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Introduction
Non-small cell lung cancers (NSCLCs) comprise 85% of 
all primary lung malignancies.1 Of these, approximately 
60% are adenocarcinomas (ADCA) and 35–40% are squa-
mous cell carcinomas (SCCA), with large cell cancers 
accounting for less than 5%.1 Conventionally, ADCA and 
SCCA are differentiated by histopathological examination 

of haematoxylin & eosin-stained slides. ADCAs, depending 
upon the predominant pathologic subtype, may exhibit 
lepidic, glandular, papillary or micropapillary, or solid 
sheet-like architecture. SCCAs are characterized by the 
presence of keratinization, pearl formation, and intercel-
lular bridges.2 Frequently, NSCLC is diagnosed on sputum 
cytology or clinical and radiological features, but adequate 
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Objective: Non-invasive distinction between squa-
mous cell carcinoma and adenocarcinoma subtypes of 
non-small-cell lung cancer (NSCLC) may be beneficial 
to patients unfit for invasive diagnostic procedures or 
when tissue is insufficient for diagnosis. The purpose of 
our study was to compare the performance of random 
forest algorithms utilizing CT radiomics and/or semantic 
features in classifying NSCLC.
Methods: Two thoracic radiologists scored 11 semantic 
features on CT scans of 106 patients with NSCLC. A 
set of 115 radiomics features was extracted from the 
CT scans. Random forest models were developed from 
semantic (RM-sem), radiomics (RM-rad), and all features 
combined (RM-all). External validation of models was 
performed using an independent test data set (n = 
100) of CT scans. Model performance was measured 
with out-of-bag error and area under curve (AUC), and 
compared using receiver-operating characteristics curve 
analysis on the test data set.
Results: The median (interquartile-range) error rates 
of the models were: RF-sem 24.5 % (22.6 – 37.5 %), 
RF-rad 35.8 % (34.9 – 38.7 %), and RM-all 37.7 % (37.7 
– 37.7). On training data, both RF-rad and RF-all gave 

perfect discrimination (AUC = 1), which was significantly 
higher than that achieved by RF-sem (AUC = 0.78; p < 
0.0001). On test data, however, RM-sem model (AUC = 
0.82) out-performed RM-rad and RM-all (AUC = 0.5 and 
AUC = 0.56; p < 0.0001), neither of which was signif-
icantly different from random guess ( p = 0.9 and 0.6 
respectively).
Conclusion: Non-invasive classification of NSCLC can 
be done accurately using random forest classifica-
tion models based on well-known CT-derived descrip-
tive features. However, radiomics-based classification 
models performed poorly in this scenario when tested 
on independent data and should be used with caution, 
due to their possible lack of generalizability to new data.
Advances in knowledge: Our study describes novel 
CT-derived random forest models based on radiolo-
gist-interpretation of CT scans (semantic features) that 
can assist NSCLC classification when histopathology 
is equivocal or when histopathological sampling is not 
possible. It also shows that random forest models based 
on semantic features may be more useful than those 
built from computational radiomic features.
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tissue is not available to perform histological subtyping and 
molecular analysis, requiring a multidisciplinary approach for 
decision-making.2 Although curative options for both NSCLC 
subtypes are similar—either surgical or with stereotactic body 
radiotherapy (SABR—the two subtypes differ in prognosis and 
choice of targeted agents.3 Hence, an accurate non-invasive test 
for NSCLC classification could serve as a valuable alternative for 
prognostication and choosing targeted agents in patients unsuit-
able for surgical resection.

Radiomics and machine learning (ML) are becoming increas-
ingly popular in imaging research.4 Radiomics involves compu-
tational analysis of a greyscale image to derive features (e.g. mean, 
mode, kurtosis, and skewness) which are expected to quantify 
the tumour pathophysiology.5 ML is the task of using radiomics 
and other relevant variables (e.g. age, sex, and air bronchogram) 
in suitable computational algorithms (e.g. random forests or 
logistic regression) to infer clinically relevant information, e.g. 
tumour subtype. CT radiomics has been shown to be moderately 
to highly accurate in predicting NSCLC subtype, with reported 
performance of 68–90%.6–8 However, despite the potential of 
radiomics in changing imaging paradigms,5 widespread accep-
tance of radiomics is hindered by largely unmet challenges 
surrounding variable reproducibility, procedure standardization, 
and biologic explanation of used variables.4,9,10

Semantic features, i.e. features derived from subjective inter-
pretation of CT images by a radiologist, have been shown to 
be related to tumour subtype and histopathology in numerous 
independent studies.11–17 Air-bronchogram and ground-glass 
opacification are more common in ADCA, whereas cavitation 
and spiculation are more common in SCCA.16,17 To our knowl-
edge however, despite these well-known associations, semantic 
features have not been modelled in ML algorithms to predict 
tumour subtype and therefore help clinical decision making in a 
quantitative manner. Furthermore, no studies have compared or 
combined radiomic features with semantic features (e.g. air bron-
chogram and cavitation) in differentiating ADCA from SCCA.

We hypothesized that multivariate predictive models combining 
the strengths of semantic and radiomic features could yield 
potentially higher accuracy in NSCLC classification than 

either class of variables alone. Such non-invasive classification 
would benefit patients for whom an adequate histopathological 
subtyping cannot be obtained. Therefore, the objective of this 
study was to develop and compare NSCLC classification models 
based on semantic features, radiomic features, and a combina-
tion of both.

methods and patients
Patient population
The training data set comprised patients referred to a single insti-
tution as follows: we identified pre-treatment CT scans of patho-
logically proved NSCLC patients referred to our tertiary care 
centre from January 1, 2011 to December 31, 2015. Patients were 
excluded if it was not possible to accurately determine tumour 
boundaries on CT, e.g. due to adjacent atelectasis. The final data 
set comprised 106 studies (42 SCCA, 64 ADCA; Figure 1). The 
independent validation cohort (n = 100) comprised 65 ADCAs 
and 35 SCCAs downloaded from the Cancer Imaging archive, 
subsampled with respect to ADCAs to ensure balanced propor-
tions.18–20 Local ethics committee waived informed written 
consent for this retrospective study of anonymised data.

Imaging
Imaging of patients in the training data set was performed on one 
of three Philips scanners: MX8000, Brilliance iCT 256, or Bril-
liance 40 (Philips Medical Systems, Best, Netherlands). Patients 
were imaged in the supine position at full inspiration. Scanning 
parameters were as follows: detector collimation: 0.625–0.75; 
rotation time: 0.5–0.75 s; tube voltage: 120 kVp; tube current: 
34–229 mAs. 100–150 ml iopromide 300 (300 mg I/mL Ultra-
vist, Bayer Pharma, Berlin, Germany) was administered intrave-
nously at a rate of 2–4 ml s−1 after a 30–70 s delay.

Semantic features
Two thoracic radiologists (AN and MM, with 14 and 9 years’ 
experience, respectively), blinded to histopathological diag-
nosis, independently recorded nine nodule semantic feature 
(Table 1) and two background parenchymal features, i.e. emphy-
sema (present or absent) and airway thickening (present or 
absent).11,12,21–26

Figure 1. Patient inclusion workflow in our study for training and validation data sets. ADCA, adenocarcinoma; NOS, not otherwise 
specified; NSCLC, non-small-cell lung cancer; SCCA, squamous cell carcinoma; TCIA, The cancer imaging Archive.

Patients who underwent post-contrast 
CT thorax for NSCLC staging (n=129)

Excluded:
Tumor surrounded by 
collapsed lung (n=23)

Final training data (n=106)
ADCA 64: SCCA 42 

TRAINING DATA VALIDATION DATA

TCIA NSCLC Radiogenomics cohort
(n=211)

Excluded:
NSCLC NOS (n=4)
Over-represented ADCA (n=111)

Final validation data (n=100)
ADCA 65: SCCA 35 
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Discrepant findings were resolved by consensus. Annotation 
of the validation data set was performed by a separate blinded 
reader, UB (10 years’ radiology experience), using the same 
descriptions.

Radiomic features
Tumours were delineated by UB open-source software ITK-Snap 
(v. 3.4.0; Supplementary Material 1).27 From the segmented 
volumes-of-interest, 756 radiomic features were derived using an 
in-house feature extraction tool developed in MATLAB (Release 
2016b, The MathWorks, Inc., Natick, MA). Highly correlated 
redundant features (showing pairwise correlation coefficient 
>0.8; n = 641) were removed to yield a final set of independent 
115 radiomic features.

Random forest model development and validation
In this study, we used random forests for machine learning. 
Random forests are known for their high performance and 
generalizability.28 Here we present a summary of random forest 
model development; technical details are provided in the supple-
mental data.

A random forest model is a group of a large number of decision 
trees, e.g. 2000. The name “random“ alludes to the fact that each 
split of an individual decision tree is developed from a random 
subset of input variables. Each member tree is also trained on 
a slightly different variation of the data-set by using bootstrap 
sampling, i.e. sampling with replacement, whereby several cases 
are sampled more than once and others omitted altogether 
(labelled “out-of-bag” [OOB] samples). Since the OOB samples 
have not been used in training the particular tree, they are used 
for internal validation, and the proportion of misclassified cases 
in the OOB sample serves as a performance metric: OOB error. 
After training of all 2000 decision trees is complete, a new case 
is classified by the entire ‘random forest’ by obtaining votes from 
member trees. A decision threshold is set, based on the preferred 
degree of sensitivity, to provide a final classification for each 
new case; for example, using a 50% probability threshold, a case 

may be classified as ADCA if >50% trees classify it as ADCA, or 
SCCA otherwise.

We developed three random forest classifiers using the training 
data set: One classifier comprising semantic variables only 
(RF-sem), one comprising radiomic features only (RF-rad), and 
one comprising both semantic and radiomic features (RF-all). 
Model validation was performed on the independent validation 
cohort.

Table 1. Nodule semantic features and their descriptions

Semantic feature Description
Air-bronchogram Presence of visible air-filled bronchi within the lesion. Measured as being present or absent.

Ground-glass component Presence of hazy attenuation, higher than background, but not sufficiently high to obscure bronchial 
and vascular margins within the lesion.21

Location Central or peripheral, based on whether the tumour was closer to the hilum than the nearest segmental 
bronchus or not.

Margins Irregular, smooth, or lobulated. Lobulation was defined as the presence of at least three undulations 
with a height of more than 2 mm.21

Pleural indentation Retraction of pleura near the tumour margin.22

Satellite nodules Presence of smaller nodules in the immediate vicinity of the main lesion.

Spiculation The presence of linear strands at least 2 mm thick extending from tumour margin into adjacent 
parenchyma.21,23

Cavitation Presence of a round lucency inside the lesion, usually within the centre of the lesion and larger than 
pseudo cavitation; suggests necrosis.21

Pseudocavitation Presence of bubble-like areas of low attenuation within the nodule.

Table 2. Clinical and demographic features of patients in 
training data set

Clinical feature ADCA SCCA
Age in years, mean 
(range, SD)

69 (40.2–84.75, 
10.2)

70.8 (52.35–
85.54,8.1)

Sex (M : F) 32 : 32 24 : 18

Smokers 65.6% (n = 42) 71.4%(n = 30)

T1a 10 7

T1b 12 6

T2a 27 15

T2b 3 5

T3 10 8

T4 2 1

N0 50 35

N1 3 3

N2 11 3

N3 0 1

M0 64 40

M1 0 2

ADCA, adenocarcinoma; SCCA, squamous cell carcinoma; SD = 
standard deviation.

http://birpublications.org/bjr
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Statistical analysis
R v. 3.3.2 was used for statistical analysis.29 Continuous variables 
were reported as means and standard deviations. For descriptive 
analysis, differences between ADCAs and SCCAs were deter-
mined using Wilcoxon ranked sum test for continuous variables 
and using Fisher’s exact test for categorical variables. Inter-ob-
server agreement between the two radiologists with regards 
to semantic variables was measured with Cohen’s κ test and 
summarised as estimated weighted κ scores alongwith their 95% 
CIs. A p-value cut-off of 0.05 was used to determine statistical 
significance.

The performance of random forest models was reported in terms 
of two metrics: The OOB error of random forest models was 
reported as the error rate of decision trees during internal vali-
dation. The second metric—area under curve (AUC)—served as 
the performance metric of fully trained models and was reported 
separately for training and validation data. We used two metrics 
instead of one to illustrate both the robustness of individual 
trees (OOB error) and that of the forest as a whole (AUC). Both 
metrics are related, and an ideal classifier should have both a low 
OOB error and a high AUC.

Since our random forests used large numbers of variables, we also 
measured the importance of individual variables in the training 
data set using the “mean decrease in accuracy“ (MDA) metric, 
i.e. decrease in classifier accuracy by removing the variable in 
question. The higher the MDA of a variable the more important 
the variable is. A variable with MDA of zero has no association 
with the outcome (tumour subtype) and there is no decrease in 
classifier accuracy if that variable is removed. Variables with low 
but non-zero MDA are still useful since random forests by design 
work well when individual variables are weakly related to the 
outcome, and mitigate their weak association by pooling them 
into a robust final classifier.28

Results
The mean interval between pathologic diagnosis and CT 
chest imaging was 21 days (range 5–41 days). Patients were 
aged from 40.3 to 85.5 years (median: 71.4 years), with similar 
gender proportions (50 females: 56 males). There were no 
significant differences between patients with ADCA vs SCCA 
in terms of age (p = 0.6), smoking (p = 0.67), or gender (0.55) 
(Table 2).

Table 3. Frequencies of semantic features according to tumour type

Semantic feature Tumour type
Fisher’s exact 

test
Interobserver 

agreement

ADCA (n = 64) SCCA (n = 42) Weighted-κ (95% CI)

1. Air-bronchogram Absent 31 (48.44%) 36 (85.71%) <0.0001 0.34 (0.16 to 0.52)

Present 33 (51.56%) 6 (14.29%)

2. Airway thickening Absent 31 (48.44%) 15 (35.71%) 0.2 0.44 (0.25 to 0.63)

Present 30 (46.88%) 20 (47.62%)

3. Emphysema Absent 24 (37.5%) 10 (23.81%) 0.2 0.78 (0.69 to 0.86)

Present 20 (31.25%) 16 (38.1%)

4. Ground-glass component Absent 50 (78.13%) 42 (100%) 0.0006 0.74 (0.54 to 0.94)

Present 14 (21.88%) 0 (0%)

5. Location Central third 20 (31.25%) 10 (23.81%) 0.5 0.35 (0.16 to 0.55)

Peripheral two-thirds 44 (68.75%) 32 (76.19%)

6. Margins Irregular 35 (54.69%) 22 (52.38%) 0.9 0.2 (0.04 to 0.35)

Lobulated 27 (42.19%) 18 (42.86%)

Smooth 2 (3.13%) 2 (4.76%)

7. Pleural indentation Absent 18 (28.13%) 10 (23.81%) 0.65 0.44 (0.24 to 0.63)

Present 46 (71.88%) 32 (76.19%)

8. Satellite nodules Absent 50 (78.13%) 41 (97.62%) 0.004 0.74 (0.55 to 0.92)

Present 14 (21.88%) 1 (2.38%)

9. Spiculation Absent 38 (59.38%) 23 (54.76%) 0.69 0.27 (0.11 to 0.42)

Present 26 (40.63%) 19 (45.24%)

10. Cavitation Absent 63 (98.44%) 34 (80.95%) 0.002 0.78 (0.57 to 0.99)

Present 1 (1.56%) 8 (19.05%)

11. Pseudocavitation Absent 51 (79.69%) 39 (92.86%) 0.09 0.23 (0.01 to 0.45)

Present 13 (20.31%) 3 (7.14%)

IQR, interquartile range; SD, standard deviation.

http://birpublications.org/bjr
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Of the 13 tested semantic variables, three were significantly more 
common in ADCAs, i.e. air bronchogram (p < 0.0001), ground-
glass component (p = 0.0006), and satellite nodules (p = 0.004). 
Cavitation was present in only 9 of the 106 total cases, of which 
8 were SCCAs (p = 0.002). Table 3 describes the frequencies of 
semantic variables in both NSCLC subtypes.

Comparison of random forest models
The semantic random forest (RF-sem) performed equally well 
on training and test data sets with AUC of 0.78 and 0.82 respec-
tive (Figure 2). The radiomics-only and combined models gave 
perfect tumour subtype discrimination on the training data 
(AUC 1), but very low performance on validation data of AUC 
0.5 and 0.56 respectively - similar to random chance (Figure 2). 
The OOB error (derived during model training) of RF-sem 

(25.5%) was also lower than that of RF-rad (40.6%) and RF-all 
(37.7%). Figure 3 shows example tumours of each type with class 
probabilities, highlighting the probabilistic nature of the random 
forest model that can be exploited in clinical decision-making 
to balance probability of tumour type against individual patient 
circumstances.

In terms variable importance, air bronchogram (MDA = 0.039), 
ground-glass component (MDA = 0.023), and cavitation (MDA 
= 0.019) were the top-ranking semantic variables, whereas 
tumour location, spiculation, and tumour margins did not have 
any discriminatory value. Of the radiomic variables, the highest 
ranking variables were grey-level size-zone matrix (GLSZM) 
short zone low intensity emphasis (GLSZM-SZLIE; MDA = 
0.005), co-efficient of variation (MDA = 0.004), and neighbour-
hood grey-tone difference matrix (NGTDM) coarseness (MDA 
= 0.003). Variable importance of semantic features and top 10 
ranking radiomic features (total = 756) is given in Table 4.

Discussion
We developed three NSCLC classification models. RF-sem 
utilised semantic features obtained by consensus between two 
thoracic radiologists from training data and by a separate radiol-
ogist, from the validation data. RF-rad was based on comput-
er-aided extraction of radiomic features from CT images of 
NSCLCs, whereas RF-all was a combination of semantic and 
radiomic features. RF-sem performed well on both training and 
validation data despite both data sets having been annotated by 
separate radiologists, indicating the robustness of random forests 
models developed with semantic features to inter-observer vari-
ability. RF-rad and RF-all gave perfect predictions on training 

Figure 2. Performance curves of RF models on test data 
(A) and training data (B) show that RF models containing 
radiomic features (i.e. RF-rad and RF-all) yielded perfect 
discrimination (AUC 1) on training data (A), but very poor 
discrimination (AUC 0.52 and 0.56 respectively) on test data, 
similar to random guess (black line in A and B). RF-sem gave 
consistent good performance on training (B; AUC 0.78) as 
well as test data (B; AUC 0.82). AUC, area under the curve; 
RF, radiofrequency.

Figure 3. Figure showing two cases of ADCA (A, B), and two 
of SCCA (C, D). All cases were assigned high probability of 
respective histologies by the RF-sem model (inset). Among 
other semantic features, these tumours displayed features 
well known for ADCA, i.e. ground-glass component (arrow in 
A) and air bronchogram (arrow in B), and for SCCA, i.e. spic-
ulation (arrow in C) and cavitation (arrow in D). Since spicu-
lation was not strongly correlated with SCCA histopathology, 
the RF-sem model used absence of ADCA-specific features 
in C, although the overall confidence for SCCA (probability 
= 75%) was relatively lower. ADCA,adenocarcinoma; SCCA, 
squamous cell carcinoma.
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data but performed no better than random guess on validation 
data—indicating a high degree of overfitting of random forests 
developed using radiomic features.

We found several semantic features highly predictive of NSCLC 
subtype (Table 3), of which air-bronchogram, ground-glass compo-
nent, cavitation, and satellite nodules ranked highest in terms of 
discriminatory capability (Table  4). Our findings regarding the 
relative proportions of the various semantic features support previ-
ously reported trends, with a few differences13,30–32: Several clinical 
variables including older age, male gender, and smoking history 
are known to be more frequent in SCCA, in addition to semantic 
features such as spiculation and central location.32 In our cohort, 
none of these variables were significantly different between ADCA 
and SCCA and did not make a substantial contribution to the 
classifier.

The most important radiomic features in our study were GLSZM-
SZLIE (MDA = 0.005), coefficient of variation (MDA = 0.004), and 
NGTDM coarseness (MDA = 0.003). The biologic counterparts 
of these features are poorly understood; here we attempt an intu-
itive explanation of what these features might represent in tumour 
CT images: The GLSZM, described originally for texture charac-
terisation of cell nuclei,33 quantifies image heterogeneity in terms 
of zones of contiguous voxels sharing the same grey level inten-
sity. A relatively homogeneous tumour would have large zones 
of voxels sharing similar grey level intensity and vice versa. The 
derived quantity GLSZM-SZLIE, as the name implies, would be 
expected to be high in tumours with heterogeneous distribution of 
low grey-level (e.g. ground-glass density) voxels. NGTDM coarse-
ness, originally tested on various natural (e.g. pebbles, grass) and 
synthetic materials (e.g. cloth),34 would be high in tumours exhib-
iting similar intensities in neighbouring voxels with a low spatial 
rate of change in voxel intensities. In other words, they would 
comprise clusters of similar-intensity voxels which would stand 
out against the background and give a ‘coarse’ appearing texture 
to the tumour. Coefficient of variation (ratio of standard deviation 
over mean) is a first-order statistical texture feature which is high in 
tumours exhibiting high variation in grey-level intensities and low 
mean intensities. All three features were slightly more common in 
ADCAs vs SCCAs in our cohort.

A few authors have previously explored radiomics in NSCLC clas-
sification: In their proof of concept study, Basu et al trained a classi-
fier (accuracy: 68%) on CT-derived radiomic features from 74 cases 
of NSCLC.7 Their study focused on differentiating the efficacy of 
2D radiomic features versus 3D radiomic features and presented a 
comparison of various model categories including random forests, 
support vector machines, decision trees, and nearest neighbours. 
Their best model accuracy of 68% was obtained by employing all 215 
features in a leave-one-out cross-validation scheme. However, the 
authors did not report the best performing variables and a compar-
ison with our radiomic features can therefore not be performed. 
Two recent studies done by Wu et al. (n = 300) and Zhu et al (n 
= 129) have reported higher performance of radiomics-models 
(AUC 0.72 and 0.9 respectively).6,8 Other than that neither study 
compared radiomic features with semantic features, the most 
important difference between our study and either two is that the 
subset of highest performing radiomic features is different in all 
three studies. It is possible that since there are hundreds of radiomic 
features with majority inter-correlated, some of the different high-
ranking features might merely be variations of the same feature. A 
second possibility is that some of the radiomic models developed 
by other authors may have overfit, as seen in our study, although 
Wu et al used an external validation cohort making this unlikely in 
their study. Overfitting is a common design problem in ML studies, 
especially in studies with a large number of variables with respect 
to cases and lack of external validation cohort. Radiomics is doubly 
challenged in gaining widespread acceptance due to the common 
use of hundreds of variables and issues surrounding reproducibility, 
although efforts are underway to standardise radiomics.35

Our study has several potential limitations: Because this was a 
CT study, we could not completely eliminate the possibility of 
including small regions of normal tissue, e.g. opacification due 

Table 4. Variable importance determined by random forests 
classifier using MDA

Variable MDA
Semantic features

Air bronchogram 0.039

Ground-glass component 0.023

Cavitation 0.019

Satellite nodules 0.015

Airway thickening 0.008

Pleural indentation 0.006

Emphysema 0.004

Pseudocavitation 0.002

Location −0.002a

Spiculation −0.005

Margin −0.011

Radiomic features

db1 LLL GLSZM Short Zone
Low intensity emphasis

0.005

db1 HLH Coefficient of Variation 0.004

db1 LLL NGTDM Coarseness 0.003

db1 HHH GLCM Cluster Shade 0.003

db1 HHH NGTDM Coarseness 0.003

db1 HHH GLCM Correlation 0.003

NGTDM Contrast 0.003

Maximum intensity 0.003

db1 HHL Coefficient of Variation 0.002

GLCM, Grey-level cooccurence matrix; GLSZM, Grey-level size zone 
matrix; MDA, mean decrease in accuracy;NGTDM, Neighbourhood 
grey-tone difference matrix.
A high MDA score of a variable corresponds to greater predictive 
power.
aNegative MDA means the variable did not perform better than 
random chance. MDA = Mean decrease in accuracy. Note: Only the 
top 10 radiomic features are given here. For full table, please see 
supplemental file.
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to adjacent atelectasis. However, we minimised such cases by 
excluding lesions that were difficult to delineate from adjacent 
collapsed lung. As a result, there may have been an under repre-
sentation of centrally located SCCAs because such tumours were 
frequently inseparable from adjacent atelectasis. Central loca-
tion is a known feature of SCCAs and including more centrally 
located tumours, expected to be majority SCCA, may have 
improved model performance.33 Secondly, as in most radio-
mics studies, our original radiomic feature space comprised a 
large number (n = 756) of features derived from CT scans with 
varying data acquisition parameters, especially those obtained 
from TCIA. Radiomic features are variable in terms of reproduc-
ibility and are dependent on tumour segmentation and image 
post-processing steps.27 Hence, we believe that future studies 
using a more refined selection of radiomic features, especially 
features engineered specifically for chosen classification tasks, 
may provide more useful results.

Conclusions
Our study showed that non-invasive classification of NSCLCs 
using semantic features is possible and can be done with good 
accuracy (AUC: 0.82) using machine learning algorithms. 
However, CT-scan radiomic features performed poorly on inde-
pendent validation data (AUC 0.5 and 0.56 for RF-tex and RF-all 
respectively), despite perfect classification on test data, and may 
be unsuitable for this task.
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