
sensors

Article

Gait Phase Detection for Lower-Limb Exoskeletons
using Foot Motion Data from a Single Inertial
Measurement Unit in Hemiparetic Individuals

Miguel D. Sánchez Manchola * , María J. Pinto Bernal, Marcela Munera and
Carlos A. Cifuentes *

Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito,
Bogota 111166, Colombia
* Correspondence: miguel.sanchez-m@mail.escuelaing.edu.co (M.D.S.M.);

carlos.cifuentes@escuelaing.edu.co (C.A.C.); Tel.: +57-031-668-3600 (M.D.S.M.)

Received: 1 June 2019; Accepted: 4 July 2019; Published: 6 July 2019
����������
�������

Abstract: Due to the recent rise in the use of lower-limb exoskeletons as an alternative for gait
rehabilitation, gait phase detection has become an increasingly important feature in the control of
these devices. In addition, highly functional, low-cost recovery devices are needed in developing
countries, since limited budgets are allocated specifically for biomedical advances. To achieve this
goal, this paper presents two gait phase partitioning algorithms that use motion data from a single
inertial measurement unit (IMU) placed on the foot instep. For these data, sagittal angular velocity
and linear acceleration signals were extracted from nine healthy subjects and nine pathological
subjects. Pressure patterns from force sensitive resistors (FSR) instrumented on a custom insole
were used as reference values. The performance of a threshold-based (TB) algorithm and a hidden
Markov model (HMM) based algorithm, trained by means of subject-specific and standardized
parameters approaches, were compared during treadmill walking tasks in terms of timing errors
and the goodness index. The findings indicate that HMM outperforms TB for this hardware
configuration. In addition, the HMM-based classifier trained by an intra-subject approach showed
excellent reliability for the evaluation of mean time, i.e., its intra-class correlation coefficient (ICC)
was greater than 0.75. In conclusion, the HMM-based method proposed here can be implemented for
gait phase recognition, such as to evaluate gait variability in patients and to control robotic orthoses
for lower-limb rehabilitation.

Keywords: gait phase detection; inertial motion data; inertial measurement unit; force sensitive
resistors; threshold-based algorithm; hidden Markov model; subject-specific training; standardized
parameters training

1. Introduction

Human gait refers to the physiological way of locomotion which can be altered by several
pathologies [1]. Gait analysis is of great help to therapists who wish to monitor the recovery of
patients going through rehabilitation processes [2]. Within clinical settings, gait classification can
be implemented as part of the control parameters for functional electrical stimulation (FES) [3,4],
the detection of abnormal gait pattern in patients with paretic limbs and their classification based
on known pathologies [5], and an estimation of the risk that elderly people fall [6]. Additionally,
an atypical gait pattern can be an indicator of the progression of neurological disorders. For instance,
atypical gait patterns have been proven to predict if seniors will develop dementia or cognitive
decline [7]. Finally, researchers have managed to program humanoid robots to use human-based
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gait trajectories generated via gait classification [8], as well as consistently control wearable assistive
devices such as robotic prostheses [9] and orthoses [10] for the recovery of lower-limb mobility.

In regards to gait partitioning, one may consider different granularities, i.e., number of involved
gait phases. The main nomenclature divides the gait cycle into two events, namely, stance and swing
phases. A two-phase model has proven to be sufficient to control the knee module of an active orthosis
whose actuation is only performed at the beginning of these gait subsections [11]. Nonetheless, the most
widespread approach relies on a four-phase model, which comprises: (i) the initial foot contact (IC)
with the ground or Heel Strike (HS); (ii) the loading response phase or Flat Foot (FF); (iii) the heel lifting
or Heel-Off (HO); and (iv) the initial Swing Phase (SP) or Toe-Off (TO) [12]. This gait granularity has
been used for the actuation of multiple robotic ankle-foot orthoses (AFO) [13,14]. Since such devices
are mainly implemented in patients with drop-foot, their control systems behave in the following
manner: the actuation mechanism prevents foot slap in HS, minimizes the exerted impedance so that
plantar flexion movements are not hindered during FF, and lifts the user’s foot to prevent toe drag in
the case of SP [15].

Regardless of the detection method, various technologies are used to capture gait phases.
On the one hand, non-wearable sensors, such as force platforms and motion-capture-based systems,
set the benchmark in accuracy for walking kinematics [16]. However, such sensors are expensive
and limited to indoor use [17]. For this reason, wearable sensors, such as ultrasonic sensors [18],
electroneurogram (ENG) signals [4], footswitches [17,19–21], electromyography (EMG) signals [22]
and inertial sensors [5,23–26], have become popular due to their affordability, shorter donning/doffing
times, and less complex post-processing. Among wearable sensors meant for gait segmentation,
foot pressure insoles or footswitches are considered the best detection option, since each gait phase
can be related to a specific pressure pattern [19–21,25,27–30], and the footswitch-based reference
has been widely adopted in the identification of gait events [8,11,22,31–35]. For flexible pressure
sensors that are applicable to insoles, a polymer thick film called force-sensitive resistor (FSR) and
piezoresistive sensors (e.g., FlexiForce), experience changing resistances as a function of pressure,
are inexpensive, and have a convenient input composition [19]. Nevertheless, their use in everyday
activities is not recommended as they need to be placed at optimal locations to accurately detect
gait phases, thus requiring an experienced professional to determine their optimal placement [36].
Additionally, pressure insoles must be tailored for each subject’s foot, which incur higher research costs,
and are continuously exposed to tear and friction, which results in a shorter lifetime [37]. Therefore,
the use of either whole inertial measurement units (IMU) (consisting of gyroscopes, accelerometers,
and magnetometers), or the combination of such inertial sensing components, has risen lately. In the
present study, we make use of such sensors thanks to their cost-effectiveness [38], and the fact that
inertial quantities present typical waveform features during a gait cycle [12].

Studies have been conducted positioning IMUs on the waist [26], thigh [39], shank [23,34,40,41],
and foot instep [3,42]. We considered the shank location due to low inter-subject variability [23] and
the fact that there is less soft tissue movement compared to the thigh [40]. However, we opted for
fastening the IMU to the foot instep because of the better performance that scalar classifiers have
shown with the sensor placed on this location, even compared to other vectorial classifiers that involve
further inertial sensors placed at different lower-limb locations [31]. The sagittal angular velocity of the
foot also represents a suitable parameter, since gyro output exhibits periodic and repeatable pattern
along the gait cycle [12].

The study presented here features a gait phase detection system (GPDS) that utilizes inertial
motion data from a single IMU to detect four gait phases by means of two detection algorithms.
The comparison of performance of a threshold-based (TB) algorithm and a machine-learning approach
based on a hidden Markov model (HMM), both compared to reference values coming from a
pressure-sensing custom insole, serves as a way of unveiling which detection methodology best
suits this type of system while minimizing the number of sensors used.
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2. Related Works

Several approaches have previously been proposed for the automatic segmentation of the gait
cycle. Most of these differ from the present work in that it presents the comparison among a variety of
well-known segmentation approaches with respect to FSR-based reference values from a considerable
number of study subjects with both typical and pathological gait patterns. By doing so, the performance
of such detection algorithms is assessed in a target population which, to the best knowledge of the
authors, has not yet been addressed with this particular experimental setup, namely hemiparetic
adults. Additionally, since the most suitable partitioning scheme is meant to be implemented on a
wearable rehabilitation device, the use of an inter-subject training procedure for the machine-learning
method is also explored throughout this study in order to avoid the time-consuming subject-specific
training approach, and thus reduce its setup time within clinical settings.

Computational methods for gait phase recognition fall into two main categories. The first
category is comprised of algorithms, which divide the gait phases based on the threshold selection
of either raw or processed data [3,8,19,20,23,28,29,34,35,37,40–43]. Secondly, some machine-learning
approaches have emerged in recent years to substitute the aforementioned techniques that rely on
hand-crafted feature extraction. These adaptive methods extract patterns on the basis of Support Vector
Machines (SVM) [5], Linear Discriminant Analysis (LDA) [30], Gaussian Mixture Model (GMM) [4,24],
HMM [11,31–33,44–46], Artificial Neural Network (ANN) [25,47,48], and hybrid algorithms [49].
Among artificial intelligence schemes, HMM has demonstrated superior performance [12].

Several authors have applied rule-based algorithms, the most conventional detection method,
to accurately detect different granularities using different types of inertial sensors. For instance,
Catalfamo et al. [40] used a zero-crossing detection approach for the gait segmentation into IC and TO
at different inclination levels, by using a gyroscope placed on the shank. This algorithm was evaluated
for ten healthy subjects and showed an overall detection success of 98%. Likewise, Gouwanda and
Gopalai [37] applied a similar zero-crossing technique in shank angular velocity signals to detect
the two main gait phases in real-time. Although all gait events were found to have a latency of less
than 125 ms, abnormal gait patterns were simulated on healthy subjects by the use of ankle and knee
braces instead of recruiting pathological participants. Furthermore, Rueterbories et al. [3] utilized
a feature-based algorithm to identify gait events from differential acceleration signals of the foot.
Their results show an early detection capability with respect to the reference system for ten hemiparetic
volunteers. In addition, Chia Bejarano et al. [23] placed inertial and magnetic sensors laterally on
the shank to calculate the angular velocity in the sagittal plane and the shank flexo-extension angle.
They sensed three gait phases from these signals: IC, TO and Mid-Swing (MS). This algorithm exhibited
an accuracy of 87% with a maximum time delay of 52 ms for ten stroke patients with severe impairment.
Finally, Behboodi et al. [34] also extracted characteristics from shank angular velocity signals to detect
seven gait events with a maximum time difference of around 75 ms.

In contrast, it has been proven that the single supervised training of a continuous HMM,
followed by a classification based on foot gyroscope signals, is sufficient to achieve an accurate
detection rate for phase detection via machine-learning [31]. Among the studies in which an HMM
has been implemented under such experimental conditions, the research study undertaken by
Mannini and Sabatini [44] presents some similarities to the present one because the performance
of a TB algorithm is compared with that of an HMM. High sensitivity and specificity values,
together with reduced timing errors (<20 ms), were found during both walking and jogging conditions.
However, only a limited sample of six healthy participants was considered for data acquisition.
The online implementation of this method [46] also showed promising results, with a detection latency
of 100 ms. Similarly, Abaid et al. [32] featured an online HMM-based algorithm deployed in both
typically developed children and children with hemiplegia. Although the values for specificity and
sensitivity do not stand out as the aforementioned results do, their proposed algorithm does not require
high training times. Similarly, a distributed classifier that identifies gait events based on a hierarchical
weighted decision from scalar HMMs was applied by Taborri et al. [31] to angular velocities of ten
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healthy subjects. This study suggests that the computational load, relative to distributed and scalar
classifiers, is about 100 times lower than that exhibited by vectorial classifiers. The same author also
developed an inter-subject training approach [33] to eliminate subject-specific procedures and the
related processing times. This technique posed no significant difference to the intra-subject training,
which encourages the implementation of such standardized parameters training (SPT).

A granularity of four gait phases was chosen based upon the fact that this system is intended to
be employed in the medium term in the AGoRA lower-limb exoskeleton [50], a robotic orthosis that
primarily actuates on the knee and ankle joints along the sagittal plane. As mentioned in Section 1,
the amount of detected phases is more than sufficient to correct the drop-foot gait pattern at the ankle
joint. This wearable robotic device is currently controlled by means of a TB algorithm (to be described
in later sections), which is integrated into its control system in real-time, while mounted to the Robot
Operative System (ROS), a meta-operative system widely used in robotic applications [51].

Taking into account the premises found in literature, this study proposes the validation of two
algorithms (one of them trained by two different training approaches) for a GPDS that only uses the
uni-axial gyro and accelerometer signals drawn from an embedded IMU placed on the foot instep
to accurately detect four gait events. By using a reduced number of sensors, the proposed system
poses as a smaller, lighter, and less expensive alternative with low power consumption for robotic
orthotic devices.

3. Materials and Methods

3.1. Theoretical Approach

Two classification strategies have been implemented in the present work for the automatic
identification of four gait phases, drawn from inertial data coming from a single IMU located at the
foot instep. These partitioning strategies are popular in the technical field related to gait analysis [12].
The first and most easily implemented strategy is a TB algorithm that determines the gait phases
of interest by establishing certain decision rules and thresholds (to be described in depth shortly),
which must be met to jump from one gait phase to another. The above mentioned is the reason this
method can also be considered a finite-state machine (FSM). The other partitioning method may
be viewed as a machine-learning algorithm since it requires a training stage and a posterior testing
stage [11]. Specifically, the implemented algorithm is based on a continuous HMM.

3.1.1. Classification Using a Threshold-Based Detection Algorithm

The implemented threshold-based (TB) detection algorithm is similar to those developed by
Rueterbories et al. [3] and Catalfamo et al. [40], whose studies use inertial sensors positioned on the
volunteer’s shank to gather linear acceleration and angular velocity signals. Because the location of
the sensors significantly affects the data collected, the rules that govern our detection algorithm are
established based on the unique waveform that foot motion data present. In particular, only the normal
component of the accelerometer signals (Ay) and the mediolateral axis rotation component in the case
of the gyroscope (Gy) are fed to the TB algorithm as inputs, because the movement of lower-limb joints
during walking occurs mostly along the sagittal plane. Time stamps are also used as algorithm inputs
since this detection algorithm makes use of spatial thresholds as well as temporal limits.

Each gait phase can be associated with a sequence of wave-related features without any complex
processing that would result in a high computational load [41]. Therefore, the present algorithm
conducts real-time detection while being mounted on ROS, which provides standard facilities
for hardware abstraction, low-level device control, and software-architecture management [51].
The flowchart in Figure 1 summarizes this extraction process and highlights the main detection
features. The feature extraction from angular velocity and linear acceleration signals starts with
the creation of a feature list since various features must be found before any gait phase is claimed
as detected. This list is emptied every time a new gait phase has been updated. Input data (D(i)
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in Figure 1: Ay or Gy as the case may be) are updated at a sampling rate of 100 Hz, which is in
accordance with the inertial sensor sampling rate. Each feature should meet certain conditions to be
recorded on the list. These conditions are sequentially evaluated as follows.

Create feature
list

Update gait phase
Clean feature list

Are conditions for
next gait phase met?

Yes

Update input data: D(i), t(i)
Feature: None

No

Ref. 1.

Save new feature and ∆t into list:
CROSSED HIGH THRESHOLD 

D(i) < Dlow_threshold
t(i) ≥ t(i-1) + 150ms

Ref. 2.

Save new feature and ∆t into list:
CROSSED LOW THRESHOLD 

D(i) < Dcrest_threshold
t(i) ≥ t(i-1) + 150 ms

Ref. 3.

Ref. 5.

Save new feature and ∆t into list:
CREST MIDDLE

Save new feature and ∆t into list:
TROUGH MIDDLE

D(i) ≥ Dtrough_threshold
∆t ≥ ttrough_threshold

D(i) ≤ Dcrest_threshold
∆t ≥ tcrest_threshold

Save new feature and ∆t into list:
TROUGH

D(i) > Dhigh_threshold
t(i) ≥ t(i-1) + 150ms

Save new feature and ∆t into list:
CREST

Dneutral_min_threshold ≤ D(i) ≤ Dneutral_max_threshold
∆t ≥ tneutral_threshold

Save new feature and ∆t into list:
NEUTRAL

Ref. 4.

Ref. 6.

Ref. 7.

Yes

Yes

No

No

Yes

No

No

Yes

No

Yes

Yes

No

Yes

No

Start

D(i) < Dtrough_threshold
t(i) ≥ t(i-1) + 150 ms

Figure 1. Flowchart of feature extraction from inertial motion data. This chart shows how a feature
list is updated based on the fulfilment of certain conditions. The occurrence of each feature and their
corresponding conditions are sequentially assessed in the following manner: Crossed High Threshold
(Ref. 1), Crossed Low Threshold (Ref. 2), Crest Middle (Ref. 3), Crest (Ref. 4), Trough Middle (Ref. 5),
Trough (Ref. 6), and Neutral (Ref. 7). When a new gait phase is detected, the feature list is emptied for
further searches.

• Crossed High Threshold (Ref. 1 in Figure 1): Current data (D(i)) should be higher than a
pre-specified threshold (Dhigh_threshold) and at least 150 ms should have passed since the last saved
feature. The time difference between features (∆t) is saved, along with the spotted feature into
the feature list.

• Crossed Low Threshold (Ref. 2 in Figure 1): Current data (D(i)) should be lower than a
pre-specified threshold (Dlow_threshold) and at least 150 ms should have passed since the last
saved feature. ∆t is also saved into the feature list.

• Crest Middle (Ref. 3 in Figure 1): Current data (D(i)) should be higher than a pre-specified
threshold (Dcrest_threshold) and at least 150 ms should have passed since the last saved feature. ∆t is
also saved into the feature list.



Sensors 2019, 19, 2988 6 of 24

• Crest (Ref. 4 in Figure 1): This feature is only assessed if Crest Middle has been saved into
the list. Therefore, current data (D(i)) should have crossed the already exceeded pre-specified
threshold (Dcrest_threshold) and a certain amount of time (tcrest_threshold), which differs between
acquired signals (Ay, Gy), should have passed since the last saved feature, so that a crest may be
reported. ∆t is also saved into the feature list.

• Trough Middle (Ref. 5 in Figure 1): Current data (D(i)) should be lower than a pre-specified
threshold (Dtrough_threshold) and at least 150 ms should have passed since the last saved feature.
∆t is also saved into the feature list.

• Trough (Ref. 6 in Figure 1): This feature is only assessed if Trough Middle has been saved into
the list. Therefore, current data (D(i)) should again be above the already crossed pre-specified
threshold (Dtrough_threshold) and a certain amount of time (ttrough_threshold), which differs between
acquired signals (Ay, Gy), should have passed since the last saved feature, so that a crest may be
reported. ∆t is also saved into the feature list.

• Neutral (Ref. 7 in Figure 1): A neutral region is only reported as long as the current data (D(i))
remains within the range between Dneutral_min_threshold and Dneutral_max_threshold, and if a certain
amount of time (tneutral_threshold), which differs between acquired signals (Ay, Gy), has passed
since the last saved feature. ∆t is also saved into the feature list.

The selection of correct threshold values was carried out as in [41], whose study validated all
possible thresholds within a range, and whose limits were visually established from signals acquired
in a preliminary analysis. For a trial over a flat surface, thresholds were considered optimal if the
algorithm was capable of detecting a specific number of walked steps.

After each condition comprised in the feature extraction process is checked, the feature list
is reviewed to determine whether a new gait phase has been encountered. A summary of the
feature-based rules governing the different transitions between gait phases is given below.

• SP→ HS: With the aim of detecting the onset of HS, the current linear acceleration data should
be right in the middle of a crest, after another crest, a trough and a crossed high threshold have
been sequentially entered in the feature list, whereas the angular velocity signal should have
exhibited a trough and a crossed high threshold, as shown in Figure 2.

• HS→ FF: With the aim of detecting the onset of FF, the current linear acceleration data should be
right in the middle of a trough, after entering the crest corresponding to HS in the feature list,
whereas the angular velocity signal should have exhibited a crest (see Figure 2).

• FF→ HO: With the aim of detecting the onset of HO, the current linear acceleration data should
remain within a neutral region for a certain amount of time, as the angular velocity signal also
exhibits a neutral region, followed by a crossed high threshold (see Figure 2).

• HO→ SP: With the aim of detecting the onset of SP, the current linear acceleration data should
have crossed a pre-defined threshold, whereas the angular velocity signal should have exhibited
a crest, as shown in Figure 2.

Figure 3 recaps the mentioned feature-based conditions for the transitions between gait phases.
Similar strategies based on curve characteristics could be carried out in the case of different inertial
signals drawn from different locations in the human body.
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Figure 2. Threshold-based gait phase detection by means of an inertial sensing system over two gait
cycles. Feature-based decisions are made to identify each gait phase start: HS (first dashed line),
FF (second dashed line), HO (third dashed line) and SP (fourth dashed line).

FLAT FOOT

SWING

PHASE

HEEL-OFF HEEL STRIKE

Gy: Trough

       Crossed High 

        Threshold

Ay: Crest

       Trough

       Crossed High Threshold

       Crest Middle

Gy: Crest

Ay: Trough Middle

Ay: Neutral

Gy: Neutral

       Crossed High Threshold

Ay: Crossed High

        Threshold

Gy: Crest

Figure 3. State machine of the threshold-based algorithm. The transition conditions are based on
features found in the angular velocity (Gy) and linear acceleration (Ay) signals.

3.1.2. Classification Using a Hidden Markov Model

A hidden Markov model (HMM) is a doubly stochastic process with Q underlying discrete
states that are not observable, i.e., its state sequence is hidden to the observer who only has access to
the emissions of each state [52]. The second embedded stochastic process describes such emissions,
i.e., either the sensor readout or feature vectors extracted from them, in terms of discrete probabilities
or probability density functions (PDFs) [44]. HMM is a statistical model widely used to estimate a
sequence of hidden states in a time series [11], which for the case of gait phase detection corresponds
to the gait events (Q = 4).

HMM can be expressed as a function of a set λ of statistical measures:

λ = (A, B, π) (1)

which includes the probability distribution matrix of state transition A, the probability distribution
matrix of observation symbols B, and the initial state distribution vector π.
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The normal gait pattern repeats itself indefinitely with a known sequence of gait events,
which, probabilistically speaking, means that it may either remain in the current state or eventually
transition to the consecutive state (see Figure 4). This behavior has been recently modeled using a
left–right model [31,44], whose main feature is to limit transitions to consecutive states of the Markov
chain. Since transitions represent a narrow fraction of the gait cycle, their associated probabilities
assume lower values than those related to permanence in the same state. Thus, the transition matrix A
may be implemented as follows [31]:

A =
{

aij
}
=


0.9 0.1 0 0
0 0.9 0.1 0
0 0 0.9 0.1

0.1 0 0 0.9

 (2)

where aij denotes the transition probability from state Si to state Sj (Figure 4).

S2 S3 S4S1

a₁₁ a₂₂ a₃₃ a₄₄

a₁₂ a₂₃ a₃₄

a₄₁

Figure 4. Possible transitions (aij) among four states (Si) of a continuous HMM according to a left–right
model. Each model state is paired to a gait phase, whose emissions are modeled using a Gaussian
mixture model with three components. aij denotes the transition probability from state Si to state Sj.

Because the initial state of the model is unknown, an initial state distribution vector π that
allocates the same probability to all states, i.e., each state has the same probability of being the first
in a state sequence, was chosen. Finally, a bivariate GMM with three components was utilized to
describe the emissions from each state. These emissions allude to feature vectors that include the
angular velocity measured at any sampling time, and its time derivative computed by means of a
first-order finite difference approximation, i.e., the angular acceleration [45]. This particular stochastic
model yields the best trade-off between complexity and accuracy for gyroscope signals [39,44].

The development of a continuous HMM entails two main procedures: a training stage and a test
stage. The first phase refers to the adjustment of model parameters λ to optimally adapt them to an
observed training dataset [52]. The Baum–Welch algorithm, the most common solution to this issue,
is implemented in the present work. This training procedure basically starts with an initial parameter
set (first-phase training in Figure 5), on the basis of which it extracts probabilistically weighted state
sequences. The initial model is repeatedly updated with these new transition and emission probabilities
until a desired level of convergence is reached [39].

Subsequently, the test stage allows feature classification based on the trained model achieved
in the training phase, i.e., the search for the optimal state sequence is undertaken. The most widely
used optimality criterion is carried out by the Viterbi algorithm, which finds the most likely state
sequence [52]. This algorithm is a dynamic programming technique that finds the optimal path
by tracing back an array of likelihood indicators. The Viterbi algorithm, despite its computational
efficiency, is not suitable for real-time decoding because the indicators it uses are computed starting
from the end of the observed sequence of feature vectors. The validation of the classifier outputs is
therefore offline compared with respect to an FSR-based reference system that provides the actual gait
phases labels. The flowchart in Figure 5 summarizes the overall validation process.
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first-phase training

Data acquisition

Feature extraction

Test setTraining set

Emission parameter
(B)

estimation

Transition parameter
(π, A)

estimation

Likelihood computation+

Model training
(Baum-Welch algorithm)

Gait phase recognition
(Viterbi algorithm)

ValidationReference system
Reference events

evaluation

Outcomes

Gait phases labels

Figure 5. Flowchart that illustrates the validation methodology of HMM. A model is trained by means
of the Baum–Welch algorithm, after applying feature extraction to the acquired dataset. The optimal
state sequence is then computed through the Viterbi algorithm by using feature vectors from the test
dataset, and the performance evaluation is conducted with respect to gait phases labels drawn from
the reference system.

For further information on HMMs, please refer to the works by Rabiner [52] and Taborri et al. [31],
who provide an excellent description of what this machine-learning scheme is capable of, and whose
contribution has inspired the present research.

3.2. Experimental Procedure

The experimental protocol was performed with the aim of quantifying the detection success
ratio of the described algorithms within a varied spectrum of walking styles. To this end,
eighteen participants were enrolled in this study, forming two groups: a control group with nine
healthy subjects (H, 4 females, 5 males, 23.22 ± 1.99 years old, 1.70 ± 0.046 m, 66.87 ± 4.29 kg),
who had no known orthopedic, metabolic, or neurological impairment that could modify their natural
walking pattern (see Table 1 for further information); and an experimental group with nine patients
(P, 4 females, 5 males, 41.33 ± 15.83 years old, 1.71 ± 0.098 m, 72.28 ± 7.73 kg), who had suffered
from a hemiparesis for at least one year (see Table 2 for further information).

Despite their gait limitations, subjects from P group should be able to walk short distances without
any assistive device. An additional exclusion criterion was the absence of heel contact at the IC of the
gait cycle. All subjects were informed about the scope and purpose of the experiment, and written
consent was obtained from each of them prior to the study. The protocol was approved by the Ethics
Committee of the Colombian School of Engineering Julio Garavito, Bogota, Colombia.
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Table 1. Summary of healthy participants (H group). BMI, body mass index.

Subject Age [Years Old] BMI [kg/m2] Gender Walking Speed [m/s]

H1 23 22.2 Male 0.944
H2 22 20.9 Female 0.750
H3 22 22.7 Male 0.750
H4 23 24.1 Female 0.694
H5 22 23.7 Male 0.694
H6 20 26.0 Female 0.639
H7 25 20.7 Female 0.556
H8 25 23.7 Male 0.833
H9 27 23.7 Male 0.833

Table 2. Summary of hemiparetic individuals who participated in the study (P group). BMI, body
mass index.

Subject Age
[Years Old]

BMI
[kg/m2] Gender Etiology Paretic

Side
Year of

Ocurrence
Walking

Speed [m/s]
Walking

Aids

P1 37 24.7 Female
Ischemic

Stroke Left 2016 0.417 Cane

P2 75 20.1 Female
Ischemic

Stroke Right 2016 0.306
Cane or

Wheelchair

P3 49 26.9 Female
Ischemic

Stroke Left 2010 0.278 AFO

P4 38 25.0 Male
Hemorrhagic

Stroke Left 2017 0.639 None

P5 47 34.0 Male
Ischemic

Stroke Left 2016 0.444 AFO

P6 33 22.0 Female
Hemorrhagic

Stroke Right 2012 0.417 Cane

P7 46 31.2 Male
Ischemic

Stroke Right 2001 0.417 Cane

P8 20 21.7 Male
Cerebral

Palsy Left 1998 (Birth) 0.5 None

P9 35 23.4 Male
Hemorragic

Stroke Left 2013 0.667 None

Volunteers were first instructed to perform three 10-m tests at a self-selected speed in order to
determine their normal overground speed, which was successively set on a rehabilitation treadmill
(NIZA RX K153D-A-3, SportFitness, Bogota, Colombia). Participants were equipped with a custom
insole instrumented with FSRs (Ref. 402, Interlink Electronics, Camarillo, CA, USA) on their dominant
side (for the case of H group) or their affected side (for the case of P group), which matched each
subject’s shoe size and represented the reference system, and an IMU (BNO055, BOSCH, Gerlingen,
Germany) placed on their foot instep. The FSR that was used consists of a conductive polymer film with
a circular sensing area of 18.22 mm in diameter and a negligible thickness of 0.5 mm, while the used
IMU integrates a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope, with a measurement range of
±2000 ◦/s, a triaxial geomagnetic sensor and a 32-bit cortex M0+ microcontroller in a single package.
Special care was taken when aligning the IMU y-axis with the sagittal plane since the accelerometer
signal was taken into account within the TB classification [3]. The FSR sampling rate was 200 Hz, twice
as much as the one at which the IMU acquired data (100 Hz), since there must be a greater amount of
reference values in order to accomplish a proper assessment of the gait phase detection algorithms.
Synchronized data capture was ensured by integrating a data acquisition node in ROS, which runs on
a Raspberry Pi 3 Model B that is used as the main board. The experimental setup described here is
illustrated in Figure 6.
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Study Subject

Acquisition Unit

IMU

FSRs

Figure 6. Experimental setup. Each subject was instrumented on their dominant/affected side with a
custom FSR-equipped insole and an IMU placed on the dorsal side of their foot. Foot motion data were
captured by using a Raspberry Pi running ROS to ensure synchronized data acquisition.

Participants were then asked to walk for at least 180 s on the already configured treadmill at a
zero-degree inclination while wearing a security harness, if they considered it necessary. H group
walked within a speed range of 0.639–0.944 m/s, whereas P group walked within a speed range
of 0.278–0.667 m/s (Table 2). All tasks were repeated three times so that enough data to train the
HMM-based method were collected. A resting period of at least 2 min was carried out between tasks
to prevent fatigue. Data acquisition only started once the self-selected speed was reached, and the
treadmill speed was only reduced after all data were acquired to prevent data capture during the
transient state. The entire experiment, including donning/doffing times related to instrumentation
procedures and walking tasks, was completed within 30 min for all volunteers. All participants
completed the tasks without expressing fatigue, except for P2 presumably due to her advanced age
and sedentary lifestyle.

3.3. Data Processing

To assess the performance of each detection algorithm with respect to a reference system, four FSRs
placed on an insole custom for each user were implemented. The exact location of these FSRs was the
hallux, the first and fifth metatarsophalangeal, and the heel. The reason this distribution of pressure
centers was chosen is based on how the vertical ground reaction force (GRF) shows unique pattern
characteristics in these specific regions [19]. For healthy subjects, the heel experiences great pressure
during the time frame between HS and midstance (MST), also known as loading response (LR),
whereas the metatarsal is loaded with a great amount of pressure during the time frame between MST
and Preswing (PS), also known as the terminal stance (TS), to gain forward acceleration. At the end of
the gait cycle, pressure concentrates on the big toe during HO on account of the ankle plantar flexion
(see Figure 7).

By means of this type of sensors, the gait phases of interest can be detected through a simple
binary algorithm, since each gait phase can be related to a unique activation pattern, as can be seen in
Figure 7. Along with a single stride, certain patterns of foot pressure distributions should sequentially
appear. Only the heel FSR should be activated at HS since this gait phase consists of the first heel
contact and the start of the gait cycle. In the case of FF, some studies suggest that all FSRs should be
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activated in order to detect this gait phase [21,31]. However, even though this presumption might be
true for non-pathological subjects, for the treated patient sample of this work, the activation of the toe
and heel FSR had to be discarded in this condition to improve the accuracy of the FSR-based gait phase
detection (gray dots in Figure 7). This change was decided during offline data pre-processing from
footage taken during experimental trials. Likewise, the HO occurrence depends not only on the toe
FSR activation, but the first metatarsus FSR might also be taken into account depending upon offline
video analysis. Finally, SP detection was given under the release of all FSRs. The FSR amplification
circuit was calibrated, so that it was sensitive enough to ensure their (de)activation. The FSR accuracy
was additionally assured during static trials conducted prior to the dynamic trials, in which subjects
were asked to assume different standing positions to simulate various pressure patterns.

Heel Strike
(HS)

Flat Foot
(FF)

Midstance
(MST)

Heel-Off
(HO)

Preswing
(PS)

Toe-Off
(TO)

Midswing
(MSW)

Heel Strike
(HS)

State 1 (HS) State 2 (FF) State 3 (HO) State 4 (SP)

STANCE SWING

0% 8% 30% 40% 50% 60% 75% 100%

Figure 7. Gait phase detection based on FSR activation patterns. The gait cycle may be divided
into seven phases, but four detected phases are sufficient for control purposes of an AFO. With this
particular granularity, gait phases can be sequentially referenced from FSR data as follows: (i) HS State:
Heel FSR is activated; (ii) FF State: first and fifth metatarsal FSR must be activated (black dots), and the
activation of heel and toe FSRs is considered depending on specific study subject (grey dots); (iii) HO
State: toe FSR must be activated, and the activation of first metatarsal FSR is considered depending on
specific study subject; and (iv) SP State: all FSRs must be deactivated. Adapted from [21].

Data processing was performed offline using MATLAB software (MathWorks, 2018a, Naticks,
MA, USA) and an Asus VivoBook S15 S510UA (IntelCore i5-8250U, CPU@1.80 GHz, Taipei, Taiwan)
running Ubuntu 18.04. The gyroscope and accelerometer outputs were first treated with a median filter
to eliminate atypical data values and a second-order low-pass filter Butterworth (cut-off frequency:
17 Hz for accelerometer signals, and 15 Hz for gyroscope signals) [31,42]. Then, inertial signals were
interpolated to match the FSR frequency and partitioned into the gait phases of interest according to
the previously described FSR-based segmentation logic. Finally, the partitioned angular velocity data
of each gait event were time-normalized, and means and standard deviations of the obtained dataset
were used to train parameters of the continuous HMM by means of the Baum–Welch algorithm.
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The training stage of the HMM-based method was conducted by means of two different
approaches: the well-known intra-subject procedure, hereafter referred to as subject-specific training
(SST); and the inter-subject procedure, hereafter addressed as standardized parameters training (SPT).
The SST model parameters were trained by means of a leave-one-out cross-validation applied to the
three walking trials, whereby two trials were used for training and the remaining one for validation [31].
The cross-validation analysis was repeated in a recursive manner for each subject of both study groups
so that it was repeated for all trials in turn. On the other hand, since pathological gait pattern greatly
varies from one subject to another, we decided to validate an additional SPT procedure. By means
of this technique, a standardized parameters set was computed on the basis of data gathered from
healthy subjects, on account of the low inter-subject variability exhibited by their angular velocity
waveforms [46]. A different validation approach was undertaken for each study group during SPT,
in such a way that for H group, for instance, the training dataset for each examined subject was
collected from the first two trials of the remaining individuals, while the last trial related to the
subject under consideration was used for validation later. Conversely, for P group, the average of
angular velocities acquired from healthy subjects during the first two trials was used to construct the
training dataset. The final trial of each patient was subsequently involved in the validation stage [11].
Finally, for the case of the TB algorithm, all walking trials were utilized, one after the other, as the
validation dataset of such a classification method.

3.4. Data Analysis

The performance of the proposed gait detection methods was evaluated through two indices:
the timing error, i.e. the time difference of each detected gait event with respect to the FSR-based
reference system, and the goodness index (G). G represents a Euclidean distance in the receiver
operating characteristic (ROC) space, which poses as a global index of the classifier capability and is
based on its sensibility and sensitivity values [11]. The sensitivity, also known as true positive rate
(TPR), is computed as follows

TPR =
True Positive

True Positive + False Negative
(3)

where a true positive is considered if the classifier prediction and the reference value match within
a tolerance window of 60 ms centered at each time step [32], in such a way that a gait phase was
counted as detected even though it was missed by around six samples. Otherwise, such classification
is considered a false positive. Likewise, the specificity, also known as true negative rate (TNR),
is computed as follows

TNR =
True Negative

False Positive + True Negative
(4)

where the non-transitions similarly detected by classifier and reference signal correspond to true
negative; otherwise, they have been accounted for by false negatives. The use of TPR and TNR metrics
have some implications to bear in mind when comparing performance among classification algorithms.
For instance, a gait phase detection algorithm that labels all samples of a gait trial with the same gait
phase may score around 25% sensitivity and 75% specificity (with a granularity of four gait phases,
assuming that each gait phase has the same time length). This sensitivity score is given because the
invariant classifier output eventually matches one gait phase, whilst the specificity score comes from
the fact that classifying all samples in the same way will produce true negatives for most samples [49].
Having these premises in mind, G is expressed as:

G =
√
(1− TPR)2 + (1− TNR)2 (5)

G can assume values between 0 and
√

2, and a classifier can be considered: (i) optimum when
G ≤ 0.25; (ii) good when 0.25 < G < 0.7; (iii) random if G = 0.7; and (iv) bad if G > 0.70 [33].
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To assess the performance of the proposed classifiers in the evaluation of gait variability, mean
time (MT) and coefficient of variation (CoV) of stride and each phase were determined. This calculation
was undertaken for the output labels of the FSR-based reference system and each classifier. MT and
std values were specifically computed for the estimated stride time and the estimated duration of each
detected gait phase, for each walking task, and each study subject. CoV was then computed as:

CoV =
std
MT
× 100 (6)

3.5. Statistical Analysis

The software package SPSS (IBM-SPSS Inc., Armonk, NY, USA) was used for the statistical
analysis. The normal distribution of all performance indices was first verified by means of the
Shapiro–Wilks test. Since most data did not exhibit a normal distribution, Friedman tests were carried
out to find statistically significant differences among classifiers and, where applicable, differences with
respect to the reference values. Bonferroni’s tests were undertaken as a post-hoc test in case significant
differences were found. An additional paired sampled t-student test was performed to find noteworthy
differences between training times of the two training modalities applied to the HMM-based method.
Statistical difference was a set at 0.05. Moreover, intra-class correlation coefficients (ICC) based on
single-measurement, absolute-agreement, two-way mixed-effects model were computed to evaluate
interrater reliability of MT and CoV values (0 ≤ ICC ≤ 0.4: poor reliability; 0.4 < ICC < 0.6:
fair reliability; 0.6 ≤ ICC < 0.75: good reliability; 0.75 ≤ ICC ≤ 1.0: excellent reliability [31]).
This reliability measure reflects the variation of data measured by one rater across more than two trials.
To better interpret these ICC values, it is important to note that a low ICC could be related to the low
degree of measurement agreement as well as the lack of variability among sample subjects, and the
small number of subjects and the small number of raters being tested [53].

4. Results

Timing differences between the reference gait labels and the corresponding gait phases detected
by either the TB or the HMM-based method are presented in Table 3. Almost all timing errors are
negative, which indicates anticipation in the gait detection regardless of the segmentation method
used. A performance improvement by the HMM-based algorithm was statistically significant for at
least one training modality, i.e., either SST or SPT, for all gait phases in the case of healthy subjects
(p < 0.05). Gait detection for patients, on the other hand, only exhibited a significant difference
between algorithms in terms of timing errors in the detection of FF.

Table 3. Timing errors of the detected gait phases (mean ± std) [ms]. These data were generated by
comparing the estimates provided by each classifier with the reference data. Asterisks * and obelisks †

indicate significant differences between marked algorithms (Bonferroni, p < 0.05).

H Group P Group

TB Method SST Method SPT Method TB Method SST Method SPT Method

HS −37± 101 * −55± 98 * −17± 10 −17± 20 −22± 16 −20± 17
FF −57± 102 *† −57± 97 * −23± 3 † −28± 12 *† −29± 12 * −29± 12 †

HO 13± 30 * −36± 62 −18± 6 * 9± 29 −19± 18 −19± 19
SP −49± 96 * −58± 108 * −18± 13 −24± 15 −27± 14 −23± 19

In Figure 8a, mean and standard deviation of MT for stride and each gait phase along with
statistically significant differences (p < 0.05) are reported for each detection algorithm and for the FSR
reference value.

With regards to the TB algorithm, statistically significant differences were found in comparison
with at least two other values (FSR- or HMM-based methods) in the evaluation of FF, HO, SP and stride
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MT for H group, and HS, FF, SP and stride MT for P group. Significant differences with respect to the
reference labels (FSR) were additionally observed for the HMM-based algorithm trained with either a
subject-specific or standardized parameters approach in the evaluation of SP MT for H group and for
the evaluation of stride MT for P group. Particularly, MT assumes the lowest values for HS/HO and
the highest ones for FF, which is in accordance with the event distribution associated with the normal
gait cycle.

Additionally, the mean and standard deviation of CoV for stride and each detected gait phase
together with statistically significant differences (p < 0.05) are shown in Figure 8b for FSR and each
detection algorithm. With regard to the group of healthy subjects (H), no statistically significant
differences were found among FSR and classifiers, whereas differences between FSR and at least one
classifier were noticeable in the evaluation of HS, FF and stride CoV for pathological subjects (P).
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Figure 8. (a) Mean time (MT); and (b) Coefficient of variation (CoV) evaluated for stride and each
gait phase for the reference system (FSR), and each detection algorithm: threshold-based (TB) and
HMM-based algorithm, both using subject-specific training (SST) and standardized parameter training
(SPT). The left bar chart corresponds to the results of healthy subjects (H), and the right graph to those
of pathological subjects (P). Asterisks denote statistically significant differences (Bonferroni, p < 0.05).

Values of ICC for MT and CoV are included in Table 4. The results indicate that ICC was almost
always in the range of good or excellent reliability, with the exception of a few values related to the TB
algorithm that showed poor reliability.
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Table 4. Values of Intra-class Correlation Coefficients (ICC) for Mean Time (MT) and Coefficient
of Variation (CoV) evaluated for stride and each detected gait phase by FSR reference system
and classifiers.

ICC
Group Index Reference/Classifier HS FF HO SP Stride

H

MT

FSR 0.987 0.99 0.98 0.99 0.92
TB 0.37 0.82 0.88 0.98 0.98
SST 0.81 0.84 0.83 0.84 0.88
SPT 0.66 0.88 0.62 0.04 0.77

CoV

FSR 0.95 0.99 0.60 0.95 0.94
TB 0.69 0.75 0.62 0.90 0.18
SST 0.87 0.90 0.92 0.80 0.82
SPT 0.80 0.89 0.74 0.34 0.95

P

MT

FSR 0.97 0.99 0.99 0.98 0.99
TB 0.29 0.94 0.79 0.98 0.99
SST 0.75 0.82 0.76 0.85 0.84
SPT 0.81 0.91 0.79 0.16 0.84

CoV

FSR 0.86 0.70 0.97 0.97 0.75
TB 0.94 0.83 0.84 0.87 0.93
SST 0.75 0.79 0.67 0.95 0.80
SPT 0.92 0.73 0.53 0.38 0.72

Poor Fair Good Excellent.

Table 5 shows the confusion matrices obtained for each proposed classification method (TB, SST
and SPT) considering both study groups (H and P). For the case of the HMM-based algorithms,
misclassification mostly occurred during consecutive gait phases, i.e., during phase transitions.
For instance, the FF identification by using the SST method in healthy subjects exhibits 5.02% and
6.42% of samples being misclassified as HS and HO, respectively, whereas only 2.75% of FF samples
were classified as SP. The confusions between two successive phases can be explained by the fact that
the reference labels, which are defined manually, may be subject to labeling errors, particularly in
phase transitions. Conversely, the confusion matrix corresponding to the TB algorithm highlights an
unusual behavior regarding FF and SP identification since the correct classification of the one presents
a significant bias toward the other for both study groups.

In Figure 9 the mean values and standard deviations of the Goodness index (G) for both H and
P groups are reported. In addition to that, statistically significant differences among classifiers are
included. The TB algorithm presented not only mean values of G that were found to be in the bad
range (G > 0.7) for both H and P group, but also significant differences compared to both training
modalities of the HMM-based detection method. As for this latter detection algorithm, their G values
were found to be in the good range (0.25 ≤ G ≤ 0.7) for both study groups, with the best classification
performance presented by the classifier applied to data gathered from H group and trained using
intra-subject cross-validation (SST). Comparing the SST and SPT procedures, significant differences
between the two training approaches were only observed for the H group. The standard deviations
were found to always be less than 0.2, with higher values reached by the HMM-based algorithm
trained by means of standardized parameters.

By comparing both training procedures of the HMM-based detection algorithm in terms of training
time, a significant difference between the SST (165.32± 46 s) and the SPT approach (75.95± 24 s) when
applied to the P group was found.
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Table 5. Confusion matrices. Results are reported for each proposed classification method: (1) TB
algorithm; (2) HMM-based method trained by means of an SST technique; and (3) HMM-based method
trained by means of an SPT technique, for both healthy subjects (H group) and patients (P group).
Correct classifications are in bold and overall accuracy values with 95% confidence interval (CI) are
presented for each partitioning algorithm in each study group.

Classification Output

HS FF HO SP

1. TB algorithm

Actual Label

H

HS 57.11% 16.59% 5.58% 20.72%
FF 1.03% 72.08% 0.47% 26.42%

HO 1.50% 18.77% 52.98% 26.75%
SP 13.72% 7.5% 12.62% 66.16%

Overall accuracy: 63.96%. 95% CI: 63.91–64.01%

P

HS 57.82% 18.24% 4.17% 19.77%
FF 2.91% 70.24% 0.77% 26.08%

HO 3.48% 20.1% 53.13% 23.29%
SP 10.71% 13.77% 8.19% 67.33%

Overall accuracy: 65.43%. 95% CI: 65.38–65.48%

2. HMM-based algorithm with SST approach

Actual Label

H

HS 70.15% 12.08% 7.22% 10.55%
FF 5.02% 85.81% 6.42% 2.75%

HO 4.40% 5.85% 81.57% 8.18%
SP 5.33% 2.05% 2.61% 90.01%

Overall accuracy: 81.44%. 95% CI: 81.40–81.48%

P

HS 67.22% 10.65% 9.2% 12.93%
FF 6.44% 81.87% 9.39% 2.30%

HO 5.86% 9.36% 77.28% 7.50%
SP 11.66% 2.31% 7.20% 78.83%

Overall accuracy: 78.06%. 95% CI: 78.02–78.10%

3. HMM-based algorithm with SPT approach

Actual Label

H

HS 75.55% 9.79% 2.92% 11.74%
FF 7.29% 85.85% 5.98% 0.88%

HO 2.19% 4.05% 90.55% 3.21%
SP 24.76% 0.58% 13.19% 61.47%

Overall accuracy: 76.91%. 95% CI: 76.84–76.99%

P

HS 63.50% 14.89% 4.78% 16.92%
FF 2.66% 84.97% 11.33% 1.04%

HO 1.49% 12.37% 81.69% 4.45%
SP 16.33% 2.96% 17.45% 63.26%

Overall accuracy: 76.36%. 95% CI: 76.29–76.43%
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Figure 9. Goodness index (G) for healthy subjects (H) and subjects with mobility impairments (P) for
each detection algorithm: threshold-based (TB), and HMM-based algorithm, using subject-specific
training (SST) and standardized parameter training (SPT). Asterisks indicate statistically significant
differences among classifiers (Bonferroni, p < 0.05).

5. Discussion

In this work, the validation of two algorithms: a threshold-based (TB) and a HMM-based method,
in the gait event detection of healthy subjects (H group) and patients with gait abnormalities (P group)
is addressed, with the objective of figuring out which detection method outperforms for a GPDS
that only makes use of an IMU placed on the subject’s foot instep. The TB algorithm takes the foot
angular velocity and linear acceleration along the sagittal plane as inputs, since the data fusion of
these parameters allows the compensation of the drift error [12] and the use of a single-axis angular
velocity signal may cause problems in situations where the subject spontaneously changes direction
or turns [3]. When implementing only the HMM-based technique, it is not mandatory to take any
special care to align the IMU sensitive axis perpendicular to the sagittal plane or the use of a Kalman
filter for the effects induced by magnetic distortions [44], because only gyroscope signals are fed to this
machine-learning scheme. The training stage used in this study is undertaken by implementing two
different approaches: an intra-subject or subject-specific training (SST) and an inter-subject approach
that trains the gait detection model based on standardized parameters from the dataset of the healthy
group (SPT).

The TB detection method exhibited similar time differences, compared to reference values
established through the FSR insole-mounted system, to those found by Rueterbories et al. [3],
whose study involved both healthy and hemiparetic participants wearing biaxial accelerometers
on their foot. Furthermore, compared with the findings of Mannini and Sabatini [44], our TB algorithm
presents fewer time differences in the detection of stance subphases, i.e. FF and HO, for healthy subjects.
However, other studies, which utilized only one inertial sensor, e.g. an uniaxial gyroscope on either the
user’s shank or foot instep [23,40] or an uniaxial accelerometer on the lower trunk [43], showed smaller
time delays in a two-phase model (Table 3), thereby implying a better performance than the one
achieved by the TB algorithm described here. It is important to keep in mind that these results were
yielded even though this method was developed based on feature extraction procedures used in [3,40],
but applied to foot angular velocity and linear acceleration signals. In addition, it should be noted
that the gait phase detection by footswitches such as FSRs depends significantly on the choice of
threshold level that is applied to their output signals, thus producing small differences when applying
different threshold settings [42]. Compared to the machine-learning method, HMM outperformed
the TB method by showing significant differences with smaller timing errors for all gait phases in
healthy subjects either using SST or SPT, as found by Mannini and Sabatini [44], Mannini et al. [46],
whereby they also compared TB and HMM-based algorithms. For the case of hemiparetic subjects,
only the detection of FF showed a significant difference among classifiers, which is an important gait
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event used to avoid the occurrence of false positives in the control system of a robotic orthosis while
its user remains in an idle state [31].

From the analysis of MT values related to HS, FF, HO and SP, it is seen that the percentage of time
spent by each gait event during the stride is in accordance with the results reported by Taborri et al. [31].
In particular, HS has the smallest duration for most cases, whereas FF exhibits the largest time length.
In the evaluation of MT values, the TB algorithm yielded statistically significant differences with
respect to both FSR reference values and HMM-based method since it presented numerous atypical
values in the detection of different gait events for both healthy and hemiparetic subjects (see Figure 8a).
Conversely, no significant differences were found between FSR-related values and the HMM-based
classifier apart from the detection of SP in healthy subjects and stride in pathological ones when the
model was trained by means of SPT. These differences might be explained by the fact that the data
from healthy subjects with which the model parameters were improved have a wider and higher range
of gait speeds compared to those subjects with mobility impairments walked (as shown in Table 1).
Moreover, the analysis of ICC validates the excellent reliability of the HMM-based method trained
through SST in the evaluation of gait variability based on MT (Table 4). ICC values also confirm the
precarious reliability of the HS detection by using the TB threshold and the SP detection by means of
the HMM-based method trained through SPT, since they exhibited results in the poor range.

Regarding CoV values, no significant differences were found between classifiers and FSR for H
group and CoV values for all gait phases decreased as the gait event duration increased (as found
by Liu et al. [54]). Despite this, Stride CoV for both study groups was characterized by unusually
higher values in comparison to those found in the literature for healthy adults whose CoV values were
not greater than 4% for walking tasks [55]. This outcome, along with lower ICC values and significant
differences found between FSR and at least one classifier in the evaluation of HS, FF and stride CoV
for P group, confirms the lower reliability of CoV-based assessment compared to other stride duration
variability parameters [31]. These findings also imply that neither this particular TB algorithm nor a
scalar HMM could be involved in studies of gait variability that require the analysis of CoV.

The classification based on the TB algorithm was only partially successful in solving the
classification problem regarding the sample-based accuracy values (overall accuracy equivalent to
63.96% and 65.43% for H and P group, respectively). The significant bias presented in the identification
of FF and SP (see Table 5) appears to be the reason for the poorer performance of the TB algorithm that
we implemented compared to those of previous studies [3]. Such misclassifications could be related to
the fact that the feature corresponding to the gyroscope data is the same for the previously mentioned
phase transitions, or to the fact that the time limit corresponding to the accelerometer-related features
might be too high to accurately detect FF in higher walking speeds (150 ms in contrast to the typical IC
duration for healthy subjects, which is approximately 120 ms [56]). A plausible solution for this issue
might be to include further features related to the angular velocity signal to improve its accuracy and to
better establish the initial temporal thresholds related to accelerometer signals. As for the HMM-based
partitioning techniques, in healthy subjects, the SST approach seems to outperform the SPT procedure
with a higher overall accuracy rate (81.44% against 76.91%), while, for P group, the accuracy values
are quite similar (78.06% for the former, and 76.36% for the latter). On the whole, FF and SP gait
phases had better accuracy rates for most segmentation methods, which may be underpinned by the
percentage they encompass within the gait cycle, and, therefore, the greater amount of data that is
fed to the GPDS. On the other hand, the SPT approach presents a noteworthy decrease in terms of
accuracy rate for the SP detection with respect to the SST procedure, which indicates that the dataset
of standardized parameters drawn from H group might not be representative enough to identify this
transition with high accuracy.

Finally, in regards to the goodness index (G), which involves both specificity and sensibility values
in order to precisely evaluate the classifier performance, it is worth noting that the TB algorithm showed
results within the bad range for both healthy subjects and participants with impairments, which, taking
into account the already analyzed results, makes it the worst classifier for gait phase detection. For the
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case of HMM-based methods, on the other hand, G values within the good and excellent range were
observed for both study groups, in spite of some high values of standard deviation exhibited in the
SST timing error results (see Table 3). Even though a significant difference was found between training
techniques for H group, which validates the presumption formulated on the basis of the accuracy
values, the inter-subject approach based on standardized data drawn from healthy subjects still has an
acceptable segmentation performance (see Figure 9). On the contrary, the training procedures did not
exhibit any noteworthy difference when applied to data drawn from patients, which implies that similar
and even better results may be achieved by an inter-subject trained model, as was reported in [11,29,33].
Apart from that, SPT outperforms SST in terms of training time, since there was a significant difference
in the amount of time spent in the training stage between HMM-based classifiers. Therefore, the use of
standardized parameters extracted from healthy subjects seems to lead to a sufficiently robust trained
model that may even match the performance achieved by models constructed with SST, without the
necessity of continuously carrying out a training stage. Better outcomes than the ones presented here,
especially for the case of SP detection, might be obtained if the age and anthropometric parameters
of pathological subjects were matched with those of healthy subjects (as was done in the previously
mentioned studies), and overground walking tasks were performed, since there are some constraints
inherent to treadmill walking that may modify the lower-limb kinematics [57].

There are some additional limitations to this study. For instance, since the TB algorithm takes
accelerometer signals as an input, this method is dependent on the placement of the sensitive axis
of the IMU, which leads to the need of having an expert operator precisely positioning the sensors
on the subject. Another disadvantage of the rule-based technique is its tendency to overperform,
i.e., the detection of premature transitions (see Table 3). A reason for this behavior might be irregular
gait cycle times [3], and a plausible solution could be the implementation of self-tuning procedures
such as the one proposed in [8]. In doing so, the difficult process of threshold tuning could also be
avoided, which represents the main limitation of TB methods [17] since it is carried out empirically in
most cases (including the present one). Further, the reference detection system in this study relied on
footswitches. Even though foot-mounted sensors have numerous advantages such as low cost and
straightforward signal processing, their accuracy may be affected by interference associated with wired
connections and erroneous placement [22]. Despite these drawbacks, for applications that involve gait
phase detection, the system proposed here, consisting of a single-axis gyroscope on the foot instep,
not only has practical advantages in terms of aesthetics, research expenditure, ease of placement and
donning/doffing times, but also poses an accurate GPDS for the control system of a robotic AFO by
using an HMM-based algorithm, which avoids the time-consuming process of threshold setting.

6. Conclusions

This paper features the validation of two gait phase detection algorithms in a system which only
involves the inertial sensing from a foot-mounted IMU: a TB and an HMM-based algorithm; the latter
is trained by means of two modalities, namely an intra-subject approach and an inter-subject procedure
based on standardized data from healthy subjects. Results in terms of timing errors and goodness index
indicate that the best classifier is the HMM-based method, whose standardized parameter training
showed similar performance rates to those exhibited by the intra-subject technique in pathological
subjects. Moreover, considering the observed performance with respect to FSR, the scalar HMM
trained by means of an intra-subject approach and based on MT values also represents a useful tool for
assessing gait variability in both healthy and pathological subjects. Such findings suggest that the use
of a single gyroscope on the dorsal side of the foot is sufficient to accurately detect gait phases within
the control system of a lower-limb orthotic device. For future works, the real-time implementation of
the HMM-based detection scheme on a robotic AFO is intended, and for this, the adoption of an online
hidden-state decoding method such as the short-time Viterbi algorithm [46] is expected to be deployed.
In doing so, we expect to be able to compare both algorithms in terms of latency, i.e., the time needed
to online detect each gait phase, since the practical implications of the timing errors in biofeedback
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such as assistive devices have not yet been addressed. Additionally, given the fact that the proposed
detection algorithms were only tested on healthy and hemiparetic individuals, further research may
be aimed at the dataset extension by including subjects affected by other neurological diseases, e.g.,
SCI, Parkinson disease, or multiple sclerosis.
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IC Initial Contact
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HO Heel-Off
SP Swing Phase
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IMU Inertial Measurement Unit
GPDS Gait Phase Detection System
TB Threshold-Based
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SVM Support Vector Machine
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SPT Standardized Parameters Training
ROS Robot Operative System
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ROC Receiver Operating Characteristic
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ICC Intra-class Correlation Coefficient
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