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Local field potential decoding of 
the onset and intensity of acute 
pain in rats
Qiaosheng Zhang1, Zhengdong Xiao2,3, Conan Huang1, Sile Hu2,3, Prathamesh Kulkarni1,3, 
Erik Martinez1, Ai Phuong Tong1, Arpan Garg1, Haocheng Zhou1, Zhe Chen   3,4 & Jing Wang1,4

Pain is a complex sensory and affective experience. The current definition for pain relies on verbal 
reports in clinical settings and behavioral assays in animal models. These definitions can be subjective 
and do not take into consideration signals in the neural system. Local field potentials (LFPs) represent 
summed electrical currents from multiple neurons in a defined brain area. Although single neuronal 
spike activity has been shown to modulate the acute pain, it is not yet clear how ensemble activities in 
the form of LFPs can be used to decode the precise timing and intensity of pain. The anterior cingulate 
cortex (ACC) is known to play a role in the affective-aversive component of pain in human and animal 
studies. Few studies, however, have examined how neural activities in the ACC can be used to interpret 
or predict acute noxious inputs. Here, we recorded in vivo extracellular activity in the ACC from freely 
behaving rats after stimulus with non-noxious, low-intensity noxious, and high-intensity noxious 
stimuli, both in the absence and chronic pain. Using a supervised machine learning classifier with 
selected LFP features, we predicted the intensity and the onset of acute nociceptive signals with high 
degree of precision. These results suggest the potential to use LFPs to decode acute pain.

Pain has sensory, affective and cognitive dimensions. Acute pain protects us from injury. Chronic pain, however, 
affects up to 30% of adults and represents a form of maladaptive condition. Currently, pain is diagnosed by patient 
report. In animal studies, it is defined by spinal withdrawal, or more recently by conditioned aversive behaviors1. 
There are limitations to these behavioral definitions for pain. In patients, verbal report may be inaccurate, espe-
cially in those patients who experience cognitive impairments. They are also problematic in children, the elderly 
or people with language barriers. In animal studies, neither spinal withdrawal nor conditioned aversion is com-
pletely specific for pain. Thus, finding a reliable and objective diagnosis for pain remains one of the key challenges 
in sensory neuroscience.

Previous neuroimaging studies have identified brain-wide circuit changes that correspond with acute pain2–6. 
One region that has been shown to correlate with the affective processing of pain is the anterior cingulate cortex 
(ACC). Studies in humans have suggested that the ACC may even provide evaluation for the intensity of acute 
pain7,8. Meanwhile, studies in animal models have demonstrated that ACC is both necessary and sufficient for 
the acquisition of aversive learning in acute and chronic pain conditions9–13. Furthermore, a limited number of 
studies using in vivo recordings in freely moving rats have shown that individual neurons in the ACC may carry 
information for both the intensity and onset of pain13,14.

The acquisition for extracellular spike trains of individual neurons requires invasive recordings. Stable chronic 
recordings of individual neurons in rodents or primates remain a challenging technique, and hence are not well 
suited for studies on chronic pain. In contrast to spikes that represent single unit outputs, local field potentials 
(LFPs) are comprised of a combination of synaptic and network activities within a local brain region and are 
relatively stable across time domain. LFPs are thought to represent the aggregate subthreshold activity of neu-
rons in a localized area near the recording electrode, and can be viewed as the input information in that spe-
cific local brain area15. Since LFPs measure the collective behavior of ensembles of neurons, frequency-specific 
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LFPs are thought to process distinct network information. For example, theta oscillation (4–8 Hz) in the hip-
pocampus has been shown to be important for arousal and the formation of spatial memory in rodents16,17. 
Meanwhile, high frequency cortical gamma oscillation (30–100 Hz) is known to be important for sensory pro-
cessing, as the high-frequency LFP power can provide a proxy for the assessment of neuronal outputs15. Both 
theta and gamma band activities have recently been shown to play a role in pain perception18–24. However, to date 
no study has examined the specificity of LFPs in predicting either the onset or the intensity of acute pain, and 
how such decoding is altered by the presence of chronic pain. The ability to interpret LFPs also has direct impli-
cations to clinical neuroscience, since LFPs bear some similarities to electroencephalogram (EEG) signals that 
are routinely recorded non-invasively25. Here we recorded LFPs from the ACC of freely behaving rats, and used a 
machine-learning classifier with extracted LFP features to decode the onset and intensity of nociceptive signals. 
We found that our method provides relatively high specificity and sensitivity for these signals, even in chronic 
pain conditions, suggesting the potential for LFPs in the decoding of acute pain.

Results
LFPs in the ACC demonstrate changes in response to peripheral noxious stimulations.  We used 
chronically implanted tetrodes to record extracellular activities (spikes and LFPs) from the ACC of freely moving 
Sprague-Dawley rats (Materials and Methods). We recorded LFPs before, during and after peripheral stimulations 
(Fig. 1a). Stimulations were done with a laser directed at the hind paw of rats through a mesh table (Fig. 1b). By 
adjusting the power of the laser output, we could adjust the heat applied to the hind paw, and stimuli were classi-
fied as non-noxious (NS), low-intensity noxious (LS), and high-intensity noxious stimuli (HS)13,14.

Multi-channel LFPs were recorded from the ACC that was contralateral to peripheral stimulations. The 
trial-averaged LFP spectrogram shows that noxious stimulations with LS or HS increased the power at theta and 
gamma frequencies (Fig. 2a). As previous research has indicated the importance of theta and high gamma oscil-
lations in sensory cortices for pain perception18–24, we quantitatively compared the power in theta and gamma 
bands with NS, LS or HS (Fig. 2b). The enhancement of theta and high gamma frequency bands in the spectro-
gram reflects the so-called event-related synchronization (ERS) phenomenon observed in freely moving rats24 
and in human EEG/ECoG studies23. Together, these results show that as we increased the noxious intensity, there 
was an increase in power in both theta (4–8 Hz) and high gamma (60–100 Hz) bands in the ACC. Next, we 
analyzed if these increases in theta and high gamma powers were also seen in rats with chronic pain. For these 
experiments, we used Complete Freund’s Adjuvant (CFA) injection to induce pain in the limb that is ipsilateral 
to ACC tetrode implants, and then stimulated the opposite, uninjured paw (Fig. 2c). Therefore, we recorded LFPs 
in the ACC that was contralateral to peripheral stimulations. Similar to rats without chronic pain, CFA-treated 
rats demonstrated increased theta and gamma powers in response to LS or HS (Fig. 2d,e). Interestingly, however, 
compared with rats without chronic pain, CFA-treated rats showed a significant increase in power in the theta and 
high gamma ranges, particularly for LS stimulations (Fig. 2f). These results demonstrate, for the first time, that 
ensemble low frequency activities in the ACC are different in the chronic pain state.

Figure 1.  Experimental paradigm. (a) Timeline and schematic for electrophysiological recordings in freely 
moving rats. Each trial of peripheral stimulation lasted until paw withdrawal or in cases of no withdrawal 
(non-noxious stimulus or NS) a total of 5 s. (b) Local field potentials (LFPs) were recorded from the anterior 
cingulate cortex (ACC) contralateral to peripheral stimulations. Stimulations were done with non-noxious 
thermal stimulus (NS), low-intensity noxious stimulus (LS), or high-intensity noxious stimulus (HS), through 
adjustment of power outputs from a laser. (c) Histological images showing the location of tetrode recordings in 
the ACC.
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Figure 2.  LFPs in the ACC provide information on the intensity of acute thermal pain. (a) Examples of LFP raw 
traces. Time 0 denotes the onset of laser stimulation (from left to right: NS, LS, HS). Each panel below the single-
trial LFP traces shows trial-averaged event-triggered time-frequency spectrum. Time 0 denotes the onset of laser 
stimulation (from left to right: NS, LS, HS). (b) The Z-score power in two frequency bands demonstrates increased 
power with noxious stimulations (from left to right theta (4–8 Hz) and high-gamma (60–100 Hz) bands). (c) 
Schematic for CFA treatment to induce chronic pain. CFA was injected in the paw that is ipsilateral to ACC implants. 
Peripheral stimulations were performed in the contralateral paw to ensure consistency in recording from the 
contralateral ACC. (d) Examples of single-trial LFP raw traces in CFA-treated rats. Time 0 denotes the onset of laser 
stimulation (from left to right: NS, LS, HS). Each panel below the LFP traces shows trial-averaged event-triggered 
time-frequency spectrum after chronic pain. Time 0 denotes the onset of laser stimulation (from left to right: NS, 
LS, HS). (e) The Z-score power in two frequency bands demonstrates increased power with noxious stimulations in 
CFA-treated rats (from left to right theta (4–8 Hz) and high-gamma (60–100 Hz) bands). (f) Chronic pain induces 
increased power in theta and high gamma bands. **P < 0.01; ****P < 0.0001 two-way ANOVA.
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LFPs in the ACC encode information on the intensity of noxious stimulations.  We have pre-
viously shown that ensemble spike information in the ACC can be used to decode the intensity of pain13. Our 
results here suggest that LFPs can also be utilized for intensity decoding. In order to make an unbiased assess-
ment of the contribution of LFPs in the ACC for pain intensity decoding, we used a support vector machine 
(SVM) classifier (see Materials and Methods). Specifically, we analyzed broadband power spectra (4–100 Hz, “all 
frequency” except for very low-frequency (1–3 Hz) bands subject to artifacts) based on multiple LFP recording 
sessions, each session containing at least 30 trials. During each session, we stimulated the rats with equal numbers 
of two different stimuli (NS vs HS, NS vs LS, or LS vs HS). In cross-validated LFP decoding analysis, we used 80% 
subsets of the trials for training the SVM classifier, and the remaining trials for testing the accuracy for the classi-
fier to predict the correct identify of the stimulus. Our decoding analysis yielded high accuracy in distinguishing 
between NS and HS (~80% cross-validated accuracy), and reasonable accuracy in distinguishing between NS 
and LS (~65%), or between LS and HS (representative examples in Fig. 3a). Interestingly, when we compared 
the decoding accuracy using LFP features alone with the accuracy using spikes of sorted units from the same 
recordings13 (see Materials and Methods), the peak decoding accuracies for LFPs were slightly better. Combining 
spike and LFP features further improved the decoding accuracy curve, especially on the slope (Fig. 3a), but not 
on the peak accuracy (Fig. 3b). In some examples, when we combined spike and LFP features in decoding, we 
were able to achieve nearly 85% peak accuracy for distinguishing between NS and HS and the decoding accu-
racy arose quickly (<1 s) after the laser stimulation (Fig. 3a, left panel). Adding spikes to LFP features might not 
change the peak decoding accuracy (example in right panel of Fig. 3a and group statistics in Fig. 3b), but could 
change the timing or slope of decoding curve. Overall, this unbiased decoding analysis supported a critical role 
of ACC neurons in the representation of pain, and further demonstrated that LFP signals can be used to predict 
nociceptive intensity. This was also in line with the results on prediction of subjective pain perception based on 
human EEG recordings25.

Figure 3.  LFP decoding analysis using supervised machine learning predicts the intensity of pain. (a) Examples 
of recording sessions showing the comparison of detection accuracy with accumulated LFP (all frequency 
bands) and spike features. The detection accuracy was evaluated on the cross-validated testing data (see 
Materials and Methods). The error bar shows the S.E.M. from 100 Monte Carlo runs. (red: spike features alone, 
blue: LFP features alone, green: combined spike and LFP features). (b) Group comparisons of decoding peak 
accuracy between LFP features alone, and spike and LFP features together. (c) Accuracy to distinguish between 
HS and NS, LS and NS, or HS and LS with LFP features from different frequency bands (from left to right: theta, 
high-gamma, all frequency). *P < 0.05, rank-sum test.
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Next, we examined the roles of specific theta and high gamma bands in pain intensity decoding. We applied 
the SVM classifier using the features computed from either theta or high gamma power. We found that these 
two frequency bands were almost as informative as the whole LFP range to achieve a similar accuracy level in 
decoding pain intensities (Fig. 3c). We observed a higher decoding accuracy in NS vs. HS (~75%) than in NS vs. 
LS (~65%), for both theta and high gamma frequency bands (P < 0.05, rank sum test).

LFPs in the ACC encode information on the intensity of noxious stimulations in the chronic 
pain state as well.  Epidemiological studies have shown that the presence of chronic pain can lead to 
increased perception of acute pain intensity and a distortion of pain intensity scale in a diffuse anatomic pat-
tern26–30. Chronic pain is known to increase synaptic plasticity in the ACC31,32. We have shown previously that 
this enhanced plasticity in the ACC is anatomically nonspecific and is at least partially responsible for the gener-
alized effect of chronic pain on acute pain perception13. Furthermore, this disruption in the ACC representation 
of pain can result in decreased decoding accuracy of pain intensity based on ensemble spike activity of individual 
neurons, suggestive of distortion of pain intensity scale found in chronic pain patients13. Here, we examined if 
this reduction in decoding accuracy is also found in LFP-based decoding analysis. We repeated decoding analyses 
in rats 10 days after CFA treatment (Fig. 4a,b). There was a modest decrease in the decoding accuracy (using the 
theta power feature) to distinguish between LS and HS (Fig. 4c; Supplementary Table 1). These results are com-
patible with our previous study using SVM based on spikes of sorted units13. Overall, however, it can be seen that 
LFPs can still be used to encode the intensity of noxious stimulation even in the chronic pain state.

Population-decoding methods to detect the onset of acute pain.  Detection of the onset of pain is 
a difficult task in freely behaving rodents for at least two reasons. First, single-trial neural signals are noisy and 
highly variable, at both single cell and population levels. Second, the number of pain-modulated neurons are 
relatively small (20–30%) in each recording session, limiting the signal-to-noise ratio (SNR) in signal detection. 
To address this problem, we used population-decoding analyses, based on the LFP alone, or combined LFP and 
spike information, to decode the onset of acute pain signals (Materials and Methods). As illustrated in Fig. 5a, we 

Figure 4.  Chronic pain alters the decoding accuracy for noxious intensity. (a) Examples of recording sessions 
showing the comparison of detection accuracy with accumulated LFP and spike features after chronic pain in 
CFA-treated rats. The detection accuracy was evaluated on the cross-validated testing data. The error bar shows 
the S.E.M. from 100 Monte Carlo runs. (red: spike features alone, blue: LFP features alone, green: combined 
spike and LFP features). (b) Group comparison of decoding peak accuracy between LFP features alone, and 
spike and LFP features together in CFA-treated rats. (c) Accuracy to distinguish between HS and NS or LS and 
NS or HS and LS with LFP features from different frequency bands after chronic pain (from left to right: theta, 
high-gamma, all frequency). *P < 0.05, rank-sum test.
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calculated the time where the peak decoding accuracy dropped to the 1/e threshold above the baseline (time 0). 
Interestingly, this 1/e time occurred either before or after the paw withdrawal within a reasonably narrow range 
(Fig. 5a). The rationale for using this 1/e time was motivated by the criterion for defining the visual neuronal 
receptive field size33. In addition, we have compared this criterion with an alternative criterion of using the ½ time 
to reach peak decoding accuracy (Supplementary Fig. 1). We used this moment as a proxy of the onset of the pain 
signals (“1/e onset”), which may occur before or after the paw withdrawal behavior. We then quantitatively com-
pared the timing of the paw withdrawal, 1/e onset, and peak accuracy of decoding (based on different LFP fre-
quency band features) between different laser intensities (NS vs HS, NS vs LS, LS vs HS; Fig. 5b,c, Supplementary 
Table 2, Supplementary Fig. 1). We found that the 1/e time indeed coincides very well with paw withdrawal time, 
and it was in fact comparable to the alternative criterion of ½ time. These results suggest that our machine learn-
ing algorithm may reveal important information about the onset of pain.

Onset detection of acute pain is preserved in the chronic pain condition.  Next, we investigated 
the usefulness of the 1/e criteria in detecting the onset of pain in rats that experience chronic pain. In CFA-treated 
animals (Fig. 6a,b), we observed similar correlation between paw withdrawal time and 1/e time to peak detec-
tion of pain (Supplementary Table 2). These results indicate that our novel population-decoding method can be 
applied to detect the onset of acute pain even in rats with chronic pain.

Figure 5.  LFP decoding analyses can predict the onset of pain. (a) Two NS vs. HS examples of distinct detection 
accuracy trajectories based on supervised machine learning analysis using accumulated LFP features. The left 
and right examples show the withdrawal occurs around (before or after) the 1/e threshold for pain decoding. 
“Withdrawal” denotes the time of paw withdrawal after stimulus (time 0), “peak” denotes the onset of maximum 
accuracy for detecting the difference between NS and HS based on decoding analysis of LFPs in the ACC, and 
“1/e” denotes the time where the peak accuracy drops to the 1/e threshold above the baseline. (b) Assessment 
of the onset for pain perception in response to HS is based on the time where the decoding accuracy (NS vs HS) 
reached the 1/e threshold, using LFP features from different frequency bands (from left to right: theta, high-
gamma, all frequency). This assessment of pain perception corresponds well with latency to withdrawal from 
the stimulus onset. (c) Same analysis as panel b, but for NS vs LS.
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Discussion
In this study, using an unbiased neural decoding analysis, we have achieved a good decoding accuracy of pain 
intensity (especially for NS vs. HS) based on the LFP alone in the rat ACC, or based on a combination of LFP and 
spike information. Furthermore, we have shown that LFPs can also be used to assess the onset of acute nocicep-
tive processing that correlates very well with spinal withdrawal behaviors.

Our analysis demonstrates the feasibility to use a combination of LFP and individual spike information to 
detect acute pain. Although the decoding accuracy for distinguishing NS vs. LS was lower compared with the 
decoding accuracy for NS vs. HS, increasing unit yield (e.g., ~40 units) can potentially increase the classification 
accuracy. Our results for NS vs. HS classification accuracy were also consistent with data from a generalized-linear 
model (GLM)-based decoding study using high-dimensional LFP features across multiple rat brain regions34. 
Meanwhile, to detect the onset of acute pain based on LFP, we have used the 1/e criterion. Most of our find-
ings were robust with respect to an alternative criterion (e.g. an ½ criterion, Supplementary Fig. 1), as well. For 
instance, when comparing NS vs. HS, since the classification curve slope was very steep, the two criteria gave 
similar results. Meanwhile, when comparing NS vs. LS, the classification curve slope was less steep, and therefore 
there was a minor difference in the latency to detection between the two criteria. While we have tested these 
two criteria, there is actually no consensus or prior precedent in the literature to choose one method over the 
other. Therefore, depending on the choice of criteria, our decoding analysis will provide slightly different results. 
Nevertheless, these data demonstrate the potential for neural information in the ACC to decode both the intensity 
and the onset of acute nociceptive signals.

Since the LFP provides information about the collective behavior of neural ensembles, it can reveal both 
spectral and temporal scales of neural activity. For example, the high-frequency (gamma) LFP power can pro-
vide indirect assess to the spike outputs of neuronal ensembles15. In the literature, LFP and ensemble spike 
activity of the motor cortex have been demonstrated in decoding movement kinematics35,36. In contrast to the 
microscopic-level spiking and macroscopic-level EEG/ECoG data, high-frequency LFP power may serve as an 
intermediate, mesoscopic-level of neural data for reporting important brain signals. In this way, algorithms that 
explore LFP decoding capability can provide a stepping-stone to decoding using non-invasive recordings.

Theta and gamma oscillations have been shown to play important roles in previous studies on pain18–24. Theta 
oscillations are often associated with the hippocampus during locomotion, sleep, and memory formation, but it 
can also be detected in cortical and subcortical brain structures. Importantly, a recent study of freely moving rat 
EEG recordings has demonstrated theta ERS in response to nociceptive stimulations, indicating that brain oscilla-
tions in specific frequencies play an important role in acute pain states24. Pronounced increase of theta activity has 
also been observed in patients with chronic neurogenic pain37. Furthermore, human EEG recordings have shown 
that theta oscillations may contribute to the modulation of subjective pain sensitivity22. In addition, theta rhyth-
micity can also reflect a brain-state of social arousal in response to social and fearful stimuli, further contributing 
to the pain experience38. In human magnetoencephalography (MEG) studies, amplitude of gamma oscillations in 
the primary somatosensory cortex (S1) correlates with the “objective” stimulus intensity and “subjective” pain rat-
ing20. Another human EEG study has also shown that gamma-band oscillations in the contralateral S1 correlated 

Figure 6.  LFP decoding analyses can predict the onset of pain in CFA-treated rats. (a) Assessment of the onset 
for pain perception in response to HS is based on the time where the decoding accuracy (NS vs HS) reached 
the 1/e threshold, using LFP features from different frequency bands (from left to right: theta, high-gamma, 
all frequency). This assessment of acute pain perception corresponds well with latency to withdrawal from the 
stimulus onset in CFA-treated rats. (b) Same analysis as panel a, but for NS vs LS.
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with pain perception when stimuli are presented in isolation, but not when the saliency of such stimuli is reduced 
by repetition21. Furthermore, theta and beta oscillations of human LFP activities from sensory thalamus and 
periventricular gray/periaqueductal gray (PVAG) were shown to correlate inversely with pain relief induced by 
deep brain stimulation (DBS)39. Overall, results from these and other previous studies strongly suggest that both 
theta and gamma oscillations or theta- and gamma-ERS provide an important mechanism for the internal cor-
tical representations and subsequent processing of peripheral nociceptive inputs18–24,40,41. LFP oscillations have 
been studied in several other acute pain models in awake rodents42. In a study of free-moving rats during carra-
geenan treatment, LFP activity in the ACC showed significant changes in a wide range of low frequency bands 
(1–30 Hz). Our findings are comparable to these results. At the same time, there were also divergent LFP findings 
observed in studies of other cortical regions. One study, for example, showed that a peripheral noxious stimulus 
(high-intensity transcutaneous electrical stimulation, mechanical pinch or formalin injection) induced a decrease 
in the LFP power (especially in theta and alpha bands) in the rat prelimbic PFC region. Interestingly, in contrast 
to the ACC, the prelimbic PFC has been shown to inhibit, rather than to process or enhance, pain phenotypes43. 
Thus, different cortical regions that have unique nociceptive-processing functions may also exhibit distinct LFP 
changes. In addition, as the perception of pain continues to be characterized by significant inter- and intra-subject 
variabilities in human and animal studies, an important challenge in this field is an effort to improve the use of 
LFP or EEG data to classify or predict the perception of pain across subjects.

In addition to the LFP power, the amplitude or latency of the pain-evoked potentials or laser-evoked poten-
tials (LEPs) has been known to provide additional information for understanding the intensity of pain21,44. A key 
insight from our work is that unbiased assessment of LFPs demonstrates that these field potentials are as inform-
ative about the intensity of pain as pain-evoked spike events from single units or population. Furthermore, to our 
knowledge, this is the first study to utilize a decoding analysis approach to detect the onset of pain. This approach 
holds great promise as a tool to understand relevant neural circuitry for pain. For example, future studies can 
employ our method to examine LFPs, and possibly the coherence between LFPs or between LFPs and spikes 
across different relevant brain regions, to decode the onset of acute pain. The accuracy of onset decoding, and 
the timing of optimal decoding, can indicate the propagation of nociceptive information within defined neural 
circuits.

Single-trial decoding of the intensity or onset of pain remains a challenging yet important task. The reasons for 
such importance are two-fold. First, trial averaging can potentially underestimate valuable information in indi-
vidual single trials. Second, single-trial spike/LFP analysis is very critical for detection/classification tasks during 
closed-loop brain-machine interface (BMI) experiments. Currently, single-trial decoding has been advanced to 
implement the development of closed-loop sensory or motor BMIs. A BMI directed treatment for pain, however, 
requires better understanding of neurofeedback12,34. Combining spikes and LFP, from single or multiple brain 
regions, will help advance this goal. Meanwhile, our proposed method was used for detecting transient acute pain 
signals in control and CFA-treated animals. How to extend the LFP-based method for detecting chronic pain 
signals should be the subject of future investigation.

Circuit mechanisms may differ among various types of pain. An important aspect of our work is that our 
decoding accuracy is preserved in the chronic inflammatory pain condition. In our study, the decoding of accu-
racy to distinguish between HS and LS declined, similar to previous decoding results based on spike information 
from ACC neurons13. However, in the chronic pain state, LFP-based decoding analyses provided distinction 
between HS and NS with very high accuracy. In fact, it is important to note that pain intensity decoding results 
from LFPs are quite similar to previous results based on spike activity of ACC population13. Therefore, we have 
reason to believe that LFP decoding may provide a robust strategy across a range of pain conditions. However, 
future studies are needed to examine the full spectrum of acute and chronic pain states, including nociceptive, 
inflammatory, and neuropathic pain.

In conclusion, we have found that LFPs in the ACC can provide important information regarding pain. 
Specifically, supervised machine learning can be used to analyze these LFP data to provide highly accurate pre-
diction for the intensity and onset of pain. Our results support future studies that examine pain decoding using 
LFPs in various cortical and subcortical structures.

Materials and Methods
Animals.  All procedures in this study were approved by the New York University School of Medicine 
(NYUSOM) Institutional Animal Care and Use Committee (IACUC) as consistent with the National Institute of 
Health (NIH) Guide for the Care and Use of Laboratory Animals to ensure minimal animal use and discomfort. 
Male Sprague-Dawley rats were purchased from Taconic Farms, Albany, NY and kept at Mispro Biotech Services 
Facility in the Alexandria Center for Life Science. Rats were kept with controlled humidity, temperature, and 
12 hour (6:30 AM to 6:30 PM) light-dark cycle. Food and water were available ad libitum. Animals arrived to the 
animal facility at 250 to 300 grams and were given on average 10 days to adjust to the new environment prior to 
the onset of experiments.

Experimental protocol and neurophysiological recordings.  The tetrode microdrive (VersaDrive8, 
Neuralynx) assembly and implantation was similar to our previous study13. Tetrode was constructed using 
12.7 µm nichrome wire(Sandvik) based on protocol13,45. Eight tetrodes were mounted in the VersaDrive8. Tetrode 
tip was cut using sharp scissor (Fine Science Tools) and then gold plated until the impedance was between 100 
and 500 kΩ (NanoZ, Neuralynx). After that, the tetrode tips were soaked in the 100% Ethanol before implantation.

For implantation, rats were anesthetized with isoflurane (1.5–2%). A craniotomy was performed over uni-
lateral anterior cingulate cortex (AP +2.5–3.5 mm, ML 0.8–1.8 mm). Tetrode bundle was lowered slowly at DV 
1.6 mm with tip angel 10° toward the midline. Kwik-cast (World Precision Instruments) was used to seal the 
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exposed area of the craniotomy. Ground and reference screws were anchored above cerebellum. Dental cement 
was used to secure the microdrive with bone screws. Rats were allowed to recover for about 1 week after surgery.

Double laser stimulations and neural recordings.  The double laser stimulation was performed as 
described previously13. Before stimulation, animals were allowed to habituate in a recording chamber over a mesh 
table for 30-min. Two diode-pumped solid-state lasers (SDL-473-1000T, Shanghai Dreams Laser Technology) 
were used to deliver noxious stimulation. The laser coupled patch cable fiber output intensity was calibrated 
(M83L01, Thorlabs) to one of three power intensities: 50 mW (NS), 150 mW (LS), and 250 mW (HS). And three 
stimulus condition pairs (NS vs LS, NS vs HS, LS vs HS) were used for each recording session. During each 
session, two lasers were randomly applied to rat’s hind paw for a total of approximately 60 trials with variable 
inter-trial intervals (approximately 1 min). The whole process was monitored by high speed camera (HC-V550, 
Panasonic). TTL pulses were used to synchronize with neural signals.

Tetrodes were lowered in steps of 120 µm before each day of recording. Raw neural signals were recorded with 
32-ch digital headstage (RHD2132, Intan Technologies) and acquisition board (Open Ephys) at a sample rate of 
30 kHz. To get spike activity, the raw data was band pass filtered from 300 Hz to 7.5 kHz and offline sorted by com-
mercial software (Offline Sorter, Plexon). To get LFPs, raw data were digitally filtered by a bandpass filter between 
0.3 and 300 Hz and down-sampled at 1 kHz.

Data preprocessing.  For multi-channel LFP signals, we first conducted a basic preprocessing procedure 
(detrend analysis, artifact channel rejection). We further performed principal component analysis (PCA) on the 
multi-channel LFP signals, and then projected the LFP signals onto the first dominant principal subspace. We 
extracted the denoised single-channel LFP signals for subsequent spectrum analyses.

Spectrum analysis.  We conducted spectrum analyses of LFP signals using a multitaper method (as opposed 
to the standard arbitrary windowing method). The multitaper method is an advanced spectral analysis tech-
nique46, which aims to reduce the bias/variance of spectral estimates by pre-multiplying the data with several 
orthogonal tapers known as Slepian functions. Specifically, we chose a half-bandwidth parameter W such that the 
windowing functions are maximally concentrated within [−W, W]. We chose W > 1/T (where T denotes tem-
poral duration) such that the Slepian taper functions are well concentrated in frequency and have bias reducing 
characteristic.

The multitapered spectrum analysis was implemented with the Chronux toolbox47: an open source data anal-
ysis software at http://chronux.org. Spectrum and spectrogram were computed using functions ‘mtspectrmc’ and 
‘mtspecgramc’, respectively. In terms of Chronux function setup, we used the tapers setup [TW K], where TW = 3 
is the time-bandwidth product, and K = 2xTW − 1 = 5 is the number of tapers.

We used [0, 5] s data to compute the LFP power spectrum, where 0 denotes the laser onset. In addition, we 
compute the Z-score of power related to the baseline period [−5, 0] s right before the laser onset. A positive 
Z-score shows an increase in power at specific frequency band(s). The single band power was calculated by sum-
ming up all the estimated power values with each band (theta 4–8 Hz, alpha 8–15 Hz, beta 15–30 Hz, low gamma 
30–60 Hz, high gamma 60–100 Hz).

Spike, LFP, and Spike-LFP decoding.  The goal of population-decoding analysis was to classify the trial 
labels of different stimulation intensities (e.g., LS vs. HS) based on spikes or LFP alone, or spikes and LFP com-
bined. First, in spike alone decoding, for each single neuronal recording, we binned spikes into 50 ms to obtain 
spike count data in time and used a 50 ms moving window to accumulate spike count statistics from the laser 
onset (time 0) until 5 s (i.e., 100 bins). We assessed the decoding accuracy at each time bin based on the cumula-
tive spike count statistics. Therefore, for a total of C neurons, the input feature dimensionality ranged from C (the 
first bin) to 100 C (all bins). Second, in single band LFP decoding, we used a 1-s window (with an incremental step 
size of 50 ms moving window) to compute the LFP power sum at each frequency band (theta, alpha, beta, low and 
high gamma). For all frequency band decoding, we combined all those 5 single band power at each bin together 
as feature vector. Finally, in spike plus LFP decoding, we combined the spike count and LFP power statistics as 
the input features.

In the experiments to classify different laser intensities (e.g., NS vs. HS, or LS vs HS), it was assumed that we 
have n1 trials under laser intensity 1, and n2 trials under laser intensity 2. We split the total (n1 + n2) trials into two 
groups, 80% used for training, and 20% used for testing. Specifically, we used a support vector machine (SVM) 
classifier48. The SVM is a discriminative supervised learning model that constructs the classification boundary 
by a separating hyperplane with the maximum margin. Specifically, the SVM can map the input xi (i = 1, …,  
N, where N denotes the training sample size) into high-dimensional feature spaces that allows nonlinear 
classification.

∑α= +
=

y K bx x( , )
(1)i

N

i i
1

where yi ∈ {−1, +1} denote the class label for the training sample xi (some of which associated with nonzero αi are 
called support vectors), b denotes the bias, and K(•,•) denotes the kernel function. We used a polynomial kernel 
and trained the nonlinear SVM with a sequential minimal optimization algorithm (MATLAB Machine Learning 
Toolbox: ‘fitcsvm’ function). Finally, the decoding accuracy was assessed by 5-fold cross-validation from 100 
Monte Carlo simulations. We reported the mean ± S.E.M. decoding accuracy.

As a control, we also computed the chance-level decoding accuracy. We randomly permuted class labels 
between two classes and repeated the decoding analysis. This shuffling procedure was repeated 500 times, and we 

http://chronux.org
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reported the chance level by the averaged classification accuracy based on shuffled data with permuted labels. In 
theory, when the sample sizes from both classes are perfectly balanced, the chance level should be close to 50%.

Detecting the onset of acute pain.  Using the moving window, we assessed the accumulative SVM decod-
ing accuracy in time using spikes, LFP, or spike and LFP features together. At the onset of the laser stimulation, 
the decoding accuracy is around the chance level (~50%). To determine the onset of pain signals from the decod-
ing perspective, we needed a threshold criterion from which we defined the time that crosses the threshold as the 
onset of pain signals. Here, we used the 1/e criterion (where e denotes the Euler’s number, and 1/e ≈ 0.37). The 
rationale of this choice was motivated by the criterion for defining the visual neuronal receptive field size33. We 
defined the onset of time as the first moment where the SVM decoding peak accuracy drops to the 1/e level of the 
dynamic range, where the dynamic range is defined as the difference between the peak accuracy and chancel level 
accuracy. Since the 1/e criterion is rather ad hoc, we also investigated whether changing the criterion (such as ½) 
would affect our results.

Statistics and statistical tests.  We reported the mean ± S.E.M. statistics in LFP power. Unless stated oth-
erwise, we used the nonparametric Mann-Whitney rank-sum test for comparing the median statistics between 
two groups.
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