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Wheat is a crucial crop worldwide, and accurate detection and counting of wheat spikes are vital for 
yield estimation and breeding. However, these tasks are daunting in complex field environments. To 
tackle this, we introduce RIA-SpikeNet, a model designed to detect and count wheat spikes in such 
conditions. First, we introduce an Implicit Decoupling Detection Head to incorporate more implicit 
knowledge, enabling the model to better distinguish visually similar wheat spikes. Second, Asymmetric 
Loss is employed as the confidence loss function, enhancing the learning weights of positive and hard 
samples, thus improving performance in complex scenes. Lastly, the backbone network is modified 
through reparameterization and the use of larger convolutional kernels, expanding the effective 
receptive field and improving shape information extraction. These enhancements significantly improve 
the model’s ability to detect and count wheat spikes accurately. RIA-SpikeNet outperforms the state-
of-the-art YOLOv8 detection model, achieving a competitive 81.54% mAP and 90.29% R2. The model 
demonstrates superior performance in challenging scenarios, providing an effective tool for wheat 
spike yield estimation in field environments and valuable support for wheat production and breeding 
efforts.
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More than 30% of the world’s population lives on wheat, which plays an important role in human diet1–3.With 
the growth of the population and the improvement of living standards, the demand for wheat continues to 
increase. In addition, wheat production has been affected by climate change and the reduction of cultivated 
land4–6. Therefore, it is very important to increase wheat yield through breeding. The large-scale, multi-category, 
and multi-morphological phenotypic information provided by wheat spike numbers is of great significance for 
optimizing variety selection and improving yield7,8. This data allows for a more comprehensive understanding of 
the wheat growth process and can provide valuable insights into the genetic and environmental factors that affect 
yield. By analyzing this data, researchers can identify specific traits that are associated with high-yielding varieties 
and develop targeted breeding programs to enhance these traits. Therefore, how to effectively count wheat spikes 
is particularly critical. Traditional manual statistical methods are time-consuming and inefficient. Developing an 
efficient and automatic method for wheat spike detection and counting per unit area is necessary and beneficial. 
Of particular significance is the multi-category, multi-class wheat spike detection. This is primarily aimed at 
achieving accurate classification and identification of wheat varieties, thereby helping agricultural scientists 
and farmers to better understand the characteristics and performance of different wheat varieties for proper 
cultivation and management. This helps to improve the yield and quality of wheat and promotes sustainable 
agriculture9.

Due to the popularity of camera platforms, image-based wheat spike detection is a potential solution to 
replace tedious manual observation. To develop efficient and automatic wheat spike detection algorithms, a 
large and diverse wheat spike dataset is necessary. Several state-of-the-art wheat spike detection datasets are 
summarized here.Hasan et al.10 constructed the SPIKE dataset using ground-based equipment and cameras. 
The acquired images capture wheat spikes in a plot area of 0.8 m × 0.8 m. The dataset consists of 335 images, 
including 10 wheat varieties at different growth stages, which contain about 25,000 wheat spikes. Zhao et al.11 
took a wheat spike dataset through Unmanned Aerial Vehicle (WSUAV). They divided the three wheat fields 
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into acquisition scenarios of different periods, densities and resolutions. Then, in nine different scenes, 3171 
images, including 82,873 wheat spikes, were obtained. To address the limitations of the wheat spike dataset, 
David and Guo et al. proposed two Global Wheat Head Detection (GWHD) Dataset in 2020 and 202112,13. They 
use multiple devices to capture images. Then, wheat spikes are marked using a web platform. The GWHD2021, 
which is an amplification and optimization of GWHD, contains 47 types of wheat spikes from 12 countries, with 
a total of 275,187 wheat spikes from 6515 images. The dataset has the advantages of large-scale, multi-category, 
and multi-morphological phenotypic data.

Based on the comparison of several datasets in Table 1, it is evident that the GHWD2021 dataset stands out 
with its larger number of images and diverse categories. In contrast, the SPIKE dataset has a limited number of 
images and categories, which makes it challenging to meet the requirements of deep learning that demand a 
large volume of data. While the WSUAV dataset and GWHD2020 dataset have a larger data volume, they lack 
diversity in their data. A robust deep learning model for all situations requires a dataset of images covering a wide 
range of genotypes, seeding densities and patterns, plant states and stages, and collection conditions. Similarly, 
the plant phenotyping community recognizes the importance of having access to plant- or crop-specific datasets 
The phenotyping community also recognizes the importance of having access to plant- or crop-specific datasets. 
Considering its characteristics, the GWHD2021 dataset appears to be more suitable for wheat spike detection.

In recent decades, with the development of computer technology, image processing and machine learning 
techniques have been increasingly applied to extract crop phenotype parameters14,15. These methods have made 
some contributions to wheat yield estimation. However, there are still limitations such as requiring too much 
manual intervention and weak model generalization ability. Deep learning models developed in recent years 
have shown advantages over traditional image processing and machine learning methods in most visual tasks16. 
Deep learning has the advantage of automatically learning features from big data, instead of manually designed 
features, and has high accuracy17. Among them, deep learning-based object detection algorithms have been 
greatly improved, and various two-stage and one-stage algorithms have emerged. With the development of 
deep learning algorithms, their application in the field of agriculture is becoming more widespread. Wang et 
al.18 improved on the EffificientDet-D0 target detection network. They added a convolutional block attention 
module19 (CBAM) to the network to refine the features and then enhanced the images using data enhancement 
simulating wheat occlusion. Thus, the wheat occlusion problem is solved and the final counting accuracy 
reaches 94% on the GWHD2020 dataset. Sun et al.20 improved the Faster R-CNN network. The network uses 
Augmented Feature Pyramid21 (AugFPN) for adaptive aggregation of raw information, which solves the problem 
of insufficient wheat spikes. Then they adjusted the union (IoU) threshold to effectively remove the interference 
in complex backgrounds and improve the wheat spike localization accuracy. On the GWHD2020 dataset, the 
network averages an error rate of only 3.7%, and Ap reaches 95.17%. Khan et al.22 proposed a deep learning 
framework combining DenseNet and InceptionNet to capture multi-scale features, along with an attention 
module to address inter-class similarity and intra-class variability in plant disease detection. This framework 
enhances the model’s ability to focus on discriminative features while ignoring irrelevant information. Wen et 
al. proposed SpikeRetinaNet for the detection and counting of wheat spikes. The network solves the problem of 
shading in the field by using a weighted bidirectional feature pyramid network (BiFPN) and soft non-maximal 
suppression (Soft-NMS). SpikeRetinaNet achieved an mAP of 92.62% on the GWHD2020 dataset23. There has 
been some study using GWHD2021 as a dataset. The study by Han and zang et al.2,24,25 used GWHD2021 for 
wheat spike detection and got good results. Liu et al. 1proposed Dynamic Color Transformation (DCT). The 
DCT model changes the color channel of the input image, which can significantly reduce false positives and 
improve the detection performance.It was used on the YOLOV426 network and obtained a average domain 
accuracy(ADA) of 69.5% on the GWHD2021 dataset, which is the runner-up of GWC2021. Qing et al.27 and 
Zhou et al.41 respectively proposed the YOLO-FastestV2 model and MW-Swin Transformer for the detection 
and counting of wheat spikes.As a result of these optimizations, the model’s feature extraction capabilities 
and overall accuracy were significantly improved achieving relatively outstanding detection results on the 
incremental wheat dataset based on GWHD2021. Meng et al.28 proposed the YOLOv7-MA model to address 
the challenges of overlapping wheat spikes and small target sizes in complex backgrounds. By incorporating a 
micro-scale detection layer and convolutional block attention module, the model enhances spike detection and 
reduces background interference, achieving a mean average precision (MAP) of 93.86% and a detection speed 
of 35.93 FPS on the Global Wheat Head Dataset 2021. A deep learning framework was proposed by Khan et 
al.29, combining DenseNet and InceptionNet to capture multi-scale features, along with an attention module 
designed to focus on the most salient characteristics.Experimental results on public datasets demonstrated the 
framework’s effectiveness in achieving high accuracy in plant disease detection, overcoming challenges related 
to visual similarity and variability.Despite advancements, current deep learning models for agricultural tasks 
face several challenges. Many require significant manual intervention and have weak generalization, limiting 
their real-world applicability. Their complex architectures and high computational demands hinder practical use 

Data set Number of pictures Number of wheat spikes Number of classes Average number of wheat spikes in the picture

SPIKE 335 25,000 10 74.62

WSUAV 3171 82,873 9 26.13

GWHD2020 4700 193,634 11 41.19

GWHD2021 6515 275,187 47 42.23

Table 1.  The numerical values of each item in the dataset.
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in resource-limited environments. Adaptability to new conditions and varying datasets remains an issue, with 
inconsistent accuracy across different contexts. Furthermore, models struggle to handle complex backgrounds 
effectively, such as occlusion and shading, requiring further refinement.

While the aforementioned works have made progress in wheat spike detection, they lack analysis on various 
challenging scenarios. Correspondingly, the datasets also face diverse visual challenges. As shown in Fig. 1, it 
illustrates several challenges, which are specified as follows:

	1.	�  Effect of light variation: Due to weather fluctuations and variations in shooting angles, the lighting condi-
tions in the GHWD2021 dataset differ significantly. This leads to unclear and challenging detection of wheat 
spikes, particularly under dim lighting.

	2.	� Similar color gamut between wheat spikes and background: In certain growth stages, the color gamut of 
wheat spikes closely resembles that of the background. This similarity poses difficulties in accurately detect-
ing wheat spikes, especially when they are green during the post-flowering stage or entirely yellow during the 
ripening stage.

	3.	� Shading and overlapping problems: Natural conditions can cause wheat spikes to overlap or be shaded by 
leaves. When severe, these issues make it challenging for the model to correctly identify and detect wheat 
spikes.

	4.	� Complex background: The presence of a complex background adds diversity to the dataset. However, it also 
introduces challenges in distinguishing wheat spikes based on texture features alone, as the complexity can 
cause confusion.

To address the aforementioned environmental challenges, this paper presents RIA-SpikeNet, an efficient model 
for accurate wheat spike detection and counting, by improving YOLOX. Our model effectively tackles various 
challenges encountered in detecting wheat spikes in complex field environments. These challenges include the 
similarity between wheat spikes and the background color gamut, imbalances in positive and negative samples, 
difficulties in sample learning, and issues related to occlusion and overlapping of leaves and spikes. The main 
contributions of this study are as follows:

	1.	� We propose a head detection approach using an implicit decoupling method. By leveraging the learning of 
implicit semantic knowledge to fill into the implicit model, our model acquires valuable contextual informa-
tion, enabling more accurate spike detection.

	2.	� We employ the asymmetric loss and emphasize the learning of samples by adjusting the gradients of positive 
and negative sample losses. By enhancing the weights of positive samples and difficult samples’ learning 
weights, we strengthen the learning ability of our model, thus resolving the problem of imbalanced positive 
and negative samples and sample learning difficulties under complex conditions.

	3.	� By employing RepLKNet as the backbone, this model leverages a larger convolutional kernel and reparame-
terization structure, thereby possessing a larger effective receptive field and shape information. The larger ef-
fective receptive field enables the capture of more global feature information, preventing the loss of valuable 
information and enhancing the extraction of information for both the spike and background. Additionally, 

Figure 1.  Wheat spikes under different difficult conditions.
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the increased shape information facilitates better identification of spikes from backgrounds with complex 
texture features.

	4.	� We conduct extensive experiments to demonstrate the superiority of our RIA-SpikeNet network. The pro-
posed RIA-SpikeNet achieves a mAP of 81.54% and an R2 of 90.29%, surpassing state-of-the-art detection 
models such as YOLO8 by 2.46% and 2.76% respectively. These results demonstrate the outstanding perfor-
mance of our model in detecting and counting wheat spikes with diverse categories and variations.

Materials and methods
Data acquisition set processing
The wheat spike dataset, GWHD2021, is from 12 countries. It covers genotypes from different regions of the 
world, such as Europe, Africa, Asia, Australia and North America. Those from Asia include Nanjing, China and 
Tokyo, Japan. The wheat spike dataset consists of RGB images that were captured using different ground-based 
phenotypic platforms and cameras, such as Spidercam, Gantry, Cart, handheld, and Tractor, including four 
growth stages of wheat, post-flowering, filling stage, filling-maturity and maturity. The images were captured at a 
height ranging from 1.8 m to 3 m, and the focal length of the acquisition camera varied from 10 to 50 mm. The 
dataset has been classified based on specific criteria, where a group of images acquired with the same equipment 
in the same area is defined as a class. The images that were captured undergo a manual screening process to 
remove any blurred or invalid images. After this, they are segmented into images that have 1024 × 1024 pixels. 
Each of these processed images is labeled for each wheat spike using a web-based labeling platform. As shown in 
Fig. 2, the dataset is divided into different stages and the labeling effect.

GWHD2021 contains 6,515 images of wheat spikes, with each image containing 20 to 60 wheat spikes. 
There are 47 classes of wheat spikes in the dataset and a total of 275,187 wheat spike labels. The wheat spike 
dataset underwent data cleaning and division before conducting further research. In the data cleaning process, 
128 unlabeled images were removed from the dataset. Next, we removed any classes with less than 10 images, 
resulting in the final wheat spike dataset consisted of 6,374 images that were divided into 45 classes. The specific 
information of the dataset is shown in Fig. 3, which includes the country, sample size, and collection tools. These 
data were divided into training and test sets according to 8:2.

In order to enhance the generalization of the model, the images were augmented with Mosaic before training. 
Mosaic data augmentation is a technique used during model training to improve its generalizability by combining 
multiple images into a single training batch30. The data augmentation process involves the following steps: First, 
a mosaic canvas is generated. Then, four images are randomly selected and stitched together, corresponding to 
the top-left, top-right, bottom-left, and bottom-right quadrants of the mosaic canvas, respectively. Next, the 
images undergo random transformations, including flipping, resizing, and color jittering. Finally, the images are 
subjected to coordinate transformations, including cropping and bounding box adjustments, to ensure that they 
do not exceed the boundaries of the mosaic canvas. This technique involves combining four training images into 

Figure 2.  Wheat spike annotation at different stages.
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a single mosaic image. This technique helps to increase the diversity and complexity of the training data, leading 
to improved model performance and better generalization capabilities.

Methods
This research focuses on designing a high-performance model for the wheat spike detection and counting. To 
achieve this goal, we have selected YOLOX as the baseline architecture for our model. YOLOX is a state-of-
the-art object detection model that offers high accuracy and fast processing speed. It is based on YOLOv331 

Fig. 3.  Detailed information of the dataset.
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and uses the anchor-free32 approach, decoupled headers, and SimOTA label assignment strategy. Additionally, 
YOLOX employs YOLOv5 backbone and network extension rules to construct networks of different sizes. Since 
the position, size, and orientation of wheat spikes can vary, an anchor-free design is essential for detecting 
them accurately. YOLOX’s anchor-free approach makes it an ideal choice for our research. Therefore, we chose 
YOLOX as our baseline.

Several strategies have been adopted to improve model performance considering the complex scenarios 
of field wheat spike detection and counting. We improved the detection head, confidence loss and backbone 
network respectively, and finally obtained RIA-SpikeNet. The overall model structure of RIA-SpikeNet is shown 
in Fig. 4.

As depicted in Fig. 3, the Mosaic technique first stitches together the four input images into a single image. 
This combined image is then processed by the RepLKNet, which serves as the backbone network. RepLKNet 
is chosen for its ability to extract shape information and larger effective fields, making it well-suited for object 
detection tasks like wheat spike detection. The backbone network begins by capturing shallow image features 
through four convolutional operations. It then passes through four Stage blocks, consisting of RepLK and 
ConvFFN blocks, for deeper feature extraction. The Transition block downsamples the features to create features 
at different scales. After feature extraction from Stage2 to Stage4, these blocks are output into PANet to fuse the 
shallow and deep features. Initially, up-sampling fuses the deep features with the shallow features, resulting in 
C3, C4, and C5, which are further downsampled and fused again with the deep features to produce P3, P4, and 
P5. Finally, the output features are forwarded to the implicit decoupling detection head (imHead) to generate 
network prediction results. The detection head decouples the features at different scales and adds an implicit 
model for refining the feature. The ultimate features are separated into classification branch (cls), regression 
frame branch (reg) and confidence branch (obj) outputs. Implicitly decoupling the detection head allows for 
a better understanding of the context of the objects in the image, enabling the model to distinguish between 
similar objects and reducing the likelihood of misclassifying objects or detecting false positives. During training, 
the predictions are assigned labels by SimOTA, and losses are calculated using the cross-entropy loss function, 
the asymmetric loss function, and the IOU loss function, respectively. The Asymmetric Loss is adopted as the 
confidence loss, which assigns different penalties for false positives and false negatives helping the model to 
focus more on correctly identifying difficult or rare samples. This is particularly important in scenarios where 
the distribution of positive and negative samples is imbalanced, such as in the case of field wheat spike detection 
and counting. During prediction, the results are non-maximum suppressed (NMS)35. To remove redundant 
predictions, and the predicted wheat spikes are displayed with bounding boxes. We show the algorithmic flow 
of the model in Fig. 5.

Fig. 4.  RIA-SpikeNet model structure framework diagram. Mosaic is the data enhancement method. 
RepLKNet is used as the backbone network. PANet for feature fusion. The imHead is the implicit decoupling 
detection head. w, h and c denote the width, height and number of channels of the feature map. C3, C4, and 
C5 represent the input feature maps, while P3, P4, and P5 represent the output feature maps. The conv denotes 
normal convolution, dw_conv denotes depth separable convolution, gelu33 is the activation function, and BN is 
batch normalization34.
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Implicit decoupling detection head
The color gamut similarity in the natural environment can have a significant impact on the accuracy of wheat 
ear recognition. To address this challenge, we have redesigned the detection head and proposed an implicitly 
decoupled detection head. We have added implicit models to the original decoupled detection head to incorporate 
implicit knowledge36, which refers to semantic information that cannot be observed through pictures. By adding 

Fig. 5.  RIA-SpikeNet Model Algorithm Flow. w, h and c denote the width, height and number of channels of 
the feature map. C3, C4, and C5 represent the input feature maps, while P3, P4, and P5 represent the output 
feature maps.
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implicit models to the detection head, we can incorporate more semantic information to refine the features 
and improve the accuracy of wheat ear detection. Implicit semantic knowledge can be considered as auxiliary 
information related to the shape, color, texture, and other fundamental aspects of the target object. It includes 
features such as the shape characteristics of wheat spikes and the surrounding morphology of other plants. The 
modeling process of the implicit model is as follows.

	 Y = Fθ (§) + ε� (1)

	 Y = Fθ (§) + }ϕ (‡) + ε Minimize }ϕ (‡) + ε� (2)

The traditional network training objective function is represented by Eq. 1, where § is the input features, Fθ is 
the function expression, and ε is the bias term. To improve the accuracy of the predictions by incorporating 
additional semantic information from the implicit knowledge, we model the implicit knowledge using vectors 
and add it to the traditional function using an addition operation. This can be expressed as shown in Eq. 2, where 
}∅ denotes vector construction and ‡ is the value of the vector representing the implicit knowledge. The value of 
‡ is initialized randomly and is obtained through the learning of forward and backward propagation. By adding 
the implicit model to the detection head, we can refine the features and improve the accuracy of the predictions 
for detecting wheat ears in complex field scenes.

The detection head is shown in Fig. 6. We introduced an implicit model at the input and output of the detection 
head to obtain an implicitly decoupled detection head. Specifically, the implicit decoupling detection head first 
applies the convolution operation to the input features and then adds the implicit model(Z). Subsequently, the 
features are decoupled into three branches by multiple convolutions, namely classification branch(cls), regression 
boxes branch(reg), and confidence branch(obj). Finally, the implicit model(Z) is added again to the output of 
each branch. The dimension of the implicit model added at different positions of the detection head varies and 
is related to the input feature map. The initial construction of implicit semantic knowledge takes the form of 
random vectors, which are then refined during the training process to capture implicit semantic knowledge 
related to the shape characteristics of wheat spikes and other surrounding morphological information. However, 
before adding the implicit model, it needs to be expanded to the input feature size. The physical meaning of 
adding an implicit model is to incorporate the learned implicit weights into the features and refine them. By 
adding the implicit model, the information of features can be enriched and refined. Therefore, the implicit 
decoupling detection head can better distinguish objects of similar color gamut and achieve the purpose of 
improving detection accuracy.

Asymmetric loss function
In wheat detection, there are both correct and incorrect predictions. Positive samples refer to correct predictions, 
while negative samples refer to incorrect predictions. Detecting wheat spikes in complex environments generates 

Fig. 6.  Implicit decoupling detection head.
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more negative and difficult samples during the detection process. When the number of negative samples is too 
large, it can inhibit the learning of positive samples and affect the detection accuracy. To address this issue, we 
suggest using Asymmetric Loss instead of cross-entropy loss as the confidence loss. Equation (3 is the cross-
entropy loss. In the formula p is the prediction probability, L+ indicates the positive sample loss, and L− is the 
negative sample loss. This loss is calculated using the logarithmic function for both positive and negative sample 
losses. Asymmetric loss uses different weights to adjust the contributions of positive and negative samples, as 
shown in Eq. (4). In the formula γ− and γ+ are the focusing parameters, and m is the hard threshold.

	
CE =

{
L+ = log(p)

L− = log (1− p)
� (3)

	
ASL =

{
L+ = (1− p)γ+log(p)

L− = (pm)
γ−log(1− pm)

pm = max (p−m, 0)� (4)

We mainly regulated by two ways of loss. The first way is to use the decoupled focus levels for positive and 
negative samples, and set γ− and γ+ as the parameters of positive and negative focus, respectively, as in Eq. (5). 
The size of the weights is adjusted by controlling γ− and γ+, and the lower the parameter’s value, the higher the 
contribution of the loss. In this experiment, the values of γ_- and γ_ + are taken in the range of [0, 1, 2, 3, 4, 5]. 
Since we want to enhance the contribution of positive samples, the focusing parameter is set to γ− > γ+.This 
helps to learn more meaningful features from the positive samples.

	

{
L+ = (1− p)γ+log(p)
L− = pγ−log(1− p)

� (5)

The second way is to add a hard threshold m to the loss of negative samples, which is used to reduce the gradient 
generated by the easily detectable negative samples in the negative samples. As shown in Eq. (6), we assign the 
loss of negative samples with prediction probability less than m to 0. By doing so, we eliminate the effect of 
simple negative samples, thus emphasizing more on the gradient of positive samples. The m is set not only to 
reduce the gradient of negative samples, but also to enhance the gradient of difficult samples.

	 L− = (pm)γ − log(1− pm) pm = max(p−m, 0)� (6)

RepLKNet backbone network
In complex scenes with shadows and overlapping foliage, texture features are particularly complex and wheat 
spikes are difficult to detect. To overcome the problems of complex backgrounds, overlapping and occlusion, 
we introduced the RepLKNet as the backbone network, which has a larger effective receptive field and shape 
information37. The effective receptive field is a metric proposed by Luo et al.38 to describe the effect of each input 
pixel in the receptive field on the output of the n-layer cells in the network. The network structure is illustrated 
in Fig. 7 and consists of three blocks: Stem block, Stage block and Transition block. By using RepLKNet, which 
has a larger effective receptive field, the model can better extract features from the input images, especially in 
complex scenes with shadows and overlap with leaves, where small wheat spikes are difficult to be detected. In 
addition, the complex background in the wheat growing environment makes the texture features particularly 
complex. The network has more shape information, which makes it possible to better detect wheat spikes by 
shape features in complex textured environments. These improvements help overcome the problems of complex 
backgrounds, overlap and occlusion, and improve the accuracy of the model in these scenes.

Results
Model equipment and parameters
The model was implemented using the Python and the Pytorch framework. The experiments were conducted 
on a machine with an Intel(R) Xeon(R) CPU, NVIDIA GPU GeForce RTX 2080Ti, and 16 GB of RAM. The 
operating system used was Ubuntu 18.04, and the experimental environment was Pytorch-1.7.0, cuda-10.1, 
cudnn-7.6.5.

We split the dataset into a training set of 5082 images and a test set of 1292 images. The training set was then 
augmented using Mosaic and fed into the model for training. The test set, on the other hand, was kept as is for 
final testing of the model. The model was trained using the Adam optimizer. The learning rate decay strategy 
was set to a step decay, decaying every 100 epochs with a decay rate of 0.1. The initial learning rate was set to 
0.0001. The input image size to the model was 416 × 416x3. The model was trained for a total of 300 epochs, with 
a batch size of 2.

Evaluation indicators
In this study we used different evaluation metrics to assess the detection and counting of wheat spikes. We use 
precision (P), recall (R), F1 score, and mean accuracy (mAP) as the main evaluation metrics for wheat spike 
detection. The prediction results are classified into four categories: true negative (TP), false positive (FP), true 
negative (TN) and false positive (FN)39. Precision and Recall are calculated based on the above four categories, 
and the formula is shown in Eqs. 7, 8. Precision is the ratio of the number of correct predictions to the number of 
all predictions. Recall is the ratio of the number of correct predictions to the number of all labels40. F1 score is a 
useful measure to observe the robustness of the model, calculated using Precision and Recall, and is the summed 
average of Precision and Recall, as shown in Eq. 9. AP is the the area under the Precision and Recall curves and 
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is a measure of the overall performance of the object detection, as shown in Eq. 10. The mAP is the average of 
AP over all classes, as shown in Eq. 11.

	
precision(P ) =

TP

TP + FP
� (7)

	
recall(R) =

TP

TP + FN
� (8)

	
F1 score = 2 ∗ precision ∗ recall

precision + recall
� (9)

	
APK =

∫ 1

0

P (RK) dRK � (10)

	
mAPK =

1

45

45∑
k=1

APK � (11)

Fig. 7.  RepLKNet Network Architecture Diagram.
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For count evaluation, we chose to use the mean average error (MAE), root mean square error (RMSE), and 
correlation coefficient (R2) as evaluation metrics, as shown in Eqs. 12. In the equations, Np is the predicted 
correct number of wheat spike, and Ng is the number of wheat spike true labels, and k is the number of pictures23.

	
MAE =

1

k

k∑
i=1

|Np −Ng|� (12)

	
RMSE =

√√√√1

k

k∑
i=1

|Np −Ng|
2

� (13)

	
MSE =

1

k

k∑
i=1

|Np −Ng|
2

� (14)

	
R2 = 1−

∑k
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2

∑k
i=1

(
Np −Ng
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Ablation experiments
We verify the effectiveness of these three methods through experiments and propose the optimal solution for 
each method. The results are shown in Table 2, which shows the effect of using different improvements. Baseline 
is the YOLOX and Baseline + IM + ASL + REP is our final model.It can be seen from the table that each method 
alone can increase the mAP of the model, which demonstrates the effectiveness of the three methods. Among 
them, the improvement effect brought by RepLKNet is the most obvious, and the mAP is 5.63% higher than the 
original YOLOX. At the same time, Recall and F1 increased by 11.14% and 9.48%, respectively. This demonstrates 
that the larger effective receptive field and shape information brought by the backbone significantly improve the 
performance of the model.

At the same time, we show the results of these three fusion methods. In the fusion experiment, we found 
from the results that the combination method gives better results. The combination of improvement points 
improves the performance of the original model. Similarly, RepLKNet plays an important role in the model, 
which makes the implicit decoupling of the detection head and the asymmetric loss more effective. The last three 
improvements produce the best results. The model mAP reaches 81.54%, which is 9.05% higher than the original 
model. The recall rate and F1 are increased by 15.07% and 13.20%, respectively.

To demonstrate the feature extraction capability of RepLKNet, we visualized the effective receptive fields 
of RepLKNet and the original backbone. Several works have demonstrated the importance of a large effective 
receptive field for detection36,38. To examine the effective receptive field, we randomly selected 100 images from 
the dataset. We then conducted separate tests on both the original backbone and RepLKNet using these images. 
The size of the effective receptive field was determined by calculating the area of the receptive field per pixel unit. 
Figure 8 shows the visualization of the effective receptive field. Colors closer to red in the figure indicate larger 
gradient values, and colors closer to blue indicate smaller gradient values. The larger the hot spot region indicates 
a larger effective receptive field. Figure 9 is a set of images used to visually represent the effect of attention. 
Among them, Fig. 9(a) is the original image. Figure 9(b) shows the visualization results of the experiment using 
the baseline model YOLOX. Figure 9(c) presents the visualization results of the experiment using the model 
proposed in this paper. Figures 9(d) to Figs. 9(h) are used to indicate the data collection locations for the original 
image examples. From the visualization results in the figure, we can observe that the hotspot area in Fig. 9(c) is 
larger and denser compared to Fig. 9(b), indicating that the improved network has a better effective receptive 
field.

Finally, in order to compare the detection capabilities before and after the improvement, we visualize the heat 
map of the model. As shown in Fig. 8, we use Class Activation Mapping (CAM) to demonstrate the difference in 
detection performance40,41. The different color heat map features in the figure reveal the attention of the model. 
In the figure, the red area has the greatest impact on the model, because the color changes from red to yellow 
and finally to blue, indicating that the impact is gradually weakening. It can be clearly seen from the figure that 

Model IM ASL REP mAP Precision Recall F1

YOLOX(Baseline) - - - 72.49% 88.04% 56.25% 64.71%

Baseline + IM √ - - 74.27% 88.79% 56.82% 65.65%

Baseline + ASL - √ - 74.17% 88.50% 56.58% 64.79%

Baseline + REP - - √ 78.12% 88.59% 67.39% 74.19%

Baseline + IM + REP √ - √ 80.17% 89.14% 69.02% 76.03%

Baseline + ASL + REP - √ √ 80.06% 89.05% 67.90% 74.76%

Baseline + IM + ASL + REP(our) √ √ √ 81.54% 89.25% 71.32% 77.91%

Table 2.  Results for each improvement point used respectvitely .REP, RepLKNet; IM, implicitly decoupled 
detection head; ASL, Asymmetric Loss.
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our model can better detect wheat ears. The backgrounds of these images have similar color, but our network still 
accurately finds the wheat ears, which illustrates the role of the implicit model and improves the accuracy of the 
model. Moreover, it can be seen that our network has fewer false detections of wheat ears, which means that the 
number of negative samples has decreased, indicating that the loss function can control the balance of samples 
very well. At the same time, it can be found that the wheat ear features detected by our network almost cover the 
phenotype of the wheat ear, which indicates that the network has a stronger ability to extract phenotype features 

Fig. 9.  CAM comparison between the improved model and YOLOX. (d): French wheat in the Ripening 
stage;(e): Norwegian wheat in the Filling stage; (f), (g), (h): Swiss wheat in the Filling stage.

 

Fig. 8.  Effective receptive field visualization of YOLOX backbone and RepLKNet backbone: (a) YOLOX 
backbone; (b) RepLKNet backbone.
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after improvement, which is the role of the RepLKNet backbone, which solves the problem of complex texture 
and difficult detection.

Comparison experiments
We compare our model with classical and current advanced object detection models. The results of the 
comparative experiment are shown in Table 3. The compared networks include the classical YOLOv4 and 
YOLOv5, and the latest proposed models including YOLOR, YOLOv6, YOLOv7, and YOLOv842–44. From the 
table, we can see that our model achieves the highest mAP of 81.54. In particular, it is much higher than YOLOv4 
and YOLOv5, which are 21.74% and 12.64% higher than YOLOv4 and YOLOv5, respectively. Our model also 
outperforms the current state-of-the-art models YOLOR, YOLOv6, and YOLOv8 in wheat spike detection. Our 
mAP is 2.74%, 4.11%, and 1.6% higher than YOLOR, YOLOv6, and YOLOv8, respectively. This demonstrates 
that our model has stronger comprehensive detection capabilities. In addition, our Precision, Recall, and F1 are 
19.25%, 5.44%, and 12.62% higher than YOLOv5, respectively. At the same time, our Precision and F1 are even 
better, which are 14.54% and 5.60% higher than YOLOv6, respectively. Finally, we also compare with GWC_
YOLOv5, which is one of the winning models of the Global Wheat Challenge 2021. We conduct experiments 
using the GWC_YOLOv5 model and the same experimental parameters as other experiments. As can be seen 
from Table 4, in this experiment, RIA-SpikeNet outperforms it in all metrics, with mAP and F1 being 11.34% 
and 13.03% higher than GWC_YOLOv5, respectively. The above comparison results fully demonstrate that our 
model has higher detection accuracy.

We carefully selected YOLOv9m and YOLOv10x for comparison based on their model sizes and detection 
performance, as these two variants exhibit remarkable capabilities. Although our proposed RIA-SpikeNet 
model lags slightly behind in several metrics, it demonstrates exceptional results in terms of Precision. While 
YOLOv9m and YOLOv10x exhibit higher overall mAP scores compared to our RIA-SpikeNet, it’s important to 
note that RIA-SpikeNet demonstrates notable advantages in specific aspects of performance, highlighting the 
unique strengths of our algorithm. One key advantage of RIA-SpikeNet lies in its exceptional precision score 
of 89.25%, significantly outperforming both YOLOv9m and YOLOv10x. This high precision indicates that our 

Model RMSE R2(%) MAE MSE

Ablation experiments YOLOX 11.21 76.44 6.03 125.66

REP 10.96 77.47 5.54 120.12

IM 12.68 69.84 6.41 160.78

ASL 11.72 74.26 6.57 137.35

REP + ASL 9.88 81.69 6.06 97.61

RIA-SpikeNet(our) 7.19 90.29 5.25 51.69

YOLOv4 16.86 44.60 8.93 284.25

YOLOv5 13.27 66.05 6.88 176.09

YOLOR 8.21 87.14 6.14 67.40

Comparison experiment GWC_YOLOv5 10.90 76.99 6.76 118.81

YOLOv6 8.60 86.10 6.02 66.42

YOLOv7 11.59 74.22 6.72 134.32

YOLOv8 8.15 87.53 5.53 65.85

RIA-SpikeNet(our) 7.19 90.29 5.25 51.69

Table 4.  The result of counting comparison between improved points REP, RepLKNet; IM, implicitly 
decoupled detection head; ASL, Asymmetric Loss.

 

Model mAP Precision Recall F1

YOLOv4[2019] 59.80% 65.70% 57.70% 57.46%

YOLOv5[2020] 68.90% 70.00% 65.90% 65.28%

YOLOR[2021] 78.80% 85.90% 70.10% 76.47%

YOLOX[2021] 72.49% 88.04% 56.25% 64.71%

GWC_YOLOv5[2021] 70.20% 75.60% 63.39% 64.87%

YOLOv6[2022] 76.60% 74.70% 70.00% 72.30%

YOLOv7[2022] 75.00% 77.50% 70.60% 73.39%

YOLOv8[2023] 79.94% 88.02% 71.32% 77.55%

YOLOv9m[2024] 85.12% 84.91% 78.70% 81.69%

YOLOv10x[2024] 86.30% 86.60% 79.60% 82.95%

RIA-SpikeNet  (our) 81.54  % 89.25  % 71.35  % 77.91  %

Table 3.  The comparison results with other detection models
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model is more accurate in classifying true wheat spikes, resulting in fewer false positives. In applications such 
as yield estimation, where the accuracy of spike counts directly impacts the final estimate, this high precision 
is a significant advantage. Additionally, while RIA-SpikeNet’s recall score of 71.35% may seem lower than the 
other two models, it’s worth noting that recall measures the ability to find all relevant objects, and a high recall 
can sometimes come at the cost of increased false positives. By maintaining a high precision while achieving 
a reasonable recall, RIA-SpikeNet strikes a balance that may be more desirable in certain scenarios, especially 
when reducing false positives is critical. Furthermore, the F1 score, which is a harmonic mean of precision and 
recall, provides a more holistic view of model performance. While RIA-SpikeNet’s F1 score of 77.91% is slightly 
lower than the other models, it underscores the trade-off between precision and recall that our model achieves. 
In practice, this balance can be tailored to the specific requirements of the task, such as emphasizing precision 
over recall for applications where false positives are costly.

Count evaluation
Wheat spike counting is an important task, and more accurate counting is important for wheat yield estimation 
and breeding. We measured the counting performance of RIA-SpikeNet using a test set evaluation. As with the 
detection experiments, we conducted ablation experiments with improved points and calculated RMSE and R2 
for predicted and true labels, respectively. As can be seen from the Table 4, our model all have different degrees 
of improvement for counting performance. The final model achieves the optimal results with RMSE reduced by 
4.02, and R2 improved by 13.85%, which finally reached 90.29%. We also compared the effectiveness of counting 
with other detection models. From Table 4, we observe that our model is leading in terms of counting. The RMSE 
of our model is lower by 0.96 and R2 is higher by 2.76% than YOLOv8. This demonstrates that our model has 
leading counting performance and can complete counting tasks very well.

To show the performance of model counting more clearly, we als o plotted the relationship between the 
real labels and the predicted results. In Fig. 10, the X-axis represents the number of wheat tags and the Y-axis 
represents the number of wheat spikes predicted by the model. The red line is the straight line y = x, which 
indicates that all predictions are correct. The green line is the curve of linear fit of the predicted results. As can 
be seen from the figure, the prediction results of our model are all concentrated near y = x, and the fitted curve 
is closer to y = x, which demonstrates that our model has better counting performance.

Discussion on Complex scene detection
To demonstrate the advantages of RIA-SpikeNet in complex scenes,155 images of complex environments were 
selected in our dataset for evaluation. These environments include low lighting conditions, similar colors, 
shadows, overlapping objects, and complex backgrounds. The number of wheat spikes in these images ranges 
from 80–120, which is larger than the average of 43 wheat spikes per single image. This indicates a highly dense 
wheat environment that is difficult to detect. Additionally, the number of images in each category within these 
pictures is only 20–100, which is less than the average of 141 images per category. This makes it difficult to 
train models on categories with small wheat spikes effectively. As can be seen in Table 5, RIA-SpikeNet has the 
highest mAP, Precision, Recall and F1 with other detection models. Among them, the mAP is 4.07% and 4.26% 
higher than YOLOR and YOLOv8, respectively, which is more prominent than the detection effect on the test 
set. Therefore, it shows that our model is stronger in complex scenes and overcomes the problems caused by 
complex scenes.

We also show the visualization of some models’ detection results in complex scenarios. As shown in Fig. 11, 
the red boxes represent the correctly detected wheat spikes, and the yellow boxes represent the missed spikes. It 
can be observed from the figure that our model has the best detection performance in several scenes, especially 
in the dark scene and the complex background, it can be seen that our model only has a few missed detections. 
These results demonstrate the effectiveness of our model in addressing the challenging problem of wheat spike 
detection in various scenarios.

In order to better see the detection effect in complex scenarios, we count the detection results of these images, 
as shown in Table 6.. From the table, we can see that the detection error of RIA-SpikeNet is the smallest, which 
is 30, 27,26, and 4 in several environments.This proves that RIA-SpikeNet has better performance in complex 
environments.

Discussion and conclusion
Wheat spike detection and counting is of great significance and can be used for various purposes, including 
visual object detection, wheat yield estimation, crop management, and plant breeding. However, complex field 
scenes pose challenges to this task. In this paper, we present the RIA-SpikeNet network for wheat spike detection 
and counting in complex scenes. Firstly, we propose an implicit decoupling detection head. We add an implicit 
model to the decoupling detection header. The addition of the implicit model can enrich the feature information 
and refine it. Therefore, the implicit decoupled detection head can improve the identification accuracy of wheat 
spike in complex environment and solve the problem of similarity between wheat spike and background color 
gamut. We use asymmetric loss and emphasize the learning of samples by it adjusting the gradient of positive and 
negative sample loss. One way is to use decoupled attention for positive and negative samples by setting γ_- and 
γ_ + as the parameters for positive and negative attention, respectively. The second way is to add a hard threshold 
m to the loss of negative samples, which is used to reduce the gradient generated by the negative samples that 
are easily detected in the negative samples. Setting m is not only to reduce the number of negative samples, but 
also to enhance the learning of difficult samples. The learning of wheat ears is enhanced by adjusting the loss 
weights of positive and negative samples and the weights of difficult samples to solve the positive and negative 
sample imbalance and difficult sample learning problems in complex environments. By using RepLKNet as the 
backbone, the model has a larger effective receptive field and shape information. The larger effective receptive 
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Model mAP Precision Recall F1

YOLOv4 38.00% 51.60% 37.70% 37.95%

YOLOv5 54.30% 63.60% 49.10% 49.85%

YOLOR 62.20% 74.90% 58.30% 64.70%

YOLOX 48.17% 62.16% 41.36% 41.10%

GWC_YOLOv5 55.90% 72.50% 49.00% 54.78%

YOLOv6 55.80% 63.30% 54.00% 58.30%

YOLOv7 58.30% 68.60% 55.50% 57.65%

YOLOv8 62.01% 75.22% 58.58% 64.06%

RIA-SpikeNet(our) 66.27% 75.95% 59.27% 65.45%

Table 5.  Comparison results with other detection models on 155 images.

 

Fig. 10.  Graph of the relationship between true labels and predicted results.
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field can capture more global feature information, prevent useful information from being missed, and enhance 
the information extraction of wheat spikes and background. More shape information can better identify wheat 
spikes from the background. The overlap and occlusion of wheat spikes make the wheat texture features more 
complex, which makes it more difficult to detect wheat spikes. Our network has more shape information and can 
better detect wheat spikes in complex textures. Enhancing the effective receptive field and shape information can 
better detect the wheat spikes in obscured and overlapping environments. The method achieved 81.54% mAP 
and 78.4 F1 score in the wheat spike detection experiment. In the wheat spike counting experiment, the RMSE 

Fig. 11.  Comparison of detection visualization in different environments.
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of the method was less than 7.19 and the R2 reached 90.29%. Therefore, this study will be helpful for wheat spike 
detection and counting in complex scenarios, and also provide a counting reference for wheat yield estimation 
and wheat breeding.

Considering the application requirements of the model, future improvements will not only focus on 
improving accuracy, but also take into account the practical requirements of production practices in order to 
better complete the detection and counting tasks. Below are the limitations of this work and potential directions 
for future research:

Limitations

	1.	� To ensure lightweight development, the model was not deployed on devices for testing; all computations 
were carried out on a computer.

	2.	� The dataset requires further refinement, as certain categories have a limited number of samples.
	3.	� The methods used for dataset processing are relatively limited.

Future directions

	1.	� Exploring more efficient and lightweight network architectures: Developing more efficient and lightweight 
network architectures that can be deployed on embedded devices or mobile phones, enabling real-time 
wheat spike detection and counting in the field.

Model Environments Red boxes Yellow boxes All boxes Ground boxs

YOLOv4

Dim environment 23 80 103 121

Occlusion and overlap 5 121 126 144

Similar gamut 16 83 99 122

Complex background 22 72 94 95

YOLOv5

Dim environment 54 49 103 121

Occlusion and overlap 16 110 126 144

Similar gamut 47 52 99 122

Complex background 39 55 94 95

YOLOR

Dim environment 84 19 103 121

Occlusion and overlap 112 14 126 144

Similar gamut 61 38 99 122

Complex background 63 31 94 95

YOLOX

Dim environment 59 44 103 121

Occlusion and overlap 63 63 126 144

Similar gamut 54 45 99 122

Complex background 41 53 94 95

GWC_YOLOv5

Dim environment 78 25 103 121

Occlusion and overlap 24 102 126 144

Similar gamut 63 36 99 122

Complex background 80 14 94 95

YOLOv6

Dim environment 62 41 103 121

Occlusion and overlap 31 95 126 144

Similar gamut 63 36 99 122

Complex background 52 42 94 95

YOLOv7

Dim environment 81 22 103 121

Occlusion and overlap 106 20 126 144

Similar gamut 78 21 99 122

Complex background 73 21 94 95

YOLOv8

Dim environment 76 27 103 121

Occlusion and overlap 51 75 126 144

Similar gamut 63 36 99 122

Complex background 78 16 94 95

RIA-SpikeNet(our)

Dim environment 94 9 103 121

Occlusion and overlap 118 8 126 144

Similar gamut 92 7 99 122

Complex background 91 3 94 95

Table 6.  Complex environment test results
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	2.	� Dataset improvement: Increase the number of images in underrepresented categories and add more catego-
ries, including the detection of damaged wheat.

	3.	� Investigating more robust data augmentation strategies: Developing more robust data augmentation strat-
egies that can effectively address various challenges in real-world scenarios, such as complex backgrounds, 
occlusions, and scale variations.

By addressing these research directions, we can further improve the performance and applicability of wheat 
spike detection and counting models, making them more useful for practical applications in agriculture.

Data Availability
The data and reproduction code link of the model proposed in this paper is as follows: https://github.com/
mzy-m/Spike-YOLO1.git.
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