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Abstract: Methionine-rich prion-like proteins can regulate liquid–liquid phase separation processes
in response to stresses. To date, however, very few proteins have been identified as methionine-rich
prion-like. Herein, we have performed a computational survey of the human proteome to search for
methionine-rich prion-like domains. We present a census of 51 manually curated methionine-rich
prion-like proteins. Our results show that these proteins tend to be modular in nature, with molecular
sizes significantly greater than those we would expect due to random sampling effects. These
proteins also exhibit a remarkably high degree of spatial compaction when compared to average
human proteins, even when protein size is accounted for. Computational evidence suggests that
such a high degree of compactness might be due to the aggregation of methionine residues, pointing
to a potential redox regulation of compactness. Gene ontology and network analyses, performed
to shed light on the biological processes in which these proteins might participate, indicate that
methionine-rich and non-methionine-rich prion-like proteins share gene ontology terms related to
the regulation of transcription and translation but, more interestingly, these analyses also reveal that
proteins from the methionine-rich group tend to share more gene ontology terms among them than
they do with their non-methionine-rich prion-like counterparts.

Keywords: liquid–liquid phase separation; low complexity region; methionine; prion; protein domain

1. Introduction

Since the completion of the Human Genome Project in 2003 to the present, we have
witnessed an impressive development in the understanding of how the many proteins
that make up a proteome contribute to the functional organization of living matter [1,2].
However, we remain largely ignorant about the mechanisms by which certain proteins that
contain sequences with gibberish-like low-complexity regions (LCRs) may function. These
enigmatic LCRs, present in 10–20% of human proteins [3,4] and accounting for around
0.4% of the amino acid sites in eukaryotic proteomes [5], were originally thought of as
junk. In any event, many LCRs are genetically unstable because they facilitate replication
slippage or cause recombinational inaccuracies [6], which confers to these sequences a high
pathological potential. On the one hand, the uncontrolled expansion of short sequence
stretches can generate high amyloidogenicity [7], which is known to be behind a number
of developmental and neurodegenerative diseases [8]. On the other hand, single point
mutations within LCRs can be disease-causing [9–13], probably because the mutation
stabilizes the pathogenic aggregates [14,15].

The high abundance in most proteomes of these prion-like domains (PrLDs) with
low sequence complexity [3,4] and, in many instances, evolutionary conservation through
orthologous proteins [5], are difficult to reconcile in light of sequence stretches with no
function, but posing a risk for the cell carrying them. Thus, while it is correct that these
LCRs can be targets of pathogenic mutations, it is also true that they must perform essential
biological functions. Although most of the LCRs present in the known protein universe
remain uncharacterized [16], there is growing evidence pointing to a prominent role for
these PrLDs in the assembly/disassembly of cellular condensates in response to specific
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stimuli [3,17]. In this way, the unanticipated finding that recombinant purified LCRs, sepa-
rately from the rest of the protein, can undergo phase transition from an aqueous solution
to form either liquid-like droplets or hydrogels [18–20], has placed these low sequence
complexity domains in the focus of interest. Thus, overcoming the original reluctance to
consider these sequences to be of biological relevance, prion-like low-complexity sequences
are currently thought to be key regulators of protein solubility and phase behavior [21].

The ability of certain proteins, known as scaffolds, to form transient productive intra-
and intermolecular interactions is behind the formation of specific but non-stoichiometric
supramolecular structures (quinary structures) that give rise to biomolecular condensates,
often called membraneless organelles (MLOs). These MLOs are dynamic structures quickly
assembled and disassembled in response to changing conditions, through a reversible
process involving demixing into two distinct liquid phases, referred to as liquid–liquid
phase separation (LLPS) [22]. Prion-like low complexity sequences may play a relevant
role in LLPS, providing a combination of organizational specificity and dynamic flexibility,
necessary for an adequate response to stimuli. In this respect, post-translational modifi-
cations of the residues present in these LCRs offer a convenient strategy to reshape the
residue–residue interaction networks that determine the dynamics of LLPS [17].

In this context, recent works have identified reversible methionine oxidation as a redox
sensor involved in the dynamic assembly/disassembly of biomolecular condensates [20,23,24].
Thus, yeast ataxin-2 has been reported to form intracellular condensates required for proper
cellular signaling in response to nutrient availability [20]. Inspection of the yeast ataxin-2
LCR involved into self-association and phase separation revealed a striking enrichment in
methionine residues. Furthermore, these authors showed that ataxin-2 liquid-like droplets
exposed to hydrogen peroxide melted in a fully reversible manner. Thus, the addition of
methionine sulfoxide reductase enzymes, under conditions favorable to reduce oxidized
methionine residues back to methionine, fully restore the ability of ataxin-2 to condensate
and form droplets [23]. Interestingly, liquid-like droplets made from mutated variants
of yeast ataxin-2 bearing methionine-to-tyrosine (or phenylalanine) substitutions were
resistant to H2O2-mediated melting, pointing to reversible methionine oxidation as an
additional means of regulating PrLD-LCRs [23]. Shortly after this finding, Lin et al. reported
that a methionine-rich (MR) low-complexity domain, located within the C-terminal region
of the Tar DNA-binding protein 43 (TDP-43), formed a redox switch able to regulate the
self-association of the protein to form labile cross-β polymers and liquid-like droplets.
Thus, as in the case of the yeast ataxin-2, experimental evidence suggests that the MR-PrLD
from the human TDP-43 protein functions as a redox sensor [24].

Despite the suitability of the methionine side chain for protein-protein interactions, its
biological potential has been largely overlooked [25]. In this work, we have computationally
explored the human proteome in search of proteins containing MR-PrLDs that may fulfil a
redox sensor function.

2. Materials and Methods
2.1. Dataset

The human reference proteome was obtained from UniProt [26]. Subsequently, we
filtered out those peptides with less than 100 residues, a process that yielded a collection of
19,636 different human proteins.

2.2. Gene Ontology Enrichment Analyses

The group of human proteins without methionine (other than the initiation methio-
nine) in their sequences were subjected to GO term enrichment analyses using the Gene
Ontology Consortium website [27] and the analysis tool from the PANTHER Classification
System [28]. The analyses were performed using a reference list formed by all Homo
sapiens genes in the database (PANTHER 16.0). A hypergeometric test with Bonferroni
correction for multiple comparisons was used to select significantly (p-valued < 10−6)
enriched terms. Fold-enrichment was computed as the ratio of the number of proteins
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annotated with the GO term in the test set to the number of proteins annotated with said
term in the reference (whole human proteome) set.

2.3. Spatial Methionine Pattern Analysis

Spatial point pattern analysis is an approach commonly used in ecology to examine the
spatial distribution of clustered, dispersed, or randomly occurring individual organisms
within a given region [29]. Herein, we have adopted such an approach to study the
distribution of methionine residues along the primary structure of proteins. Regardless
of the methionine abundance for a given protein, the many or few methionine residues
present in that protein can be randomly distributed throughout the primary structure
or, alternatively, they may exhibit some degree of tendency either to cluster together or
to disperse, in response to structural/functional requirements. To determine when the
methionine residues from a given protein were distributed unevenly across its primary
structure, we adopted a transect-based method where the protein length was divided
into segments of 50 residues and in each of these segments, the number of methionine
residues present was computed. In this way, for each protein, we computed the coefficient
of variation, given by the quotient (q) of the standard deviation between the mean:

q =

√
N ∑N

i=1 (xi − 1
N ∑N

i=1 xi)
2

∑N
i=1 xi

(1)

where, N is the number of segments and xi is the number of methionine residues in the
i-th segment. A segment length of 50 residues was chosen because the average methionine
abundance is around 2%, which means that the expected number of methionine residues
in 50-residue-long segments, when they are randomly distributed according to a Poisson
distribution, is 1. For a Poisson (random) distribution where the expectation and variance
are equal, we expect a coefficient of variation value close to 1. For this reason, the coefficient
of variation has often been used as an aggregation index [30].

2.4. Empirical Null Distributions

For proteins in which their methionine residues are randomly distributed according
to a Poisson distribution, values of the coefficient of variation are expected to be around 1.
Thus, values much greater than 1 (aggregation) or much less than 1 (dispersion) may be at-
tributed to structural/functional causes behind the departure from the random distribution
of methionine residues. However, some degree of deviation from the value of 1 could just be
due to chance. Furthermore, the protein size and methionine abundance, which vary from
protein to protein, can influence the random distribution (Figures S1 and S2, respectively).
That is, they can lead to non-Poisson random distributions. Therefore, to determine the q
threshold levels that discriminate between clustered, dispersed, and random distributions,
we resorted to empirical null distribution to assess the degree of clustering/dispersion and
its statistical significance.

For each single protein, we built its own null distribution, as subsequently described.
We started by counting the number of methionine residues (m) and the total length of
the protein (N). After that, we created a binary vector containing N–m zeros and m ones
at randomly chosen positions. For this vector, the coefficient of variation was computed,
as explained above. The process of randomly forming a binary vector and computing
its associated q-statistic was repeated 10,000 times for each protein. Thus, for each single
protein, we were able to plot its own null distribution, thus taking into account the potential
effect of protein size and methionine abundance on the distribution of q. In this way, all
the proteins from the human proteome were sorted into three categories: aggregation,
dispersion, and random, using their own empirical null distribution and a significance
level of α = 0.0001. As an example, aiming to illustrate the procedure carried out within the
entire proteome, Figure 1 shows the null distribution obtained for pre-mRNA-processing
factor 40 homolog A (O75400), a protein that fell into the ‘aggregation’ category.



Antioxidants 2022, 11, 1289 4 of 19

Antioxidants 2022, 11, x FOR PEER REVIEW 4 of 19 
 

associated q-statistic was repeated 10,000 times for each protein. Thus, for each single pro-
tein, we were able to plot its own null distribution, thus taking into account the potential 
effect of protein size and methionine abundance on the distribution of q. In this way, all 
the proteins from the human proteome were sorted into three categories: aggregation, 
dispersion, and random, using their own empirical null distribution and a significance 
level of α = 0.0001. As an example, aiming to illustrate the procedure carried out within 
the entire proteome, Figure 1 shows the null distribution obtained for pre-mRNA-pro-
cessing factor 40 homolog A (O75400), a protein that fell into the ‘aggregation’ category.  

 
Figure 1. Empirical null distribution of the q-statistic for the protein pre-mRNA-processing factor 
40 homolog A. This protein (O75400, UniProt ID) has been taken as an example to illustrate the 
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contains 42 methionyl residues (once the initiation methionine has been removed). Thus, we ran-
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resulting distribution of the statistic q was plotted (A). The spatial distribution of methionine 

Figure 1. Empirical null distribution of the q-statistic for the protein pre-mRNA-processing factor
40 homolog A. This protein (O75400, UniProt ID) has been taken as an example to illustrate the
process leading to the detection of methionine residue clustering, and the subsequent labeling
of the protein as a member of the ‘aggregation’ category. The protein, which is 956 amino acids
long, contains 42 methionyl residues (once the initiation methionine has been removed). Thus, we
randomly distributed 42 methionine residues across a sequence of 956 amino acids, and computed
the resulting value of the coefficient of variation (q). This process was repeated 10,000 times, and
the resulting distribution of the statistic q was plotted (A). The spatial distribution of methionine
residues across the protein sequence is shown in (B). The top plot from (B) correspond to the real
observed distribution for the protein being analyzed. The value of q computed for this protein was
1.627, and it is indicated by the red vertical line in (A). The remaining five plots displayed in (B) show
the dispositions of methionine across the lineal sequence when randomly distributed at different
values of q, as indicated by the blue circles in (A).
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2.5. Computational Definition of MR-PrLD

For the purposes of the current study, we defined an MR-PrLD as any sequence stretch
that satisfies the following criteria: (i) the considered sequence must be hosted into a
protein whose methionine residues show a clear tendency to cluster together; that is, the
stretch must be present in a protein labeled as a member of the ‘aggregation’ group, as
defined above. (ii) The sequence stretch must contain an LCR contributed by methionine
or methionine and other amino acids. To detect such LCRs, we resorted to fLPS, a program
that rapidly annotates single- and multiple-residue biased regions in the sequence being
analyzed [31,32]. The annotated sequence returned by this software was subsequently
parsed, using an ad hoc R script (pasefLPS) to recover only those regions where methionine
contributed significantly, p-value < 10−5, to sequence bias. Furthermore, (iii) this LCR
must match with a PrLD, as predicted by a hidden-Markov model algorithm, such as
PLAAC [33]. Again, we made use of an R script, parsePLAAC, to manage those sequence
stretches predicted as PrLD at a threshold probability of 0.9. Finally, (iv) the sequence
stretches containing less than 5 methionine residues must be filtered out.

Criteria (ii) and (iii) were simultaneously addressed using the R script score.mrr, which
calls and manages different scripts (fLPS, PLAAC, parsefLPS, and parsePLAAC), coordinating
the returned outputs and combining them into one single output object, which reveals the
positions at which the detected MR-PrLDs start and end, as well as their p-values. All the R
codes mentioned above can be found at [34].

2.6. Compactness Index

For each protein, as an estimate of structural compactness, we determined the inter-
atomic distance between the Cα of the N-terminal amino acid and the Cα of the C-terminal
residue. To this end, we used the coordinates obtained from the AlphaFold protein structure
database [35,36]. This distance in angstroms (d) was subsequently divided by the number
of residues (N) of the protein being analyzed, to provide the compactness index, Ic =

d
N .

Thus, the lower the Ic value, the more compact the protein.
It should be pointed out that we failed to obtain from the AlphaFold database a

reliable structure for 2 (Q9P2D1 and Q6KC79) of the 51 proteins belonging to the MR-PrLD
set. To quantify the significance of the mean Ic computed for the MR-PrLD group, we
resorted to constructing empirical distributions. For this purpose, from the whole set of
non-membrane proteins, we randomly sampled 49 proteins and computed their mean Ic,
repeating the process 10,000 times. The random sampling was performed in three different
ways: (i) without any restriction at all, (ii) imposing a matching in protein sizes between
the MR-PrLD group and the sampled proteins, and (iii) imposing such a matching, but for
the methionine content rather than for protein size.

2.7. Protein Networks Based on GO Terms and Assortativity Analysis

Using data provided by Iglesias and et al. [37] and data generated in the current work,
we have established a set of 148 unique human protein-containing PrLDs, which are or are
not enriched in methionine residues, and are referred to as MR-PrLD and Non-MR-PrLD,
respectively (Table S1). Let us call these sets A and B, respectively. To formalize the network
analysis, we applied the methodology described elsewhere [38]. Briefly, we began by
defining the sets:

O = {all the GO terms o f human proteins},
P = A ∪ B.

Next, we defined the mapping f as follows:

f : P→ P(O)
p 7→ f (p) = {GO terms annotated to protein p},

where P(O) is the powerset of O, that is, the set formed by all the subsets of O. In this
framework, we are in condition to define an endorelation over the set P. Thus, we will
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say that pi and pj are related (pi~pj), if and only if pi and pj share at least 25% of their GO
terms. In other words, if their Jaccard similarity index is equal or greater than 0.25:

J
(

pi, pj
)
=

∣∣ f (pi) ∩ f
(

pj
)∣∣∣∣ f (pi) ∪ f

(
pj
)∣∣ ≥ 0.25.

A network is a mathematical graph G(V,E), consisting of a set of nodes or vertices, V,
and a set of edges, E, where its elements are unordered pairs of distinct vertices. In our
case, we built and analyzed the following graph:

G = (V = P, E =
{(

pi, pj
)
∈ P x P : pi ∼ pj

}
.

In our network we have vertices either belonging to the set A or to the set B. When
vertices of a type show a trend to be related to others that are like them, we say that the
network shows assortative mixing. The opposite extreme occurs when the vertices prefer
to associate with others that are of different types; then we say that the network shows
disassortative mixing. To quantify the level of assortative mixing, we used the assortativity
coefficient described by Newman [39] as implemented in the R package igraph [40].

3. Results
3.1. A Small but Sizeable Fraction of Human Proteins Do Not Contain Methionine Residues Other
Than the Initiation One

We started by addressing the variability in methionine content within the human
proteome. Figure 2A shows the histogram of methionine abundance in 19,636 unique
proteins of more than 100 residues long. Methionine content showed a normal distribution,
slightly skewed to the right. Thus, while methionine had an average occurrence of 2.2%,
the spliceosomal protein U1 small nuclear ribonucleoprotein C (the protein exhibiting the
highest relative frequency of methionine) reached up to 13.8%. Interestingly, once the
initiation methionine was disregarded, a group of around 500 proteins without methionine
in their sequences became conspicuous (Figure 2B). This group of proteins, with sizes
ranging from 100 to 793 residues in length, was subjected to GO term enrichment analysis.
As it can be observed in Figure 2C–E, this group of proteins lacking methionine was related
to immunity and skin development. A complete list of these proteins and some of their
features (sequence, size, abundance, etc.) can be found in Table S2.

3.2. Aggregation Versus Dispersion of Methionine Residues through the Primary Structure of
Human Proteins

For each protein, we investigated the spatial distribution of its methionine residues
through the primary structure. To this end we computed a statistic, q, that assesses the
deviation from the expected values for a purely stochastic process (see the Section 2 for a
detailed description). Briefly, the closer q is to 0, the greater the dispersion of the methionine
residues along the protein sequence. On the contrary, the larger q is, the greater the tendency
of methionine residues to cluster into patches. In this way, the statistic q was computed for
each single protein and compared to its own empirical null distribution (see Figure 1 for an
example of the methodological procedure), which allowed us to sort out each protein into
one of three categories: aggregation, dispersion, and random (Figure 3). For this purpose,
when the q value computed for a given protein was significantly (p-value < 10−4) high or
low, according to its own empirical distribution, the protein was labeled as ‘aggregation’
or ‘dispersion,’ respectively. Otherwise, the protein was considered to belong to the
random group.
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Figure 2. Proteins lacking methionine residues (other than the initiation methionine) are related to
immunity. The methionine content distribution of the human proteome is shown in (A), where the
median was found to be 2.1% (mean 2.2%). The methionine content was recomputed for the human
proteome after removing the initiation methionine found at position 1. In this case, the median
was located at 1.9% (mean 2%), and a group formed by 500 proteins stands out conspicuously in
the distribution (B). This group of non-methionine-containing proteins was subjected to GO term
enrichment analysis in the three ontologies separately: biological process (C), molecular function (D),
and cellular component (E). The abscissa axis shows the binary logarithm of the fold-enrichment,
computed as described in Section 2.
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Figure 3. For each protein, the observed distribution of methionine residues along the linear sequence
was contrasted with that expected when these residues were randomly distributed. In this way, each
protein was sorted into the aggregation, dispersion, or random category. The pie chart on the left
represents the percentage of all the proteins in each category. The pie chart on the right gives these
proportions for only non-membrane proteins.

Since methionine frequencies in membrane proteins are higher than in non-membrane
proteins [41,42], we subdivided our dataset into membrane and non-membrane proteins,
observing that proteins classified as ‘aggregation’ were enriched within the membrane
protein subset with respect to the non-membrane protein group (p-value = 2.2 × 10−16,
Fisher’s exact test). Subsequently, we filtered out membrane proteins (25.6%) to restrict our
analyses to non-membrane proteins (74.4%).

3.3. Proteins from the Aggregation Group Tend to Be Met-Enriched and Larger Than Average

We next examined the protein size (number of residues) and the relative frequency of
methionine within each protein group. We found that proteins belonging to the aggregation
group tend to be larger than proteins from the dispersion category (p-value < 2 × 10−9,
pairwise Wilcoxon rank sum test), and marginally larger than proteins belonging to the
random category (Figure 4A). In addition to their propensity to be longer, proteins from
the aggregation group also exhibited a higher relative frequency of methionines than
random or dispersion proteins (Figure 4B), leading to a highly significant larger number
of methionine residues per protein within the aggregation group, when compared to the
dispersion (p-value < 10−192, pairwise Wilcoxon rank sum test) or the random category
(p-value = 4 × 10−192, pairwise Wilcoxon rank sum test) (Figure 4C). At this point, it is
important to remember that a protein is labeled as ‘aggregation’ when it forms patches of
methionine residues that cannot be explained by chance when a protein of the same length
and the same absolute frequency of methionine is considered (Figure 1). Therefore, neither
the protein size nor the number of methionine residues can be claimed as direct causal
determinants of the tendency to form these methionine patches.
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Figure 4. Protein size distributions within the aggregation, dispersion, and random groups are shown
in (A). The percentage of methionine content in the human proteome, which ranges from 0 to near
14%, was assessed. The absolute frequency of the different methionine contents is shown in (B),
where differential trends for the dispersion (green), random (blue), and aggregation (purple) groups
can be distinguished. In (C) the distribution of the absolute methionine frequency for each of these
three groups is shown.
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3.4. Screening the Aggregation Group for MR-PrLD-Containing Proteins

The human proteome was surveyed in search of proteins that may participate in
the regulation of LLPS by the redox status of the protein. To this end, we focused our
attention on MR-PrLDs similar to those present in the yeast ataxin-2 and the human TDP-
43 proteins [17]. Since direct sequence comparison via sequence alignment was not a
feasible approach, we resorted to a definition of MR-PrLD that would be easy to handle
computationally. For this purpose, we defined a MR-PrLD as any sequence stretch within a
protein from the ‘aggregation’ group that could be classified as an LC region. In addition,
this region should contain at least five methionine residues and, with a probability greater
than 0.9, would be predicted as a prion-like domain. In this way, we identified 51 proteins
accounting for 78 MR-PrLDs (Table S3).

Each one of these MR-PrLDs was scored according to the unlikeliness of observing
so many methionine residues clustered together by chance. For this scoring, the length (n)
and the number of methionine residues (x) was counted for each MR-PrLD. On the other
hand, the relative frequency of methionine in the whole protein (p) was also computed. In
this way, a p-value could be calculated as follows:

p−Value = P[X ≥ x], (2)

assuming that the random variable X (number of methionines found along the sequence
stretch) follows a binomial distribution of parameters n and p, X ∼ Bin(n, p). Table 1
presents information on the first six proteins when ranked according to increasing p-values,
while Figure 5 shows the multi-modular architecture of these proteins. A comprehensive
list of the Pfam domains accompanying MR-PrLDs can be found in Table S4.

Table 1. Top-ranking MR-PrLDs according to the p-value criterion. The six top-ranking MR-PrLDs
containing proteins were: (i) pre-mRNA-processing factor 40 homolog A (O74500); (ii) histone acetyl-
transferase KAT6B (Q8WYB5); (iii) histone acetyltransferase KAT6A (Q92794); (iv) unconventional
myosin-XVB (Q96JP2); (v) synergin gamma (Q9UMZ2); and (vi) clathrin interactor 1 (Q14677).

ID Start End Length x p-Value MR-PrLD

O75400 65 121 57 19 1.79 × 10−13
PMGMHPMGQRANMPPVPHGMMPQ
MMPPMGGPPMGQMPGMMSSVMPG

MMMSHMSQASM

Q8WYB5 1961 2068 108 21 4.53 × 10−13

MQRGMNMSVNLMPAPAYNVNSVN
MNMNTLNAMNGYSMSQPMMNSGY
HSNHGYMNQTPQYPMQMQMGMMG
TQPYAQQPMQTPPHGNMMYTAPGHH

GYMNTGMSKQSLNG

Q92794 1894 1977 84 18 5.74 × 10−12

QRGMNMGVNLMPTPAYNVNSMNM
NTLNAMNSYRMTQPMMNSSYHSNPA
YMNQTAQYPMQMQMGMMGSQAYTQ

QPMQPNPHGNMM

Q96JP2 820 847 28 8 6.25 × 10−9 PMVYPGMIQMPAYQPGMVPAPMPMM
PAM

Q9UMZ2 37 94 58 12 9.29 × 10−9
PPQAGLMPMQQQGFPMVSVMQPNM
QGIMGMNYSSQMSQGPIAMQAGIPM

GPMPAAGMP

Q14677 549 591 43 14 1.72 × 10−8 MPMSMPNVMTGTMGMAPLGNTPMM
NQSMMGMNMNIGMSAAGMG
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Figure 5. Multi-modular architecture of MR-PrLD-containing proteins. For the six top-ranking
proteins in the MR-PrLD census (the Uniprot identifier is indicated vertically to the left of each plot,
and the protein name horizontally at the top of each plot), the positions of the methionine residues
along the primary structure are represented by black vertical lines. Along the protein sequence (blue
segment), we have marked the Pfam domains detected in each protein using colored rectangles and
ellipses. The MR-PrLDs are represented as red boxes. The green curve represents the probability
of the residue at that position being part of a PrLD according to PLAAC [33], an algorithm based
on hidden-Markov models. Each plot has been done using the canonical form of the protein being
analyzed. Below each plot, the length of the different isoforms known to be produced by alternative
splicing are represented as black segments, and their MR-PrLDs as red rectangles.

3.5. Proteins Containing MR-PrLDs Are Extraordinarily Compact

LCRs and prion-like domains tend to be intrinsically disordered [17]. These protein
regions fail to form a unique predominantly stable tertiary structure, which favors less com-
pact conformations [43]. However, despite that MR-PrLDs are expected to be intrinsically
disordered, we noted that proteins from the MR-PrLD set are, on average, more compact
than most non-membrane proteins from the human proteome, and much more compact
than proteins from the group of proteins lacking methionine (Figure 6A). To quantify the
probability that this observation could be explained by chance due to sampling effects,
we built empirical distributions of the Ic by randomly sampling proteins from the non-
membrane proteome and computing their means (Figure 6B). When the null distribution
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was built by sampling proteins from the non-membrane proteome without any further re-
striction, we observed a normal distribution, with a mean of 0.213 and a standard deviation
of 0.026. The mean value for the group of proteins containing MR-PrLDs was significantly
less at 0.085 (p-value < 0.0001). Even when we controlled for the effect of protein size on the
Ic, we concluded that MR-PrLD-containing proteins are more compact than expected by
chance in proteins of the same size (p-value = 0.0001). Conversely, when we controlled for
methionine content instead of protein size, we observed that proteins from the MR-PrLD
set were less compact than expected for proteins with such a high methionine abundance
(p-value = 0.008).
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Figure 6. MR-PrLD-containing proteins are more compact than most proteins. Among non-membrane
proteins, we distinguished three categories: (i) proteins belonging to the MR-PrLD set (de-noted as
MR in the figure), (ii) proteins lacking methionine, other than the one for initiation, in their sequences
(denoted as Non-Met in the figure), and (iii) the remaining proteins. For each of these categories,
the index of compactness, Ic, is plotted using boxplots (A). In (B), the empirical null distributions
of Ic mean for 49 proteins randomly sampled from the non-membrane human proteome are shown.
Random sampling was carried out in three different ways: (i) without restriction (turquoise color),
(ii) matching the protein size with that of the MR-PrLD group (purple color), and (iii) matching
the methionine content (dark green color). The computed Ic mean value for the MR-PrLD set was
0.085 angstrom per residue, and it is indicated by a vertical red line in the plot.
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3.6. GO Analysis of MR-PrLD-Containing Proteins

To gain insights into the biological processes in which these MR proteins may be
involved, we next carried out a GO term enrichment analysis using the MR-PrLD proteins
as a target set, against the whole human reference proteome as a background set. In this
way, we found a statistically significant enrichment in GO terms related to RNA and DNA
associated processes, including transcription and chromatin organization and remodeling,
as well as terms linked to developmental processes, among others. A full list of enriched
terms and their statistical details can be found at Table S1. At first glance, this result might
seem very similar to that reported by Iglesias et al. for a group of computationally identified
human prion-like proteins for which GO terms pointing to RNA and DNA processes were
at the top of their list [37]. Since among these proteins, methionine was not a particularly
abundant amino acid, this group will be referred to as Non-MR-PrLD.

The considerable overlap in GO terms present in both sets (MR-PrLD and Non-MR-
PrLD) was not surprising, since both were formed for modular prion-like containing
proteins. Nevertheless, we were not so much interested in the similarities as in the differ-
ences. Thus, to search for the particularities, if any, of the MR-PrLD-containing proteins, we
designed a network analysis. Briefly, each PrLD protein was considered as a vertex or node,
and was labeled as red (MR-PrLD) or blue (Non-MR-PrLD). Two nodes were related to each
other if they shared at least a 25% of the GO terms describing both proteins (nodes). Once
we introduced such a binary relation, we were able to take full advantage of the network
theory to answer our question of interest: are MR-PrLD nodes more often related among
themselves than they are related to Non-MR-PrLD nodes? A straightforward, quantitative,
and visual way to answer this question is by drawing the network and computing its
assortativity. In general, for a network formed by two types of nodes, the assortativity
coefficient can range between −1, when the network is completely disassortative (every
edge connects two nodes of different types) and 1, when there is perfect assortative mixing
(every edge connects two nodes of the same type). When the link between two nodes is
not influenced by the type of the nodes, the assortativity coefficient takes values close to
zero. Using this approach, we built a network of the human PrLD-containing proteins
(Figure 7A), and computed its assortativity coefficient, which turned out to be 0.188. Since
this value is greater than 0, we concluded that there was a positive assortativity. Never-
theless, to assess the statistical strength of such a conclusion, we performed two different
types of controls based on either the random relabeling of nodes or the random sampling
of nodes (Figure 7B,C). In both cases, we could conclude that the positive assortativity
observed for the human PrLD network was statistically significant (p-values 0.003 and
0.034, respectively). Details regarding the GO terms specific for MR-PrLD or Non-MR-PrLD
can be obtained in Table S1.
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Figure 7. Network of human PrLD proteins and assortativity analysis. Two given proteins (nodes)
are connected (linked by an edge) if they share at least 25% of their GO terms. Proteins belonging to
the MR-PrLD set are shown in red, while those from the Non-Met-PrLD set are shown in blue (A).
Retaining the network topology and the proportion of red and blue nodes, each node was randomly
relabeled as red or blue, then the assortativity coefficient of the relabeled network was computed.
This process was repeated 105 times, and the assortativity distribution was plotted (B). On the other
hand, the human proteome was randomly sampled to obtain as many proteins as nodes present in A.
Using the same binary relationship (two proteins are connected if they share at least 25% of their GO
terms), a network was built. Afterwards, each node was randomly labeled as red or blue, keeping
the proportion shown in A. This process was repeated 1000 times and, in each case, the assortativity
coefficient was computed. The distribution of the assortativity coefficient computed in this way was
plotted (C). The red circles in B and C point to the assortativity coefficient value (0.188) computed for
the actual network shown in A.

4. Discussion

The aim of the current study was to elaborate a census of human proteins that may be
involved in LLPS processes regulated by the redox status of the cell. To guide the search,
we took as a model the yeast ataxi-2 and the human TDP-43 proteins. These two proteins
exhibit a completely unrelated primary structure. Nevertheless, both proteins present
in their amino acid sequence a region of low complexity, rich in methionine residues,
which can be identified as a prion-like domain [17]. On the other hand, these MR-PrLDs
have been experimentally proved to be involved in the formation of droplets in a redox-
regulated fashion. Furthermore, this redox regulation seems to take place via reversible
methionine oxidation [23,24]. In this context, we selected four criteria that had to be satisfied
simultaneously for a given protein to be considered as a MR-PrLD-containing protein: (i) the
distribution of the methionine residues throughout the primary structure should show
an aggregation trend; (ii) an LCR containing methionine residues should be detected in
the protein sequence, (iii) these LCRs must coincide with sequence stretches identified as
PrLDs, and (iv) the sequence stretch must contain at least 5 methionine residues.

In relation to the first of these criteria, it is a well-known fact that the average methion-
ine content of human proteins is around 2%. Nevertheless, the amino acid composition of
proteins depends on their size [44]. Since for structured proteins, the surface-to-volume
ratio decreases with increasing protein size and, on the other hand, polar amino acids tend
to be located on the surface of proteins, while apolar amino acids are buried within the
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protein core, the influence of protein size on amino acid composition is not surprising.
However, a significant fraction of amino acid residues from a proteome is found at unstruc-
tured regions [45], where the surface-to-volume rule might not hold. Furthermore, even
for structured proteins, methionine can be found both exposed at the surface and buried
within the protein interior [46,47]. In short, very little is known regarding the variability of
methionine content in human proteins and its functional significance. Thus, we started by
addressing how methionine residues tend to be distributed through the primary structure
of proteins.

We analyzed the distribution of 240,507 methionine residues among 19,636 human
proteins, accounting for 11,302,527 residues. Thus, methionine content in human proteins
averaged, as expected, around 2%. More interestingly, about 500 proteins, with sizes
ranging from 100 to 793 residues, stood out by not presenting methionine in their sequence,
apart from the initiation methionine. Gene ontology terms enrichment analysis of this
group of proteins revealed that this set was enriched with proteins related to the skin
and immunity (Figure 2). As intriguing as this observation is, since our original goal was
something else, we did not further investigate the potential reasons why proteins related to
epidermis development and immunity avoid methionine residues in their sequences. On
the other end of the distribution, there was a group of nearly 200 proteins with an abundance
of methionine above the 5% (mean plus three standard deviations). Nevertheless, our main
interest was more focused on how methionine residues were distributed along the primary
structure of proteins than in their abundance. Therefore, we sorted all the non-membrane
human proteins into three categories (random, dispersion, and aggregation) according to
probabilistic criteria using random models. Proteins belonging to the aggregation group
(6.3%) were the least numerous of the three categories (Figure 3).

At this point, we were able to address the question: What is, if any, the relationship
between methionine abundance and the trend of this amino acid to aggregate or disperse?
In this respect, we observed that large and methionine-rich proteins were significantly
overrepresented in the aggregation group (Figure 4). It should be noted that this result
could not be anticipated. Indeed, there is no obvious reason why a protein that has
few methionines should not cluster them together in a short stretch of its sequence. On
the other hand, a protein with a high number of methionine residues might, a priori,
scatter them throughout the whole sequence. Thus, our comprehensive analysis regarding
the dependence of both factors, protein size and methionine usage, on the aggregation-
dispersion trend of methionine residues (Figures 4, S1 and S2) provides an answer to a
previously unresolved question. Thus, the current results allow us to conclude that proteins
that exhibit methionine aggregation are larger than average, with larger relative methionine
frequencies than average human proteins.

Among this set of proteins that exhibited a trend to cluster their methionine residues
together, we searched for domains that may be potentially involved in the redox regulation
of LLPS processes. To guide this search, the properties of the methionine-rich domains
found into the yeast ataxin-2 and the human TDP-43 proteins were considered. These
domains were taken as a reference model because it has been shown experimentally that
they are involved in the regulation, via reversible methionine oxidation, of the assem-
bly/disassembly of biomolecular condensates (reviewed in [17]). Consequently, we defined
an MR-PrLD as a low complexity sequence stretch, rich in methionine, and predicted as
prion-like domain. In this way, we detected 78 MR-PrLDs in 51 different proteins. Each of
these domains were ordered according to a p-value, and the top (more significant) 6 are
shown into Table 1.

Two remarkable features of those proteins that have MR-PrLDs are their modular
architecture (Figure 5) and their above-average compactness. The first of these properties,
that is, the modular nature of these proteins, is not surprising, since most proteins able to
undergo phase separation usually present a modular design [17]. More surprising, at first
glance, might be the high degree of compactness observed within the MR-PrLDs-containing
proteins (Figure 6). That is because LCRs are expected to be disordered structures and, in
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contrast, proteins presenting a high LCR content would be expected to be less compact than
well-structured proteins [43]. However, it should be considered that the LCRs from MR-
PrLDs differ substantially in their composition from more standard LCRs. In the latter, polar
amino acids such as glutamine, serine, proline and glycine are often over-represented, while
large and/or non-polar amino acids, including methionine, are under-represented [4,48].
Therefore, MR-PrLDs are much more hydrophobic than conventional PrLDs. This high
methionine content, and the subsequent hydrophobicity of the domain, might be behind
the high mean compactness observed for the set of proteins containing MR-PrLDs, as
suggested by our sampling experiments (Figure 6B).

The yeast poly(A)-binding protein, Pab1, is a modular protein containing a MR-
PrLD [17]. Interestingly, Riback et al. showed that the unstructured MR-LCR of this protein
exhibited a hydrophobicity-dependent compaction. Thus, reducing hydrophobicity with
methionine to alanine substitutions increased the domain’s radius of gyration (Rg). Con-
versely, increasing hydrophobicity with methionine to isoleucine substitutions decreased
Rg. These authors point out that the intramolecular interactions that cause this MR-PrLD
compaction may also contribute to intermolecular interactions that influence phase separa-
tion of the Pab1 protein [49]. Therefore, it seems reasonable to speculate that the human
proteins containing MR-PrLDs described in the current work, which exhibit an unusual
compaction, may regulate their compactness via the reversible oxidation of methionine
to methionine sulfoxide (MetO). It is a well-known fact that the oxidation of methionine
contributes polarity to an otherwise apolar side chain [25]. Thus, the hydrophobicity index
decreases from 0.738 for Met to 0.238 for MetO, very similar to that of glutamine (0.251) [50],
an amino acid often found in standard non-MR-PrLDs [51].

In the context of the current investigation, human proteins containing prion-like
domains have been classified as either MR or non-MR. Both groups share several features,
including a modular design suitable for its participation in processes of the regulation
of the flow of genetic information (Table S1). However, we were much more interested
in emphasizing their differences, with the aim of getting an insight into those cellular
processes involving LLPS that might be redox regulated. For this purpose, we carried out
network analyses using GO terms to define relationships between proteins, addressing
the assortativity between both groups of PrLD-containing proteins. The results of such
analyses allow us to conclude that despite the similarities between the MR and non-MR
sets, MR-PrLD proteins selectively share enough GO terms with each other to allow a
clear discrimination, with respect to the non-MR-PrLD group (Figure 7 and Table S1),
suggesting that high methionine content and high compaction might be suitable for specific
functions involving specific prion-like domains. A relevant functional role for these MR-
PrLDs is further supported for the observation that these domains appear to be conserved
throughout their evolution (Figures S3 and S5).

5. Conclusions

Until now, only a reduced number of proteins containing prion-like domains enriched
with methionine have been described in the literature. The experimental characterization
of these few proteins has revealed a hitherto new biological function for the reversible
oxidation of methionine. Concretely, the interconversion of methionine and methionine
sulfoxide can function to regulate liquid–liquid phase separation and the subsequent
assembly/disassembly of supramolecular structures in response to redox stimuli.

Although so far only a few proteins exemplify this novel function of methionine
residues, we know, as noted by François Jacob, that evolution always repeatedly reuses
successful designs, in slightly modified variations [52]. Thus, prompted by this reasoning,
we have performed a proteome-wide survey to search for human proteins containing
methionine-rich prion-like domains (MR-PrLDs). In this way, we have found 51 different
proteins accounting for 78 MR-PrLDs, which have been ranked according to the unlikeli-
ness of observing them by chance. The subsequent computational characterization of these
proteins revealed several properties that they have in common: (i) the MR-PrLDs present
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in these proteins tend to be evolutionary conserved, as suggested by the fact that they were
detected in orthologous proteins from other mammalian species. (ii) Proteins containing
MR-PrLDs were significantly larger than average, and (iii) they exhibited modular architec-
tures; (iv) remarkably, these proteins showed an unusually high degree of compactness,
most probably due to the high local concentration of methionine residues.

In summary, this study provides a census of human MR-PrLD-containing proteins
that share a series of properties that make them particularly suitable to promote, in a redox
regulated fashion, protein aggregation and liquid–liquid phase separation. We hope that
the current work will inspire future experimental research to further explore and confirm
the proposed functional role of these methionine-rich motifs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox11071289/s1, Figure S1: Effect of protein size on the null
distribution of the q-statistic; Figure S2: Effect of methionine abundance on the null distribution of the
q-statistic; Figure S3: Evolutionary conservation of MR-PrLDs in mammalian species; Table S1: GO
terms enrichment analysis of MR-PrLD- and Non-MR-PrLD-containing human proteins; Table S2:
Identification and features of human proteins lacking methionine residues; Table S3: Identification
of 78 MR-PrLDs present in 51 different human proteins; Table S4: List of the Pfam domains ac-
companying MR-PrLDs; Table S5: Details regarding MR-PrLDs found in sequences from different
mammalian species.
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