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Scientists’ ability to detect drug-related metabolites at trace concentrations has
improved over recent decades. High-resolution instruments enable collection of large
amounts of raw experimental data. In fact, the quantity of data produced has become a
challenge due to effort required to convert raw data into useful insights. Various
cheminformatics tools have been developed to address these metabolite
identification challenges. This article describes the current state of these tools. They
can be split into two categories: Pre-experimental metabolite generation and post-
experimental data analysis. The former can be subdivided into rule-based, machine
learning-based, and docking-based approaches. Post-experimental tools help
scientists automatically perform chromatographic deconvolution of LC/MS data and
identify metabolites. They can use pre-experimental predictions to improve metabolite
identification, but they are not limited to these predictions: unexpected metabolites can
also be discovered through fractional mass filtering. In addition to a review of available
software tools, we present a description of pre-experimental and post-experimental
metabolite structure generation using MetaSense. These software tools improve upon
manual techniques, increasing scientist productivity and enabling efficient handling of
large datasets. However, the trend of increasingly large datasets and highly data-driven
workflows requires a more sophisticated informatics transition in metabolite identification
labs. Experimental work has traditionally been separated from the information
technology tools that handle our data. We argue that these IT tools can help
scientists draw connections via data visualizations and preserve and share results via
searchable centralized databases. In addition, data marshalling and homogenization
techniques enable future data mining and machine learning.
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1 INTRODUCTION

Drug metabolism influences the pharmacokinetics and pharmacodynamics of drug molecules while
altering their pharmacological activity and toxicity (Kirchmair et al., 2015; Manikandan and Nagini,
2018). Determining drug metabolism in drug research and development is essential for producing
safe and effective medication. The ability to detect metabolites at trace concentrations has
dramatically improved recently due to advances in instrumentation such as high-resolution mass
spectrometry (HRMS) (Zhu et al., 2011).
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However, this raw data does not directly contribute to drug
development. Metabolite structures must be elucidated and
processed data recorded in a manner that is human-readable
and readily shareable/searchable.

Advances in instrumentation have led to challenges with raw
data handling. Traditional metabolism identification (MetID)
tools, such as manual expert systems, are no longer sufficient
to meet the needs of an increasingly complex cheminformatics
landscape (Cuyckens, 2018; Géhin and Holman, 2021). In
addition, MetID scientists may be part of structure elucidation
groups, meaning the software requirements are often subject to
competing considerations.

Metabolite prediction tools may use different computational
approaches, but they are all limited by the quality and quantity of
data available. Therefore, the effectiveness of a MetID team is a
function of their software tools, experimental equipment, and
data management strategy. This article summarizes the current
state of MetID software, including an overview of available
commercial applications and perspectives on future innovation.

2 OVERVIEW OF SOFTWARE-BASED
TECHNIQUES

MetID software is used for two main activities, though there is
overlap, and many programs do both:

1. Pre-experimental generation of metabolites from a structure
2. Post-experimental analysis of data

Several MetID software packages are commercially available
that substantially improve manual techniques in both efficiency
and accuracy (Kirchmair et al., 2012; Kazmi et al., 2019).

While these software tools have unique features, most
applications have a limited ability to predict metabolites for
non-mammals. Processed metabolic data is biased towards
mammals, meaning the software cannot reliably predict
metabolites produced by plants, insects, or bacteria. This has
implications for pesticide development, and environmental
toxicology (Hoagland et al., 2000; Hatzios et al., 2001).
Research organizations can build in-house biotransformation
databases supported by expert knowledge to improve the
performance of MetID software for specialized areas.

2.1 Pre-Experimental Metabolite
Generation
Pre-experimental metabolite generation tools predict metabolites
de novo based on structure. The three most common approaches
for pre-experimental prediction are rule-based, machine
learning-based, and docking-based.

These computational strategies are not mutually exclusive, as
they deal with different aspects of metabolite prediction. Only
rule-based methods generate the structures of potential
metabolites. Other techniques estimate the preferred site of
metabolism (SoM). Many software packages use multiple
approaches to cover the entire metabolite prediction workflow.

2.1.1 Rule-Based Pre-Experimental Metabolite
Generation
As the name implies, rule-based prediction software uses
empirically-derived rules to predict biotransformations for
a given molecule. This software finds possible metabolites by
comparing the molecule against an experimental database of
metabolic reactions. Alternatively, the algorithm can identify
substructures that fulfill the SoM criteria for different
reaction types, then assess which transformation(s) will
occur. This process is repeated to predict next-generation
metabolites.

Rule-based systems offer the advantage of predictions that can
be rationally compared to experimentally observed results.
Researchers can assess how specific metabolites were
predicted, allowing experts to apply their knowledge. Since
these tools are limited by the set of rules available, software
updates and in-house data are needed to ameliorate this
constraint. This can be a time-consuming process.

Examples of rule-based MetID software include
• Nexus Meteor: A knowledge-based system that uses a
biotransformation dictionary expressed as generic
reaction descriptions. These biotransformations are
applied to structures using reasoning rules (Marchant
et al., 2008).

• BioTransformer: Hybrid software tool that predicts
xenobiotic metabolism in several systems (Djoumbou-
Feunang et al., 2019). It uses a biotransformation
database (MetXBioDB), a reaction knowledgebase, and a
reasoning engine that incorporates machine learning
algorithms, such as CypReact (Tian et al., 2018) to
predict enzyme selectivity.

• GLORYx: Phase I and II metabolite prediction software.
GLORYx employs a hybrid approach that involves a
random forest-based machine learning algorithm for SoM
prediction, and a literature-derived database of
biotransformation rules encoded using SMIRKS notation
(de Bruyn Kops et al., 2019; de Bruyn Kops et al., 2021).

2.1.2 Machine Learning-Based Pre-Experimental
Metabolite Generation
Machine learning is a computational strategy that builds a
prediction algorithm based on existing knowledge. The
model processes training data to find patterns, which are
captured in the algorithm. When the initial training is
complete, the algorithm may be refined to consider new data
for metabolite prediction (Finkelmann et al., 2018; Göller et al.,
2020). This update process may be automated, but even in an
unsupervised mode it may require significant time for statistical
analysis.

Machine learning models require atom representations that
capture reactivity-determining features of a potential reaction
site (Rydberg et al., 2010; Matlock et al., 2015). This
computational strategy is differentiated from rule-based
models in several ways. Machine learning models are not
limited by pre-determined rules, allowing them to consider a
broader range of metabolic pathways. Deploying prediction
software based on machine learning often requires data from
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the previous experimental MetID studies, which takes resources
to collect and manage.

Most machine learning software does not organize its
computational logic into human-readable rules, meaning
interpretation is challenging (Kirchmair et al., 2015; Kazmi
et al., 2019). This is relevant to MetID researchers, as
metabolite predictions may be involved in research decisions
and regulatory filings.

Examples of MetID software using machine learning models
include

• XenoSite server: Provides tools for visualizing the atom
most likely to be the site of metabolism for several
important cytochrome P450s (CYP450s). XenoSite server
uses a neural network machine learning model (Matlock
et al., 2015).

• MetScore: Uses a random forest-based approach for
predicting Phase I and II metabolism. Employs a
quantum-chemistry derived molecular representation for
reactivity prediction (Finkelmann et al., 2017).

• SMARTCyp: Employs a ligand-based CYP450 SoM
prediction method with precalculated quantum
mechanical activation energies to estimate site reactivity.
Predictions are adjusted based on site accessibility (Rydberg
et al., 2010; Olsen et al., 2019).

2.1.3 Docking-Based Pre-Experimental Metabolite
Generation
Docking-based approaches for pre-experimental computational
strategies use 3D structural information about drug molecules
to predict how they interact with CYP450s. Docking can be
performed with parent compound, in which case the best-fitting
pose would indicate the preferred SoM (Li et al., 2011).
Alternatively, metabolite structures could be docked using a
hybrid docking/rule-based approach (Tarcsay et al., 2010):

1. Rule-based generation of metabolites
2. Docking metabolites in CYP450 reaction sites
3. Selection of probable metabolites based on complementarity

The added structural context potentially increases the
accuracy of docking-based prediction models, though this
information may not be available. Docking-based models are
typically limited to CYP450 and do not cover other activity from
the human liver microsome (HLM).

Most research into docking-based metabolite prediction does
not use a single software package. They instead employ a
combination of tools to complete the analysis (Tarcsay et al.,
2010; Moors et al., 2011). This offers flexibility but may be an
obstacle to user experience and productivity.

Examples of docking-based software include
• IDSite: Evaluates the energy of a protein-ligand complex
and employs a docking tool (GLIDE) to place the ligand into
the active site. This is combined with a structure modeling
program (PLOP) to determine binding orientations and
predict SoM (Li et al., 2011).

• MetaSite: Employs an approach sometimes referred as
pseudo-docking (Tyzask and Kirchmair, 2019). This

software predicts potential SoMs by aligning ligand
structures to GRID molecular interaction fields, which
encode the active site “fingerprints” of cytochrome
enzymes (Cruciani et al., 2005).

2.2 Post Experimental MetID Tools
Post-experimental MetID software uses predicted and
experimental data to identify and verify metabolic products.
The structure of a parent compound is used to predict
metabolite structures, as described above. The application then
assesses the analytical data to determine which of these
theoretical chemicals are present.

Using a post-experimental prediction can significantly enhance
the accuracy and reliability of a MetID study. This improved
accuracy comes at the cost of requiring experimental data. Since
a primary objective of pre-experimental MetID software is to avoid
the need for unnecessary metabolism experiments, post-
experimental predictive software should not be considered a
substitute. Post-experimental predictive software is designed to
accelerate metabolite data analysis and provide an added level
of verification.

• Mass-MetaSite: Automatically identifies the metabolites for
small molecules and peptides using liquid chromatography-
mass spectrometry, UV, fluorescence, and radio-
chromatogram data. Chemical structures are assigned to
chromatographic peaks based on the MS and MS/MS
fragmentation patterns (Trunzer et al., 2009).

• MZmine: mass spectrometry analytical data processing tool
with metabolite identification capabilities (Pluskal et al.,
2020). Metabolite structures are determined by compound
database searches that may involve predictions by a machine
learning algorithm (SIRIUS/CSI:FingerID) (Dührkop et al.,
2019).

3 METASENSE OPERATION AND
FUNCTIONALITY

MetaSense® is a metabolite prediction package developed by
ACD/Labs which employs both rule-based and machine
learning to perform pre-experimental and post-experimental
predictions simplifying the review process for the expert.
Understanding its functionality provides an instructive
example of how MetID software operates.

3.1 Pre-Experimental Metabolite
Generation
MetaSense’s metabolite generation process is summarized in
Figure 1A. The engine consists of two main components:

1. A database of biotransformation rules maps the chemical
environment of a potential SoM to a list of expected
reaction products. The biotransformation rule set was
compiled from several review publications (Testa and
Krämer, 2007a; Testa and Krämer, 2007b; Testa and
Krämer, 2008; Dalvie et al., 2002) and further extended by
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analyzing the internal database of CYP450 substrates and their
metabolites. The rules are grouped according to these reaction
types:
• Phase I—Hydrolysis: spontaneous or enzymatic hydrolytic
cleavages of labile functional groups

• Phase I—Redox reactions, including hydroxylations,
dealkylations, heteroatom oxidations, epoxides formation,
and ring desaturation with subsequent aromatization

• Phase II—Conjugation reactions, such as sulfonation,
glucuronidation, the addition of glutathione, and various
amino acids

2. A soft spot ranking algorithm estimates the likelihood of
metabolic reactions at a particular SoM. The scoring
functions used depends on the reaction type.

Hydrolysis and Phase II stage scores are based on simple
heuristics reflecting the overall lability of the SoM and
susceptibility to conjugations based on the physicochemical
profile of the parent compound. For example, the likelihood of
lipophilicity reducing conjugations (e.g., sulfonation,
glucuronidation) is assessed by predicted logD7.4 values,
producing lower scores for inherently polar and water-soluble
molecules. Conversely, glutathione addition is purely rule-
based–its target sites are identified by substructure search
against a set of electrophilic fragments.

For redox reactions of Phase I, MetaSense uses machine
learning based regioselectivity prediction models that it
shares with the ACD/Labs Percepta platform. These models
identify soft spots for five common redox reaction types
catalyzed by CYP450s and other metabolic enzymes
expressed in the HLM.

The models use the GALAS (Global, Adjusted Locally
According to Similarity) method, which can be described as a
combination of two procedures:

• A fragmental baseline QSARmodel for the prediction of the
property of interest

• A similarity-based routine (or local model) that introduces
additional corrections based on the analysis of the
performance of the baseline model on the most similar
compounds identified in the training set.

A specialized structural fragmentation method has been
developed to account for the regioselectivity of enzymes on an
atom-by-atom basis. Unlike traditional fragmentation techniques
that use one “digital image” of the whole molecule, this
regioselectivity model uses several unique molecule
representations depending on the selected central atom. This
fragmentation method and the weighing scheme for atoms
surrounding the reaction center comprised the GALAS

FIGURE 1 | The MetaSense metabolite generation and identification process: (A) Metabolites are generated using structural information and biotransformation
rules. (B) Data acquired by analytical instruments is combined with the molecular structure and biotransformation predictions. (C) Analytical data is processed to identify
metabolites. (D) Processed data is stored in SpectrusDB database. Data can be manually reviewed and processed, accessed via software tools, or be used to generate
reports.
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method variation for atom-centered predictions (Dapkunas et al.,
2009).

The output of this model is the probability of a particular atom
being a target of HLM enzymes, along with a reliability index—a
quantitative measure of prediction confidence based on the local
similarity correction step. The reliability index consistently predicts
quality estimates by demonstrating a direct correlation between
this value and accepted model accuracy metrics for both
quantitative (Sazonovas et al., 2010) (e.g., MAE, RMSE) and
qualitative (e.g., sensitivity, specificity) models (Dapkunas et al.,
2009; Didziapetris et al., 2010). Finally, the two outputs from a
GALAS HLM regioselectivity model are combined to produce the
overall SoM score ranging from 0 to 1.

Once the SoM scores are calculated for all possible reaction
sites in the molecule, they are filtered by a score threshold.
Biotransformation rules are applied to generate a list of
proposed metabolite structures. This process can be repeated
to produce a biotransformation map (BTM). Products can be
filtered by molecular weight, reaction type, or custom
biotransformation rules.

3.2 Post-Experimental Metabolite
Identification
The MetaSense post-experimental workflow is summarized in
Figures 1B–D. The process starts by importing experimental
data files and corresponding structures into the processing
environment. This may include data from LC/MS/MS,
radiotrace, UV-trace, or isotopically-enriched workflows. The
software can use data from most major instrument vendors and
metabolite prediction software, such as Meteor Nexus (Lhasa Ltd.),
MetaSite (Molecular Discovery), or user-created SDFiles.

After processing, interpreted spectra are uploaded to a central
database, and the BTM is automatically created. Scientists can
review the entire project and add missing metabolites based on
expert knowledge.

LC/MS traces are separated into extracted ion chromatograms
(XIC). Predicted metabolites are matched to peaks by accurate
mass and isotopic pattern. Since each XIC may contain peaks from
several metabolites, the biotransformation site is located with MS/
MS spectra by applying fragmentation rules and fragment-ion
mass shifts. Metabolite structures are represented using Markush
notation if the reaction site is ambiguous. The software also
supports data-dependent acquisition, all-ion fragmentation,
and MSE.

Unexpected metabolites are identified by control-sample
comparison and fractional mass difference. Since all data and
interpretations are linked and stored together, users can review
original chromatograms and spectra and send them to other
software tools for structure elucidation.

MetaSense offers two distinguishing features

• Auto-creation of BTMs, which are time-consuming to create
manually. BTMs and kinetic plots are generated based on
structural and experimental data. MetaSense uses chemical
intelligence to refine BTMs, excluding chemically
unfeasible steps.

• Storage of analytical and chemical data in a searchable
database, including peak areas, metadata, maps, and
plots. Analytical data can be reprocessed and updated if
new metabolites are found.

3.3 MetaSense Terfenadine Example
A time-course metabolite study of Terfenadine is shown in
Figure 2. Pre-experimental metabolism prediction reactions
(Phase I/II) were set and filtered using post-experimental ID
in the datasets. The feasibility of the structures was assessed
through spectral assignment of predicted fragments. The areas of
the parent or metabolites are visualized, allowing users to assess
the formation of metabolites across the study.

4 DISCUSSION

MetID scientists have access to more data than ever before. This
includes experimental data from high-resolution instruments and
in silico data produced by computer models. Effective data
handling is a significant challenge. We predict that
breakthroughs in productivity will be due to improvements in
data management.

4.1 Interconnected Representations of Data
Data frommetabolism studies are highly interconnected, but they
can be organized into four layers: raw data, metadata, processed
data, and interpretation.

• Raw data from an instrument detector is the foundation of
metabolite data.

• Raw data is connected to metadata, including instrument
conditions, chemical structures, model organisms, sample
type, and sample preparation method.

• Raw data and metadata are then processed into ion traces
and integrated peaks.

• Processed data is then abstracted into an interpretation
layer, including BTMs, kinetic plots, and other
visualizations.

MetID experts must understand the connections between
these layers of data and interpretation. Automating the
production of BTMs and kinetic plots from raw data saves
time. Higher-level abstraction must be connected to raw data
to support a rigorous analysis and identify chains of evidence for
reporting and regulatory review.

These four layers of data and their connections should be
accessible for review. Most MetID software does not meet this
standard, as these tools do not allow hyperlinking between
experimental design-processed data–raw data. Innovations in
digital tools will overcome these restrictions, enabling
researchers to track connections between multiple data layers.

4.2 Analytical Data Management Strategy
The productivity of MetID software is directly related to the
quantity and quality of data available. This is ultimately
determined by the data management strategy of a research
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organization. Therefore, analytical data management systems
should be considered essential to any MetID program.

An analytical data management system must be designed to
meet the needs of the overall research organization. This requires a
balance between the functional needs of specific researchers and
practical considerations such as expense, deployment time, or
forward compatibility. Some of the most relevant concerns include:

• Data storage policy: While it is theoretically ideal to store
every piece of data for all time, this is not practical or cost-
effective. What features need to be stored to prepare for
future data mining and machine learning?

• Findability: Findable data includes sufficient metadata to be
readily retrieved. Lost data often requires experiments to be
repeated, leading to increased time and cost. Findability can
be improved with robust business practices surrounding
metadata management.

• Homogenous file formatting: Data must be maintained in a
long-term usable format. Data should be stored in a consistent,
vendor-neutral format to reduce barriers to access, facilitate
interoperability, and simplify data comparison.

• Current needs vs. future expansion: Local databases designed
to meet the needs of a single laboratory can be deployed
rapidly with minimal overhead. Decentralized systems such
as this may not be conducive to machine learning projects or
inter-laboratory collaboration. Enterprise systems require
more effort to deploy and manage but can be designed to
facilitate data science projects.

• Role of legacy data: Research organizations accumulate a
massive volume of data. Legacy data may not have been
processed or databased according to current best practices.

Should this data be managed separately, or can it be used
alongside new data? Does it require reformatting,
reprocessing, or other forms of upkeep?

Each research function has specific database features they
prioritize. MetID scientists benefit from searchable databases
that include BTMs and summary tables.

5 LOOKING FORWARD

The accuracy and efficiency of metabolic studies have significantly
increased due to improvements in instrumentation and software.
The next challenge will be scaling processing and prediction tools
to manage the volume of data generated by modern analytical
equipment.

Applications should be developed to represent connections
between raw data, metadata, processed data, and interpretation.
We need dedicated tools to understand the relationships between
these four data layers.

Machine interpretation relies on efficiently marshalling and
curating data. Research organizations need to invest in systems
that support successful MetID computer models. Innovations in
drug metabolism prediction and identification will guide
scientists to develop safer, more effective medication.
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FIGURE 2 | A screen capture from MetaSense, showing the analysis of Terfenadine. The reactions present, absolute area, retention time and mass are notated in
the Metabolite Summary Table (i.e., Parent + O) and resultant structures are visualized in the BTM. The Kinetic/Stability Plot allows users to assess formation/generation
of metabolites across the entire study.
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