), males (n = 7) were heavier, taller and had a higher level 
of fitness, as assessed by standard cardiovascular stress. The mean (SD) temperature of the sauna room was 
75.7 ± 0.86 °C at onset and 75.9 ± 1.07 °C at the end of heat exposure. Eleven of the 15 participants completed 
their 15 minutes of exposure to heat while four female participants left the sauna after 10, 10, 13 and 14 minutes. 
Four female and three male participants complained of headache, dizziness and/or nausea immediately after heat 
stress. The core temperatures of all participants were higher at the end of the heat stress than beforehand, but all 
temperatures remained within the normal range, except for one male subject whose core temperature increased 
to 39 °C at the end of the treatment (Fig. 1). After one hour of recovery, the core temperature of all but one of the 
participants decreased to below the pre-treatment temperature; without reaching statistical significance. Other 

Characteristics* Male (n = 7) Female (n = 8) ρ value

Age (years) 23 ± 3.4 20.7 ± 2.3 0.16

Weight (kg) 79.6 ± 20.9 59.1 ± 8.9* 0.01

Height (cm) 172 ± 6.1 161 ± 5.9* 0.008

BMI (kg/m2) 27 ± 6.9 25 ± 3.3 0.80

Stress Test

*Bruce (min:Sec) 10.5 ± 2.03 8.3 ± 1.21* 0.02

METS 12.6 ± 2.04 10 ± 1.5 * 0.02

Predicted Heart Rate (%) 89.90 ± 4.07 93 ± 9 0.44

Table 1.  Physiological characteristics of the study population at baseline. Values are expressed as the 
mean ± SD. Comparison was made using exact Kruskal Wallis Test. BMI, body mass index *BRUCE protocol is 
a treadmill exercise stress test developed by Bruce et al. to evaluate cardiovascular fitness72. After placement of 
a 12-lead ECG leads to the chest, the treadmill is started at 2.74 km/hr (1.7 mph) and a slope of 10%. The slope 
and the speed are increased every three minutes, according to a standard protocol. The test is stopped when the 
subject cannot continue due to fatigue or chest pain. The Bruce score is the time taken on the test in minutes 
and fractions of a minute. METS, metabolic equivalent unit reflects the resting volume oxygen consumption per 
minute (3.5 ml/min/kg of body weight) for 1 MET equivalent. In Bruce protocol, the starting point (1.7 mph at 
10% slope) represents 5 METs.
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vital signs, such as arterial blood pressure, heart rate, and respiratory rate (see Supplementary Table 1), were not 
statistically significantly different between males and females either at the baseline or after heat stress; as well as 
before and immediately after heat stress.

Gene Expression Signature.  To determine the pattern of gene expression at the three time points, a PBMC 
transcriptome microarray analysis, using Human Genome U133 Plus 2.0 Array chips, was performed. The anal-
ysis revealed a total of 1423 differentially expressed (DE) genes across all time points. We found 269 genes DE at 
T1 and 1397 genes DE at T2 of which 243 were common to both time points (Fig. 2). Exposure time and change 
in core temperature had no significant impact on the analysis.

There was an over-representation of downregulated genes at both T1 (n = 208; 77%) and T2 (n = 1002; 72%) 
(Fig. 2a). The 243 DE genes common to T1 and T2 exhibited consistent changes, up- or downregulated, at both 
time points (Fig. 2b). There was no statistically significant difference in the pattern of gene expression between 
males and females. The microarray data discussed in this study have been deposited in the NCBI Gene Expression 
Omnibus website (GEO; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=abkrqgmonlohdch&ac-
c=GSE90763), and are accessible through GEO series accession number GSE90763.

Figure 1.  Core temperature of the study participants at baseline and after heat stress. Core temperature of 15 
participants before exposure to heat stress (T0), immediately after heat stress (T1), and one hour after heat 
stress (T2). Heat stress was induced by passive exposure to heat in a pre-warmed sauna at temperature of 
75.7 ± 0.86 °C with a humidity of 20–40% for a total of 15 minutes.

Figure 2.  Differential gene expression after heat stress. (a) A bar chart depicting the number of genes that are 
differentially up-regulated or down-regulated immediately (T1) and one hour (T2) after heat stress relative to 
baseline, before exposure (T0). (b) Venn diagrams showing the number of DE genes immediately (T1) and one 
hour (T2) after heat stress. The number in the overlapping circle represents the number of genes shared by both 
T1 and T2.

http://1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=abkrqgmonlohdch&acc=GSE90763
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=abkrqgmonlohdch&acc=GSE90763
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Pathway and Upstream Regulator Analysis of the Heat Stress Transcriptome.  Canonical 
Pathways.  Using Ingenuity Pathways Analysis (IPA), the DE genes were mapped to 83 and 84 significant pathways 
at T1, and T2, respectively (Fig. 3 and Supplementary Table 2 and 3) using a threshold ρ value < 0.05. The association 
of DE genes with these pathways suggests their possible mechanism of action in response to heat stress26.

DE genes at T1 are involved in proteostasis, bioenergetics, and cell death and survival: HSPA1A gene, which 
encodes the heat shock proteins HSP-70-1, was significantly upregulated at T1, consistent with heat shock 
response (Table 2)17, 19, 20. Other differentially expressed genes encode proteins that are known to function in 
a range of cellular stress -associated signaling and metabolic pathways. These include the Unfolded Protein 
Response (UPR), High Mobility Group Box 1 (HMGB1), Ultraviolet-A (UVA)-induced Mitogen-activated pro-
tein kinases (MAPK), nuclear factor-κB (NF-κB), and p53 signaling27–31 (Fig. 3a).

Based on the activation state of one or more DE genes in the dataset, and their causal relationships with each 
other derived from the curated literature, IPA predicts an activity pattern for the pathways with their end-point 
biological functions26.

Accordingly, the P53 signaling pathway was predicted to be activated, with increased cell survival and glycol-
ysis, and decrease in cell death, senescence, DNA repair, and mitochondrial respiration (Fig. 4a)31. The predicted 
activation of glycolysis with concomitant inhibition of mitochondrial respiration suggests that the energy source 
in heat stress relies mainly on the metabolism of glucose.

HMGB1, UVA-MAPK, and NF-κB were predicted to be inhibited with a predicted decrease in cell adhesion, 
inflammation and apoptotic cell death (see Supplementary Fig. 1, 2 and 3).

UPR was the most significant pathway in the early response to heat stress, although its state of activation could 
not be determined by IPA. However, IPA predicts that DE genes including HSPA1A associated with UPR lead to 
an increase in cell survival, suggesting that ER stress was mitigated. (see Supplementary Fig. 4)27.

Figure 3.  Canonical pathways identified after heat stress. Five most significant signaling and metabolic 
pathways identified by the IPA analysis of the differentially expressed genes, immediately after heat stress (T1) 
(a), and one hour after heat stress (T2) (b). The pathways are ranked by the negative log of the ρ value of the 
enrichment score (upper x-axis) as calculated by IPA using Fisher’s exact test, right-tailed. A Z-score ≥ 1 means 
that a function is significantly increased (orange) whereas a Z-score ≤ −1 indicates a significantly decreased 
function (blue), and an undetermined prediction in gray. The yellow straight line represents the designated 
significant threshold −log P value = 1.301 (ρ < 0.05). The orange curve represents the ratio values (lower x-axis) 
between the number of DE genes and the total number of genes in each of these curated pathways. The pathway 
analyses were generated through the use of QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood 
City, www.qiagen.com/ingenuity).

http://2
http://3
http://1
http://2
http://3
http://4
http://www.qiagen.com/ingenuity
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DE genes at T2 are consistent with alteration of protein and energy metabolism and immune response: HSP90AB1 
and HSPB11 genes, which encode HSP 90 alpha family class B member 1 and HSP family B (small) member 11 
were significantly downregulated (Table 2). HSPB6 and HSPB8, which encode the small HSPs HSP-22, and HSP 
alpha-crystallin-related, were significantly upregulated. The concomitant decrease in expression of HSP90AB1 
and HSPA1A genes suggests an attenuation of the heat shock response (Table 2).

Other differentially expressed genes were involved in bioenergetics, protein metabolism and immune response 
(Fig. 3b). The analysis predicted the inhibition of eukaryotic initiation factor 2 (eIF2), an important regulator of 
protein synthesis during stress, with a predicted increase of translation initiation, and decrease of translation 
elongation consistent with alteration of protein synthesis (Supplementary Fig. 5)32.

IPA was unable to determine the activation state of the four remaining pathways: namely oxidative phosphorylation, 
mitochondrial dysfunction, the protein ubiquitination, and the antigen presentation pathways. Nonetheless, there was:

	 a)	 downregulation of most of the genes involved in the respiratory chain, including genes encoding the com-
ponents of complexes I (NADH dehydrogenase-ubiquinone), IV (ubiquinol-cytochrome c reductase), and 
V (cytochrome c oxidase), with a predicted decrease in ATP production, and increase in oxidative stress 
(Supplementary Table 4 and Fig. 6)33.

	 b)	 downregulation of ubiquitin conjugation and proteasome genes with predicted decrease of protein refold-
ing, mono- and poly-ubiquitination, and antigen presentation (see Supplementary Table 5, and Fig. 7).

	 c)	 downregulation of major histocompatibility (MHC) I and II complex genes, consistent with suppression of 
antigen presentation (see Supplementary Table 6, and Fig. 8)34, 35.

Comparison analysis of canonical pathways at T1 and T2: For a better understanding of the dynamic changes 
in biological processes across time-points after heat stress, we used the comparison analysis tool of IPA (see 
Supplementary Fig. 9).

The analysis showed that UPR was transient as the DE genes at T2 were not significantly associated with the 
UPR pathway. However, the prediction of increased translation initiation but with decreased translation elonga-
tion, protein refolding, mono- and poly-ubiquitination indicate a persistent proteotoxic stress32, 34.

The DE genes were significantly associated with the P53 pathway after heat stress, with predicted increased 
glycolysis and decreased mitochondrial respiration at T1 and T2, suggesting that the shift to glycolysis as a source 
of energy is sustained (Fig. 4b). This finding was supported by the concomitant predicted decrease in ATP synthe-
sis by oxidative phosphorylation, and the significant association of DE genes with the mitochondrial dysfunction 
pathway at T2 (see Supplementary Fig. 9)33.

Finally, NF-κB pathways remained significantly inhibited at both time points after heat stress, consistent with 
a sustained inhibition of the inflammatory response30. In addition, at T2, there was a decreased expression of the 
major MHC I and II complexes genes, suggesting reduced antigen presentation (see Supplementary Fig. 9)35.

Upstream Regulators.  The upstream regulator analysis is based on prior knowledge of expected effects between 
transcriptional regulators and their target genes stored in the Ingenuity Knowledge base26. Using a threshold ρ 
value < 0.05, the analysis revealed 80 and 256 upstream molecules that could potentially explain the expression 
changes observed in response to heat stress at T1 and T2, respectively (see Supplementary Tables 7 and 8).

Five upstream regulators for each time-point (10 in total) were selected based on the overlap ρ value (Table 3) 
and activation Z score (≥2 or ≤−2). Seven out of the 10 were related to the innate and adaptive immune 
response, including CD3, Interleukin (IL) 2, IL15, and CD 40 ligand36–40. CD3 and IL2 were sustained after 
heat stress at both time-points. This suggests that the regulation of the immune response is an important com-
ponent of the human CSR. Other upstream regulators, including the PGR (Progesterone receptor), RICTOR 
(Rapamycin-insensitive companion of mammalian target of rapamycin), and MYC (Avian myelocytomato-
sis viral oncogene neuroblastoma derived homologue) are involved in various biological processes including 
cytoskeleton reorganization, actin filament regulation, metabolism, cellular growth and proliferation, as well as 
cell death and survival41–43.

Biological Processes, Toxicity Function and Disease.  Molecular and Cellular Functions.  IPA analysis 
can predict the biological processes and functions that are likely to be affected by the gene expression changes 
identified after heat stress (Fig. 5). At T1, the DE genes were involved in five most significant molecular functions 

Symbol Gene Name Exp. Fold Change T1 Exp. Fold Change T2

HSPA1A Heat Shock Protein Family A (Hsp70) Member 1 A 1.342** −1.276

HSPB8 Heat shock 22 kDa protein 8 1.159 1.499**

HSPB6 Heat shock protein, alpha-crystallin-related, B6 1.116 1.740**

HSPB11 Heat shock protein family B, member 11 −1.208 −1.636*

HSP90AB1 Heat shock protein 90 kDa alpha (cytosolic), class B member 1 −1.133 −1.671*

Table 2.  Heat shock protein gene expression after heat stress. Values are changes (in fold log2 scale) in gene 
expression immediately after heat stress (T1), and one hour after heat stress (T2), relative to baseline, before 
heat exposure. Comparison was made using Generalized mixed linear model. Statistical significance *ρ < 0.05, 
**ρ < 0.01.

http://5
http://4
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Figure 4.  Diagram of P53 signaling pathway with overlaid molecular activity prediction after heat stress. 
Diagram of canonical P53 signaling pathway showing up (red) and down (green) regulated genes immediately 
after heat stress (T1) (a), and one hour after heat stress (T2) (b) along with predictions on biological function. 
Cell survival and glycolysis (colored orange) are predicted to be increased, while apoptosis, autophagy, 
senescence, DNA repair, and mitochondrial respiration (colored blue) are predicted to be decreased at both 
time points. Cell cycle progression is predicted to be increased at T2 only after heat stress (b). The pathway and 
the molecular activity prediction analyses were generated through the use of QIAGEN’s Ingenuity Pathway 
Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).

http://www.qiagen.com/ingenuity
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ranked by the overlap ρ value (Fig. 5a). These include cellular development, cellular growth and proliferation, cell 
death and survival, cellular morphology, and cellular function and maintenance. At T2, DE genes were involved 
in cellular growth and proliferation, cellular death and survival, RNA-post translational modification, cellular 
development and cellular compromise (Fig. 5b). Cell death and survival (Z score = −2.2 and −5.0 at T1 and T2, 
respectively), and cellular growth and proliferation (Z score = −2.1 and −4.5 at T1 and T2, respectively) func-
tions were sustained after heat stress and predicted to be inhibited.

Toxicity Function and Diseases.  The toxicity function of IPA was used to predict the pathological endpoints of heat 
stress, possibly mediated through the changes in gene expression. It also provides information about the signaling path-
ways mediating these cytotoxic effects. p53 signaling was predicted to be driving the toxicity function at T1 whereas 
mitochondrial dysfunction was most significant at T2 (Fig. 6a,b). The other significant toxicity related pathways 
included the cell death signaling pathway at both time points, while NFκB signaling and hypoxia-inducible factor 
signaling were the most significant toxicity pathways at T1 and T2 respectively (Fig. 6a,b). The most significant clinical 
endpoints mediated by these pathways were predicted to be in the form of hepatic, renal and cardiac toxicity (Fig. 6c).

Validation of Microarray Data by Quantitative Real-time PCR (qPCR).  Sixteen representative 
genes from each time point were selected to validate the microarray data by qPCR using TaqMan probes (see 
Supplementary Table 9). Eleven (68.7%) out of 16 genes show the same expression pattern in real-time PCR, with 
comparable fold-change values to those of microarray-based expression profiling. Four genes displayed similar 
fold-change values, but without reaching statistical significance, and one did not.

Discussion
The CSR to environmental heat, including changes in gene expression, plays a vital role for most organisms10, 12–14, 17–20.  
Upon stress, cells rapidly reprogram gene expression to favor stress-related genes, at the expense of growth-related 
genes, in order to adapt to the changing conditions; thereby averting damage and death10, 12–14, 17–20. We have 
characterized, for the first time using whole genome microarrays, the human transcriptional CSR in circulating 
PBMCs obtained from participants passively exposed to extreme environmental heat.

The results reveal that expression changes occur rapidly after 15 minutes of heat exposure, with no significant 
increase in core body temperature, and continue to amplify one hour after the end of heat stress, as the number 
of differentially expressed genes increases markedly. The effect of heat stress on transcription was predominantly 
inhibitory, with more than two-thirds of the DE genes being suppressed. At both time points, the reprogramed 
transcriptome comprised genes involved in stress-associated signaling and metabolic pathways, that regulate pro-
teostasis, energy metabolism, and immune response27, 30–34. Gene function analysis predicted the downregulation 
of a range of processes relating to cell growth and proliferation as well as cell death and survival.

Taken together, the transcriptomic response pattern to environmental heat stress observed in humans is rem-
iniscent of the stress response of model organisms, suggesting a high degree of evolutionary conservation of the 
CSR12–14, 17–20. However, the human CSR comprises alteration in mitochondrial bioenergetics, protein metabo-
lism, and reduced immune function aimed at restoring homeostasis and yet might be potentially harmful.

What triggered the CSR in our heat stressed participants is not known. Studies using isolated cells attributed 
the activation of the CSR to hyperthermia and/or to heat-induced macromolecular damage, particularly mis-
folded proteins19, 20. Recent studies using multicellular organisms suggest that, similar to the thermoregulatory 
response, the CSR can be activated by extreme environmental heat, independently of hyperthermia and macro-
molecular alteration, to prevent damage and maintain homeostasis44, 45.

Upstream Regulators Category Predicted Activation Z-score ρ value of overlap

T1

PGR Ligand-dependent nuclear 
receptor −2.702 4.53E-08

CD3 Complex 2.515 3.72E-07

IL2 Cytokine −3.62 2.4E-06

CD28 Transmembrane receptor 2.035 3.42E-06

IL15 Cytokine −2.779 4.43E-05

T2

RICTOR Other 6.611 2.79E-24

CD3 Complex 4.465 2.78E-12

MYCN Transcription regulator −3 3.41E-12

IL2 Cytokine −5.281 7.49E-12

CD40LG Cytokine −3.889 1.66E-10

Table 3.  List of the most significant upstream regulators identified after heat stress. The five most significant 
upstream regulators identified by IPA analysis of the differentially expressed genes, immediately after exposure 
and one hour after heat stress. The regulators are ranked by the negative log of the ρ value of the enrichment 
score as calculated by IPA (www.qiagen.com/ingenuity) using Fisher’s exact test, right-tailed and activation 
Z-score (≥2 or ≤−2). A Z-score ≥2 predicts increased activity, whereas a Z-score ≤−2 predicts inhibited 
activity.

http://9
http://www.qiagen.com/ingenuity
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In the present study, each of the mechanisms alone and/or combined, could have contributed to the activation 
of the CSR. The participants were subjected to extreme environmental heat exceeding 70 °C, which led to an 
increase in core temperature (up to 39 °C in one participant), although, it did not reach statistical significance. 
Also, three of the 10 pathways identified at both time-points after heat stress by the IPA analysis, the UPR at T1, 
eIF2 and protein ubiquitination signaling pathways at T2, function to maintain proteostasis. These suggest that 
heat may have caused protein unfolding and/or aggregation27, 32, 34.

Genes expressed immediately after heat stress were significantly associated with the UPR pathway, suggest-
ing that heat stress resulted in an influx of misfolded or aggregated proteins to ER that overwhelmed its protein 
folding capacity, resulting in ER stress, and thereby triggering the UPR27. The UPR was transitory as the genes 
expressed one hour after heat stress were not associated significantly with the UPR pathway; suggesting that alle-
viation of ER stress has occurred rapidly. However, there was a concomitant decrease of protein translation elon-
gation, protein refolding and ubiquitination processes suggesting that proteostasis had not yet been restored32, 34.

Cells respond to stress by reprograming the transcriptome, including genes that govern the shift from rapid 
proliferation and growth processes to stress response and adapt metabolism to survive the stress12–14. Our anal-
ysis predicts that the altered gene expression observed in our participants at both time-points after heat stress 
results in the inhibition of both cell death and survival, and cellular growth and proliferation. This prediction is 
consistent with the current understanding of the CSR described in organismal models12–14. It also suggests several 
signaling pathways that could have mediated these biological processes. These include the predicted activation 
of p53, a well-known repressor of transcription of several growth-related genes, with concomitant prediction of 
downregulation of the growth and proliferation promoter pathways such as HMGB1, MAPK and NF-κB, thus, 
underlying the shift from cellular growth and proliferation to adaptation and survival28–31.

Our results suggest that the early heat stress response in human beings involves novel pathways, such as 
the p53 signaling pathway. The predicted activation of p53 signaling reported in the present study is consistent 
with previously published gene expression data obtained from human cells subjected to heat shock in vitro46–48.  
Activation of p53 generally occurs in response to cellular and/or genotoxic stress and accordingly mediates 
graded responses31. These responses include regulating energy, repairing DNA, and controlling cell growth and 
proliferation. Cells are thereby allowed to adapt to and survive transient stress, and responses can extend to the 
induction of cell death or senescence31. Previous studies have suggested that in vitro heat shock induces DNA 
double-stranded breaks and chromatin alteration49, 50. Heat is also known to affect the energy balance and redox 
state of cells19, 20. Our analysis predicts that activation of the P53 pathway led to cell survival and inhibition 
of apoptosis, autophagy and DNA repair mechanisms. However, it remains unclear whether or not the DNA 

Figure 5.  Molecular and cellular functions associated with transcriptional changes after heat stress. Biological 
functions associated with transcriptional changes immediately (T1) (a), and 1 hour after heat stress (T2) (b). 
The biological functions are ranked by the negative log of the P value of the enrichment score (upper x-axis) 
as calculated by IPA using Fisher’s exact test, right-tailed. The yellow straight line represents the designated 
significant threshold –log P value = 1.301 (ρ < 0.05). The biological function analyses were generated through 
the use of QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).

http://www.qiagen.com/ingenuity
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integrity was altered in our participants and there is scope for further study. Also, the analysis predicts sup-
pression of mitochondrial respiration and activation of aerobic glycolysis controlled by P53 via the metabolic 
gene SCO2 (synthesis of cytochrome c oxidase), a mechanism described previously in P53 knockout mice model 
subjected to exertional heat stress51. Taken together, the findings of this study suggest that P53 may be a central 
regulator of the CSR to extreme heat in humans.

Mitochondria are highly dynamic organelles that provide energy in the form of ATP through oxidative phos-
phorylation33, 52, 53. Hence, mitochondrial activity is essential for cellular function and survival during stress. 
However, our IPA analysis identified that expression of most of the genes involved in the electron respiratory 

Figure 6.  Predicted adverse signaling pathways and organ damage associated with transcriptional changes 
after heat stress. Predicted adverse signaling pathways identified in participants immediately (a) and one 
hour (b) after heat stress. The pathways are ranked by the negative log of the P value of the enrichment score 
(upper x-axis) as calculated by IPA using Fisher’s exact test, right-tailed. The orange curve represents the 
ratio values (lower x-axis) between the number of DE genes and the total number of genes in each of these 
curated pathways. The straight yellow line represents the designated significant threshold –log P value = 1.301 
(ρ < 005). Predicted organ damage after heat stress (c); dark blue bars, 15 minutes; light blue, 1 hour. Organ 
damage are ranked by the negative log of the P value of the enrichment score (upper x-axis) as calculated by IPA 
using Fisher’s exact test, right-tailed. The toxic effects and disease analyses were generated through the use of 
QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).

http://www.qiagen.com/ingenuity
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chains and in ATP production was repressed, indicative of mitochondrial dysfunction, although, the direction-
ality of the pathway could not be determined (Fig. 3b). This finding is consistent with the previously reported 
reduction in ATP production during heat stress, which was attributed to the uncoupling of oxidative phosphoryl-
ation and/or a decreased number of mitochondria20, 54–56. Here, we extend these earlier observations by demon-
strating that reduced mitochondrial bioenergetics is an adaptive mechanism regulated at the transcriptional level, 
possibly in part via the P53 signaling pathway51. Further, the analysis also suggests that upon heat stress, mono-
nuclear cells rely on aerobic glycolysis to generate ATP, a phenomenon known as the Warburg effect, which was 
described in rapidly proliferating cells such as cancer or hematopoietic cells57, 58. The reliance on aerobic glycolysis 
rather than oxidative phosphorylation was recently demonstrated in stressed Drosophila melanogaster and attrib-
uted to UPR activating transcription factor (ATF) 459. This study could not answer the question why the human 
CSR to heat results in a switch to a less efficient form of metabolism. One glucose molecule generates only two 
ATP via aerobic glycolysis and 36 ATP through oxidative phosphorylation. However, it is appealing to speculate 
that as mitochondrial oxidative phosphorylation is a major producer of radical oxygen species with related-tissue 
damage, the aim may be protective33, 57. The prediction that oxidative stress was increased in the present study 
lends support to this interpretation.

Numerous studies have documented the alteration of both innate and adaptive immune responses during 
stress60–62. This alteration has been attributed in large part to the immunomodulatory role of upregulated HSPs, 
particularly HSP 70 and HSP 6060–62. This immunomodulatory role has been explained by their extraordinary evo-
lutionary conservation, particularly between microorganisms and human, resulting in immune cross-reactivity 
between exogenous HSPs and self-HSPs62. Thus, upregulated self-HSPs 60 and 70 act as immunogenic antigens 
that are presented by MHC class I to cytotoxic T -cells62. Another immunomodulatory role of upregulated HSPs 
is the downregulation of the inflammatory response demonstrated in various clinical and experimental models; 
although the mechanisms remain unclear62–65. Regulatory cytokines, such as IL4, IL10 and transforming growth 
factor (TGF) β, result in the inhibition of inflammation by T-cells primed to upregulated self-HSP while direct 
inhibition of inflammation at the transcriptional level may also play a part63–65.

The present study shows that the immune response is an important component of the CSR to extreme heat in 
human. NF-κB signaling pathway, which influences innate and adaptive immunity and inflammation, was down-
regulated at both time points after heat stress, suggesting a sustained inhibition of the inflammatory response at 
the transcriptional level30. Importantly, the activation of inflammation before heat stress has been shown to result 
in apoptotic cell death, suggesting, albeit indirectly, that modulation of the inflammatory response might have 
a critical role in cell survival during heat stress10. Likewise, at one hour after heat stress, most of the histocom-
patibility class I (HLA, A to F), and class II (HLA-DMA, DPA1, DPB1, DRA, and DRB1) genes were suppressed, 
indicating reduced antigen presentation. Further studies are needed to investigate the precise role and clinical 
implications of the downregulation of immune function-related genes during environmental heat exposure.

Heat-related morbidity and mortality can be observed from the third day of high temperatures and these 
effects accelerate markedly as a function of the intensity and duration of the heat wave5, 6. However, to the caus-
ative mechanism of morbidity and mortality remains poorly understood7. Our study was not designed to mimic 
the long duration of heat exposure observed during heat waves and the associated morbidity and mortality. 
Rather, the participants were subjected to extreme environmental heat for a short time, with a full recovery phe-
notype. The purpose was to examine the effect of heat alone on the stress response in a well-controlled experiment 
and thereby uncover the potential metabolic and signaling pathways that contribute to the clinical outcomes. 
The results suggest that exposure to heat alone could lead to cardiac, liver and kidney damage and/or failure, 
thus predicting the multiple organ injury and dysfunction observed among victims of heatstroke, and thereby 
validating, albeit indirectly, the pertinence of our experimental model7. More importantly, our analysis suggests 
several metabolic and signaling pathways that might underlie heat-related injury and damage. These include p53 
and pro-apoptotic signaling mitochondrial dysfunction, hypoxia-inducible factor and NF-κB signaling. Further 
validation studies using laboratory animal models are needed to test these novel hypotheses.

There are several limitations to this study to note. First, we have used PBMCs as surrogates for whole-body, 
non-exertional heat stress. This approach has been validated by a number of studies of exertional heat stress, but 
this is the first time that PBMCs have been used in a non-exertional heat stress setting16, 22, 24, 25. Thus, it remains 
unclear whether the gene changes observed in the present study are generalizable to other cell types. For instance, 
hematopoietic cells are the only non-cancerous cells that exhibit the use of energy from aerobic glycolysis rather 
than the more efficient mitochondrial respiration, so whether this important finding in our study can be general-
ized requires further studies using non-hematopoietic cells58.

In addition, the sample population used for this study was small, particularly given the wide genetic variation 
between individual humans66. Moreover, whole-genome, microarray-based transcriptional profiling can generate 
a lot of background noise that might render the analysis uncertain11, 67. We have attempted to minimize these 
factors by rigorous selection of the study population in terms of age, ethnicity, fitness, and health status; together 
with a well-controlled heat stress procedure.

A third potential limitation of this study is the false discovery rate of the expressed genes with significant 
ranges from less than 1% to 16.3%; this makes it likely that some of the gene expression changes reported as 
significant might be false positives. Previous experimental studies have indicated that constitutive genes that 
undergo small-scale expression changes contribute the most to the heat shock response, rather than the strongly 
up-regulated and down-regulated inducible genes11 and so the potential inclusion of some false positives is a 
tradeoff for capturing some subtle but important gene changes.

Nonetheless, the present study has characterized for the first time the human gene expression response to 
extreme environmental temperature under passive conditions. Our findings show that the transcriptional response 
is prompt, dynamic and extensive, and induces a transcriptional program that could promote cell survival and restore 
homoeostasis. The data also suggest that the human CSR to heat stress involves mitochondrial dysfunction, altered 
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protein synthesis, and reduced gene expression-related to immune function. How and under what circumstances these 
CSR-induced vulnerabilities might contribute to heat-induced adverse health outcomes requires further investigation, 
and this in turn might lead to improvements in the prevention and treatment of heat-related morbidity and mortality.

Materials and Methods
Study Participants and Heat Stress Procedure.  Fifteen male and female volunteers were recruited by adver-
tisement among Saudi Arabs studying and/or working at King Abdulaziz Medical city, Riyadh, Saudi Arabia to partic-
ipate in the study. The study protocol was approved by the Institutional Review Board of King Abdullah International 
Medical Research Center and all methods were performed in accordance with the World Medical association decla-
ration of Helsinki on ethical principles for medical research involving human subjects. Written informed consent was 
obtained, and participants were evaluated by physical screening, a cardiac stress test by exercise on a treadmill and by 
laboratory screening (including a complete blood count and liver, renal, coagulation and cardiac profiles). Exclusion 
criteria were any underlying illness, current medication or abnormal laboratory test results.

The heat stress procedure was conducted before the summer season to prevent the effect of heat adaptation. 
The participants were kept under the supervision of trained medical staff throughout the entire study period. 
Participants, in groups of three, wearing light T-shirts and shorts, were exposed to environmental heat stress 
in a pre-warmed sauna (Sawo, Finland) heated to the recommended temperature of 70 °C–90 °C and 20–40% 
humidity (thermohygrometer, Sawo, Finland) for 15 minutes, if tolerated. The participants were instructed to 
leave the sauna early if they experienced any discomfort, including headache, nausea, dizziness, or weakness. The 
participants were allowed to drink ad libitum throughout the experiment.

After heat exposure, the participants were allowed to cool passively at ambient temperature (23–26 °C). Vital 
signs, including oral temperature, blood pressure, pulse rate, respiratory rate, and oxygen saturation using a pulse 
oximeter, were measured at three-time points: before heat exposure (T0), at the end of heat exposure (T1), and 
one hour after the end of heat stress (T2). A 10 ml sample of blood drawn from the antecubital vein was collected 
in a sodium heparin-treated tube (BD Biosciences, USA) at each time point.

Microarray Procedures and Data Preprocessing.  PBMC Isolation.  PBMCs were isolated using sepa-
ration medium (Ficoll-Paque PLUS; GE Healthcare, Bio-Sciences AB, Sweden) according to the manufacturer’s 
instructions. The enriched PBMCs obtained by this procedure were stored at −80 °C until required.

RNA Extraction.  Total RNA was isolated from the PBMCs obtained from each sample using the SV Total RNA 
Isolation System (Promega, USA), following the manufacturer’s instructions. The quantity and quality of the RNA 
was assessed using the NanoDrop ND-2000 spectrophotometer (Thermo Scientific, USA).

Microarray Analysis.  Gene expression profiling was carried out using the Gene Chip® Human Genome U133 
Plus 2.0 Array (Affymetrix Inc., USA). The labeling of the sample and microarray hybridization and washing were 
performed following the manufacturer’s instructions. Briefly, total RNA at a concentration of 80–200 ng/µl was 
transcribed into double-stranded cDNA, synthesized into cRNA and labeled with Cyanine-3-CTP using the IVT 
PLUS Reagent kit (Affymetrix Inc., USA). The labeled cRNAs were then hybridized onto a microarray and the 
arrays were scanned using a 7000 G scanner (Affymetrix Inc., USA).

Normalization and Statistical Significance.  Raw cell files were processed using freely available updated chip 
definition files for HGU133Plus2 arrays based on Entrez genes (HGU133Plus2_Hs_ENTREZG, version 19), to 
map the single-probe ID to the correct Gene ID. We were able to map 54,645 probes to 19,702 genes. The data 
were normalized using Robust Multi-Array Average quantile normalization as implemented as open source in 
the R Bioconductor package version 3.2. To reach the final gene set, a non-label-specific maximum variance 
filtering technique was used. This method consists of creating for each gene, a vector of all expression at the 
three time points, and of computing sample variance based on its expression vector. All of the genes were 
ranked in descending order based on the computed variance, and the top quartile (4,925 genes) was retained 
for further statistical analysis.

Statistical Analysis.  All physiological and demographics data for the study cohort were summarized and 
reported in terms of means ± SD unless stated otherwise. All statistical comparisons between males and females 
were performed using exact Kruskal Wallis test.

To determine the differentially expressed genes, we used a 4,925 separate generalized linear mixed model 
in which gene expression values across time points were included as dependent variables and time index was 
included as an independent variable68, 69. For all of the models, we assumed underlying Beta distribution with 
unstructured correlation matrix to account for repeated measures over time within subject. Further, to control for 
the potential impact of variation in exposure time (i.e. duration spent inside the sauna) and the subject’s change 
in the core temperature from baseline, we have used another set of 4,925 where those variables were included 
as independent variables in all models. All genes with a ρ-value < 0.05 were considered for further analysis. To 
correct for multiplicity, we calculated False Discovery Rate (FDR) using the Benjamini–Hochberg step-up70. 
Mann-Whitney test was used to compare the genes detected by microarray-based expression profiling and by 
RT-qPCR. Differences were considered significant at ρ-value < 0.05. All analyses were conducted using SAS 9.3 
software (SAS® 9.3, NC: SAS Institute Inc., USA).
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Pathways, Upstream and Downstream Effects Analysis.  To interpret the biological functions of the 
genes that were significantly upregulated or downregulated in participants exposed to heat, 269 and 1397 DE 
genes at T1 and T2, respectively were uploaded to IPA software (www.qiagen.com/ingenuity). IPA generated a 
“Core analysis” comprising top canonical pathways, upstream regulators, biological and diseases function, and 
toxicity function for each time-point after heat stress.

IPA calculated an overlap ρ-value associated with each function or pathway, which estimates the probability 
that the association between our dataset of differentially expressed genes after heat stress and a given process is 
due to random chance26. A ρ -value < 0.05, calculated using the right-tailed Fisher exact test, indicates a statisti-
cally significant non-random association. IPA calculated also an activation Z-score, independent of the ρ -value 
of overlap. The Z-score is used to infer likely activation states of canonical pathway, upstream regulator and bio-
logical process based on comparison with a model that assigns random direction26. A Z-score > 1 indicates that a 
function is significantly increased, whereas a Z-score < −1 indicates a significantly decreased function.

Quantitative Real-time PCR.  Single-stranded cDNA was prepared from 1.5 μg of total RNA in a 50-μl 
reaction volume using the High- Capacity cDNA Reverse Transcription Kit (Applied Biosystems, USA), accord-
ing to the manufacturer’s instructions. The 50 μl reaction was diluted 1:3 with nuclease- free water (Affymetrix 
Inc., USA) and then stored at −20 °C until the RT-PCR analysis was performed.

RT-PCR was performed using TaqMan gene expression Master Mix and TaqMan Gene Expression Assay 
from (Applied Biosystems, USA) according to the manufacturer’s instructions. TaqMan genes included ARPC1B, 
ERP29, IRS2, OLIG1, TSC22D3, DDIT4, HSPA1A, MYO1G, PRDX5, SSBP1, FSTL1, CYP2A7, AREG, KLF9, RP9P 
and HSPB6, and ACTB as the endogenous control. These genes were selected randomly among the differen-
tially expressed genes from the microarray data. The analysis was carried out with Applied Biosystems 7900HT 
real-time polymerase chain reaction system. The mean fold changes in each gene for each sample were calculated 
using the 2−ΔΔCt method, as previously described71.
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