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A B S T R A C T

India imposed one of the world’s strictest population-wide lockdowns on March 25, 2020 for COVID-19.
We estimated epidemiological parameters, evaluated the effect of control measures on the epidemic in
India, and explored strategies to exit lockdown.
We obtained patient-level data to estimate the delay from onset to confirmation and the asymptomatic

proportion. We estimated the basic and time-varying reproduction number (R0 and Rt) after adjusting for
imported cases and delay to confirmation using incidence data from March 4 to April 25, 2020. Using a
SEIR-QDPA model, we simulated lockdown relaxation scenarios and increased testing to evaluate
lockdown exit strategies.
R0 for India was estimated to be 2�08, and the Rt decreased from 1�67 on March 30 to 1�16 on April 22.

We observed that the delay from the date of lockdown relaxation to the start of the second wave increases
as lockdown is extended farther after the first wave peak—this delay is longer if lockdown is relaxed
gradually.
Aggressive measures such as lockdowns may be inherently enough to suppress an outbreak; however,

other measures need to be scaled up as lockdowns are relaxed. Lower levels of social distancing when
coupled with a testing ramp-up could achieve similar outbreak control as an aggressive social distancing
regime where testing was not increased.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

Introduction

Originating out of Wuhan, China, in December 2019 (Zhu et al.,
2020), the coronavirus disease 2019 (COVID-19) was declared a
pandemic by the WHO on March 11, 2020 (WHO, 2020). As of May
2, 2020, there have been more than 3 200 000 cases and 230 000
deaths worldwide and close to 40 000 cases and 1200 deaths in

India (Johns Hopkins CSSE, 2020). India reported its first COVID-19
case on 30 January 2020, although the actual epidemic growth
started from early March (COVID19India.org, 2020).

For any novel infectious disease, the scale of its public health
impact is determined by the basic reproduction number ‘R0’ which
is the average number of secondary infections generated by an
infectious index case in a wholly susceptible population. The R0 of
an infection determines its potential to start an outbreak, the
severity of control measures needed to contain the spread, and the
fraction of the population that will be infected in the absence of
interventions (Longini et al., 2005). However, once an outbreak is
underway, the time-varying effective reproduction number ‘Rt’ is
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more relevant as it tracks the subsequent changes in transmission
and can thus be used to monitor the efficacy of control measures
and adjust them accordingly (Kucharski et al., 2020; Leung et al.,
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020; Pan et al., 2020). However, any given transmission event is
eflected in the data only after a delay, which must be accounted
or in the estimation of such indicators for accurate interpretation
Kucharski et al., 2020). Previous studies have shown that a severe
pidemic with R0�2�4 can be contained by combining effective
uarantine, behavioral change to reduce social mixing, targeted
ntiviral prophylaxis, and pre-vaccination (Longini et al., 2005).
owever, in the absence of targeted therapeutics and vaccination
or COVID-19, an unprecedented one-third of the world’s popula-
ion is currently under lockdown with the primary target of
educing the Rt below the threshold of 1 (Ferguson et al., 2020;
eung et al., 2020).
India responded to the COVID-19 pandemic rapidly and decisively

y imposing a nation-wide lockdown on March 25, 2020 when there
ere 536 cases and 10 deaths. This ‘suppression strategy’, though
ffective, has its limitations—the social and economic cost of such
opulation-wide social distancing is huge, which limits the long-term
mplementation of these measures (Lee et al., 2020). Additionally,
ontaining COVID-19 in India is a unique challenge due to its high
opulation density, underprepared healthcare system, and wide
ocio-economic disparity. A large proportion of India’s labor force
orks as daily-wage laborers or migrant workers and are especially
ffected during such times, making lockdowns untenable without
arallel social support (Lee et al., 2020). There could be yet unseen
dverse effects in the form of non-COVID-19 morbidity and mortality
ue to aggravationof malnutrition, chronic diseases, and lackofaccess
o healthcare during this time (Bhargava and Shewade, 2020). At the
ame time, premature withdrawal of lockdowns without adequately
lanned interventions for the post-lockdown phase may lead to re-
mergence ora second wave (Ferguson et al., 2020; Leung et al., 2020).
hus, there arises a need to create a balance to ensure that the disease
s contained and the healthcare system remains well-prepared while
inimizing the collateral damage from intensive blanket interven-

ions. Comprehensive lockdown exit strategies will be central to the
uture course of the pandemic. In such scenarios with limited primary
nformation, dynamic mathematical models can provide actionable
nsights for researchers and policymakers (Ferguson et al., 2020;
ellewell et al., 2020; Kucharski et al., 2020).
Evidence suggests that COVID-19 has a wide clinical spectrum

hat ranges from asymptomatic to fatal infections which, when
oupled with high infectivity, can lead to a large number of
nfections and deaths (Hu et al., 2020). It may be possible that
OVID-19 transmission is driven significantly by undetected
symptomatics while fatality is driven by severe cases, which is
 devastating combination (Gudbjartsson et al., 2020; Lavezzo
t al., 2020). Some have deemed asymptomatic transmission to be
he “Achilles’ Heel” of the current control strategies against COVID-
9, and it is important to consider the range of uncertainty
egarding the same when simulating COVID-19 transmission
Gandhi et al., 2020).

In this study, we estimate the key transmission parameters for
OVID-19 in India and its states and analyze how interventions
ffected transmission levels across time. Considering that blanket
ockdowns are an initial rather than a final step in controlling this
andemic, we model the effect of relaxing public health
nterventions at various time-points. We evaluate the impact of
ncreased detection of infections in the community through
xpanded testing strategies in containing transmission when
estrictions are relaxed.

140 COVID-19 patients admitted to a tertiary care hospital near
Delhi, India (Appendix p5). For estimating the basic reproduction
number (R0) and effective reproduction number (Rt) for India and
various states, we used data from COVID19India from March 4 to
April 25, 2020, which is curated based on multiple verified sources
(COVID19India.org, 2020). For model fitting and parameter
estimation, we used time-series data for India from the Johns
Hopkins University COVID-19 database, from March 16 to April 18,
2020 (Johns Hopkins CSSE, 2020). A laboratory-confirmed case
irrespective of symptoms is counted as a confirmed COVID-19 case
in India. Testing criteria are provided in Appendix p9. We used the
World Bank Population Database for population data for India
(World Bank, 2019).

Estimation of basic reproduction number (R0)

The best-fit R0 was calculated for the national and state level
incidence data using the R0 package in R 3�6�3 using two
independent methods: Maximum Likelihood (ML) method and
the Exponential Growth (EG) method after adjusting the incidence
data for imported cases (Obadia et al., 2012; Wallinga and Lipsitch,
2007; White and Pagano, 2008). We assumed the serial interval to
be gamma-distributed with a mean of 3�96 days (95% CI 3�53–4�39)
and standard deviation (SD) of 4�75 days (95% CI 4�46–5�07), based
on a large study of 468 infector-infectee pairs in China (Du et al.,
2020). We analyzed the sensitivity of the estimated R0 to the choice
of the time period over which the R0 was estimated and the serial
interval (Appendix p8). The R0 package uses R2 as the goodness-of-
fit statistic.

Estimation of reporting lag, lag adjusted incidence, and time-varying
effective reproduction number (Rt)

A variable delay occurs from symptom onset to case confirma-
tion (henceforth referred to as the reporting lag) which is
attributed to multiple factors including time taken to seek care
(patient dependent) and time taken to detect and test the case
(healthcare-system dependent). As all included patients were
tested and confirmed positive within a day of hospitalization, the
time from symptom onset to hospitalization obtained from the
data approximates the reporting lag of these cases. We assume
these to be same for the purpose of our study. Due to lack of data,
we assume that the reporting lag for India and each state is
statistically the same as the estimated reporting lag for the 53
patients from Delhi whose onset date was known. For each
reported case, onset dates were sampled to generate 1000 lag-
adjusted datasets for incidence by onset (Appendix p5–6) from
which, the time-varying Rt was calculated using EpiEstim package
in R 3�6�3 which uses the Time Dependent Maximum Likelihood
approach (Cori et al., 2013; Wallinga and Teunis, 2004). The same
serial interval distribution was used as for R0 estimation. We
determined both the import-adjusted Rt and unadjusted Rt for
India, where cases in the national incidence data not explicitly
labeled as ‘imported’ were considered to be locally transmitted.
The Rt trends were overlaid with major epidemic events and
mobility data to analyze possible temporal correlations (Google
LLC, 2020).

Modeling the pandemic using dynamic compartmental models
ethods

ata sources

For estimating the proportion of asymptomatic cases and the
elay from symptom onset to confirmation, we obtained data from
58
In order to model the spread of SARS-CoV-2 in the population,
we generalize the extensively used SEIR model for infectious
diseases to account for (1) time lag from symptom onset to case
being reported in data, (2) underreporting of actual infections due
to testing constraints, (3) varying proportion of infections being
asymptomatic, (4) varying infectivity levels of asymptomatics, and
0
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(5) time-dependent effect of implementing and relaxing control
measures (Sun and Hsieh, 2010). For introducing the required
complexities, we build a model as shown in Figure 1. Model
parameters are defined in Table 1. Through a positive protection
rate (α), the susceptible population gradually decreases to account
for the effect of increasingly intensive social distancing policies and
improved public behavior in reaction to the epidemic (Peng et al.,
2020). We introduce a deprotection rate (s) which increases the
susceptible pool once social distancing policies are relaxed. Using
deprotection rate (s) in a SEIR model may be worthwhile in
multiple scenarios. When estimating s by fitting the model to data,
one can incorporate the ‘leakiness’ of a lockdown into the
predictions. In addition, allowing time-dependent estimation of
s in such a model can indicate the waning adherence to the
lockdown over time. At last, altering the values of s when
simulating lockdown relaxation allows one to evaluate a gradual
return to normal vis-a-vis a sudden return to normal.

We set the probability of an infected case being asymptomatic
(pa) to 0�2, 0�4, 0�6, and 0�8, as reported estimates for the percent of
infections that are asymptomatic range widely from 18% to 80%
(Gudbjartsson et al., 2020; Kumar et al., 2020; Lavezzo et al., 2020;
Mizumoto et al., 2020). We set the relative infectivity of an
asymptomatic to 25% (ai = 0�25) based on reliable evidence from
transmission studies (Buitrago-Garcia et al., 2020; He et al., 2020a).

We set the fraction of detected asymptomatics (fa) at baseline to
0�1 based on underreporting estimates for the model time period
from Russell et al. (2020). We sample the latent period (g�1) from a
calculated distribution with a mean of 3.49 days and a standard
deviation of 0.39 days based on previous studies and the infectious
period for asymptomatics (da�1) from a calculated distribution
with a mean of 4.31 days and a standard deviation of 0.55 days
based on virologic and epidemiologic studies (Ali et al., 2020; He
et al., 2020a,b; Lauer et al., 2020; Li et al., 2020b; Liu et al., 2020b).
Details on how the distributions were generated are available in
Appendix p28. We assume that all symptomatic patients are
detected, and that no asymptomatic dies from the disease. Further
details of the model, including the governing equations, are
available in Appendix p3–4.

We estimated the unknown parameters of the model by fitting
time-series data for active cases (=cumulative confirmed cases �
cumulative recoveries � cumulative deaths), cumulative recover-
ies, and cumulative deaths to the Q(t) = Qs(t) + Qa(t), R(t) = Rs(t) +
Ra(t), and D(t) compartments, respectively. We fitted for the values
of transmission rate (β), protection rate (α), delay to confirmation
for symptomatic cases (ds�1), recovery rate (l), mortality rate (k),
and initial exposed and infected individuals (E0 and I0). As a
counterfactual, we explored the size and temporality of the first
wave in an ideal scenario where strict control measures could be
maintained for long periods by simulating the model with the
estimated parameters. This continually enforces the estimated
protection rate, thus assuming that control measures continue
with initial stringency till the end of simulation. Here, we defined
three key time points that are inherent to epidemic progression:
time at peak of daily new reported cases (t1), time at peak of active
cases (t2), and time when recovered cases > active cases (t3). The
sensitivity of our results to assumptions of pa, fa and ai was
analyzed. The following terms in the article signify values obtained
by combining multiple compartments: ‘Symptomatic cases’—
cumulative symptomatic cases once detected; ‘Detected cases’—
cumulative detected cases including symptomatic and asymptom-
atic cases; ‘Total infections’—cumulative infections including
detected cases and undetected asymptomatic infections.

Simulating the effect of lockdown relaxation

To model complete lifting of the nationwide lockdown, α was
set to zero and s was set to a large value such that the entire
protected population was emptied into the susceptible population
in a short interval (t1/2�1 day). We triggered this change on May 4,
2020 (tentative date of lockdown relaxation in India at time of
study) and 7-day intervals thereafter to compare outcomes if
lockdown is lifted on different dates. We also considered the
scenario where the lockdown is re-enforced after a fixed relaxation
period which we modeled by setting s to zero and re-enforcing the
same α as before lockdown relaxation. Additionally, we simulate a
more gradual lockdown relaxation using a relatively smaller value
of s (Supplementary p26).

Simulating the effect of increased testing

We hypothesized that increased testing after lockdown
relaxation will decrease the epidemic growth enough to allow
for greater resumption of normal social mixing, thus minimizing
the social and economic fallout resulting from vigorous restric-

Figure 1. Schematic for SEIR-QDPA model.
Compartments include S (susceptible), E (infected but not yet infectious), Ia

(undetected asymptomatic; infectious), Is (undetected symptomatic; infectious),
Qa (detected and quarantined asymptomatic), Qs (detected and quarantined
symptomatic), Ru (undetected recovered asymptomatic), Ra (recovered detected
asymptomatic), Rs (recovered detected symptomatic), D (dead), and P (protected;
non-susceptible). Compartments in red are fitted to data; Q = Qa + Qs to active cases,
R = Ra + Rs to cumulative recovered cases, and D to cumulative deaths. Transition
rates in red are inputs to the model, while others are estimated (Table 1). The
governing differential equations for the model are available in Appendix p3–4.

581
tions. To model the effect of increased testing capacity and
subsequent improved detection, we assumed that it increased the
asymptomatic detection rate fa from 0�1 in lockdown, to 0�2, 0�3,
0�4, 0�5, 0�6, and 0�8 after lockdown relaxation starting May 4. An
alternate interpretation of testing which is independent of clinical
severity is discussed in Appendix p4. To model the effect of varying
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evels of residual social distancing and positive behavior change
fter the lockdown is lifted, we changed the transmission rate to
0%, 80%, 70%, 60%, 50%, and 30% of the original rate β, starting May
. Varying levels of social mixing mainly influence the number of
ontacts, while behavior changes such as wearing masks and hand
ashing affects the infectiousness of each contact—the transmis-
ion rate β captures both these changes (contact rate and infectivity
er contact).

esults

asic reproduction number ‘R0’

The exponential growth (EG) method had a better best-fit R2

ver a larger time period and was less sensitive to the choice of the
ime period (Appendix p7–8). The best fit R0 for India was found to
e 2�083 (95% CI 2�044–2�122; R2 = 0�972). Taking into consider-
tion the uncertainty in reported serial intervals (SI), the R0 ranged
rom 2 to 2�5 for SI ranging from 4 to 4�6 days (Du et al., 2020;
ishiura et al., 2020; Tindale et al., 2020; You et al., 2020). Results
ere found to be sensitive to the SI distribution, and thus we report
0 based on reliable SI estimates from 468 infector-infectee pairs in
hina (Du et al., 2020) and also consider a range of possible SIs
ased on other studies. The R0 estimates for various states of India
re provided in Appendix p7.

eporting lag, lag adjusted incidence, and time-varying effective
eproduction number ‘Rt’

Out of 140 laboratory confirmed COVID-19 patients, 85 (60.7%)
ere asymptomatic while 55 (39.3%) were symptomatic. For 53
ymptomatic patients, the reporting lag was found to have a mean
f 3�40 days (95% CI 2�87–3�96) with SD of 2�09 days (95% CI 1�52–

number of imported cases in India started increasing from early-
March, peaked a day after the international travel ban on March 23,
and gradually came to a halt on April 5 with a total of 546 imported
cases (Figure 2A). Incidence by onset and time-varying Rt could be
ascertained up to April 22, 2020 as some cases with onset after this
date may not have been reported yet in the data, due to the
reporting lag. The Rt trends for India showed visible fluctuations
over time (Figure 2B). The first uptick in unadjusted Rt (blue band)
starting around March 13, 2020 was presumed to be an artifact due
to imported cases, as it coincided with increasing imported case
onsets and was not accompanied by a concurrent uptick in import
adjusted Rt (pink band). The second uptick in unadjusted Rt

correlated with the rise in adjusted Rt, indicating that local
transmission was driving this rise. This rise started around the
imposition of the nationwide lockdown on March 25 and peaked
on March 30 at an adjusted Rt of 1�665 (95%CI 1�539–1�789). After
this peak, the Rt continued to decrease to 1�300 (1�247–1�353) on
April 8,1�213 (1�175–1�251) on April 15, and further to its lowest yet
value of 1�159 (1�128–1�189) on April 22. A sharp dip in mobility is
noted during the voluntary public curfew on March 22, which is
sustained after the nationwide lockdown was enforced on March
25, except for a rise in residential neighborhood mobility (Figure
2C). The daily Rt values for India and Rt trends for states of India are
provided in Appendix p11–14.

Estimated model parameters and ideal first wave scenario

The model was able to fit the data well for the early exponential
phase of the growth and also captured the recent slowdown in
epidemic growth through the protection rate. The estimated model
parameters for the range of assumptions are provided in
Appendix p15–18. With the baseline assumption (asymptomatics
are 25% infectious compared to symptomatics, 40% of total

able 1
arameters for SEIR-QDPA model.

Parameter Value Source

Protection rate (α) – Estimated

Deprotection rate (s) 0�5 for fast lockdown relaxation (largest
possible value for stable simulation)

Tested in Figure 4

Transmission rate (β) – Estimated
0�9, 0�8, 0�7, 0�6, 0�5, 0�3 of estimated β for
social mixing levels

Tested in Figure 5

Latent period (g�1) Mean 3.49, SD 0.39 (sampled from
distribution)

He et al. (2020b), Lauer et al. (2020), Li et al. (2020b), Liu et al. (2020b)

Delay to confirmation for
symptomatic (ds�1)

– Estimated

Infectious period for asymptomatic
(da�1)

Mean 4.31 SD 0.55 (sampled from distribution) Ali et al. (2020) and He et al. (2020b)

Mortality rate (k) – Estimated

Recovery rate (l) – Estimated

Infectivity of asymptomatic
compared to symptomatic (ai)

0�25 (0�5 for sensitivity analysis) Buitrago-Garcia et al. (2020) and He et al. (2020a)

Probability of infected case being
asymptomatic (pa)

0�2, 0�4, 0.6, 0�8 This study, Gudbjartsson et al. (2020), Kumar et al. (2020), Lavezzo et al. (2020),
Mizumoto et al. (2020), Buitrago-Garcia et al. (2020)

Probability of detection of
asymptomatic case (fa)

0�1 (0�05, 0�2 for sensitivity analysis) Russell et al. (2020)
0�2, 0�3, 0�4, 0�5, 0�6, 0�8 for increased testing Tested in Figure 5

ensitivity analysis to the choice of assumed parameters ai, fa, and pa was performed for the fitted parameters α, β, ds
�1, k and l in Appendix p16–18.
�56) and a median of 2�68 days (95% CI 2�00–3�00) with IQR of
.03 days (95% CI 1.00–3.00). The gamma distribution with shape
arameter 3�45 (95% CI 2�42–5�19) and rate parameter 1�02 (95% CI
�70–1�60) was the best fit to the distribution (Appendix p5–6).
The first cases of local transmission in India were reported on 4

arch and were family members of an initial imported case. The
58
infections are asymptomatic, and 10% of asymptomatics are
detected), the estimated reproduction number was 2.9 (2.5–3.3).
Assuming that control measures continued with initial stringency,
our model predicted the first wave (Figure 3) at 19 364 (95% CI
9452–36 313) maximum active cases and 50 566 (25 425–93 725)
cumulative detected cases, of which 30 397 (15 314–56 293) were
2
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symptomatic, till the end of first wave. The total infections were 50
566 (24 425–93 725) Key time points were predicted as — time at
peak of daily new reported cases (t1) between April 13 and April 18,
2020, time at peak of active cases (t2) between April 29 and May 5,
2020, and time when recovered cases > active cases (t3) between
May 19 and May 24, 2020. Ninety-five percent CI of 1000
bootstrapped predictions are reported here. The epidemic size
increased, and key points were delayed with higher assumptions of

obviously be lower than actual data in future; however, they give
us the valuable opportunity to model various interventions and
explore alternate scenarios.

Impact of lockdown relaxation and its temporality

On a complete removal of the lockdown, irrespective of the date
of relaxation, we observed that the number of active cases will

Figure 2. Transmission dynamics and incidence of COVID-19 in India, overlaid with major events and mobility trends. [A] Daily new cases by confirmation date in India
up to May 2, 2020 stratified as imported (red) and local (dark blue). The dates of testing criteria updates are overlaid as the scope of testing influences the number of confirmed
cases (Appendix p9). [B] Daily new cases by onset date (estimated epidemic curve) up to April 22, 2020 in India stratified as imported (red) and local (light blue); and the time-
varying effective reproduction number Rt adjusted for importations (pink) and without adjusting for importations (blue), over 5-day windows. Dark bands indicate 50% CI,
and light bands indicate 95% CI for estimated Rt. Similar graphs for states of India are provided in Appendix. [C] Mobility trends in India, compared to a baseline median value
for the corresponding day of the week, during the 5-week period Jan 3–Feb 6, 2020. Holiday due to the Holi festival on March 10, 2020 caused a dip in mobility. A sharp dip in
mobility is noted at the voluntary public curfew on March 22 and after the nationwide lockdown was enforced on March 25, except for a rise in residential neighborhood
mobility. The weekly rise in workplace mobility appears to be an artifact due to comparison with normal weekends at the baseline. Source—Google LLC (2020). Major
interventions are shown, the effects of which are best correlated with Rt trend and mobility changes, as these changes occur in real-time. Rt = time-varying effective
reproduction number.
asymptomatic proportion (Appendix p19). It is important to note
that the model does not consider a parallel leakage of protected
compartment back into the susceptible compartment, which tends
to happen in reality as lockdowns are not perfect. In addition,
control measures cannot be practically maintained indefinitely
with initial stringency. Thus, these first wave estimates will
583
start to rise exponentially after a variable delay (Figure 4A). We
observed that delaying the lockdown relaxation increases the time
lag from the date of relaxation to the date of new rise in active cases
(start of second wave), in a linear fashion with Pearson’s R = 0�985
(95% CI 0�984–0�985; p < 0�0001), as shown in Figure 4B. When we
simulated limited duration relaxation periods, we found a rise in
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ctive cases in all scenarios, but the extent of the rise was highly The result shown in Figure 4 shows that the peak of active cases is

igure 3. Model simulation of the first wave of COVID-19 in India assuming the lockdown continues indefinitely with the initial stringency. [A] Simulated values of
odel compartments over time. Quarantined cases are equivalent to the active cases at a particular time. ‘+’ represents data with which the model was trained. [B] Predicted

otal infections, detected cases, and symptomatic cases over time. [C] Predicted daily new cases over time. Bands represent 95% CI for the mean prediction over 1000
ootstraps. Three key time points in epidemic progression are shown: time at peak of daily new reported cases (t1), time at peak of active cases (t2), and time when recovered
ases > active cases (t3). Results shown for the baseline assumptions (asymptomatics are 25% infectious compared to symptomatics, 40% of total infections are asymptomatic,
0% asymptomatics are detected and quarantined). Results for other assumptions in Appendix.
ependent on when the relaxation was started and the duration of
he relaxation period (Figure 4C and D). Both delays in the
ockdown relaxation and shorter relaxation periods reduced the
umber of active cases at the peak. In the case of a gradual
ockdown release, the second wave was smaller and further
elayed when compared to sudden relaxation (Appendix p26–27).
58
on May 4, 2020, while the actual peak of active cases may occur
later than May 4, as discussed earlier. These findings may be
generalized to any first wave scenario, when interpreted with
respect to the actual peak date (which will be comparable to red
point in Figure 4B), instead of the absolute dates that are
simulated.
4



Figure 4. Effect of complete lockdown relaxation under various scenarios. Results are shown for the baseline assumptions (asymptomatics are 25% infectious compared to
symptomatics, 40% of total infections are asymptomatic, 10% asymptomatics are detected and quarantined). Bands represent 95% CI for the mean prediction over 1000
bootstraps for all model plots. [A] Simulated values of the model compartments Q (active cases), Qs (active symptomatic cases), and R (recovered) under complete and
sustained lockdown relaxation starting May 4, May 25, and June 15, 2020, showing increasing delay to start of the second wave with later relaxation. Inlay shows the
underlying depletion of undetected infectious pool as the first wave crosses the peak. [B] Days to new rise in active cases (time delay after respective relaxation date) at
different dates for lockdown relaxation. This effect is expected to be generalizable when interpreted with respect to the actual date of peak of active cases (compare with red
point). Black line represents the line joining the mean lag for 1000 bootstrapped simulations, and bands represent 95% CI. [C] Simulated values of the model compartments Q
(active cases), Qs (active symptomatic cases), and R (recovered) under complete relaxation lasting 7 days, starting May 4, May 25, and June 15, 2020, showing increasing delay
to start of the second wave and lower magnitude of the second wave with later relaxation. [D] Heatmap for the peak active cases under different lockdown relaxation
durations and dates of start of relaxation. These are hypothetical worst-case values, where lockdown has been completely lifted across the country at once.

Figure 5. Effect of expanded testing and varying social mixing after complete lockdown relaxation. Results shown for the baseline assumptions (asymptomatics are 25%
infectious compared to symptomatics, 40% of total infections are asymptomatic, 10% asymptomatics are detected and quarantined). Any increase in testing or any decrease in
social mixing starts from the day of lockdown relaxation. Results for other assumptions in appendix. Error bars represent 95% CI for 1000 bootstrapped predictions. All values
are given in thousands of individuals. [A] and [B] Total number of infections, detected cases, and symptomatic cases at 15 days and 45 days after lockdown relaxation with
varying levels of testing. [C] Effect of increasing testing (along x-axis) and decreasing social mixing (lines from top to bottom) on the number of symptomatic cases at 15 days
after the lockdown relaxation. [D] Heatmap for total symptomatic cases after 15 days under different reductions in transmission rate (proxy for social distancing policies) and
asymptomatic detection rate (proxy for testing policy). An example of a feasible combination of testing and social distancing policy is indicated by the area between two
watershed lines (grey) for a containment target of 50,000-100,000 cases. Similar heatmap for total infections is given in Appendix p24.
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ffect of increased testing on epidemic size and restoration of normal
ocial mixing

Increased detection through expanded testing resulted in a
ecrease in the number of total infections and symptomatic cases
Figure 5A and B). The number of detected cases may remain
lmost constant at various levels of testing due to a concurrent
ecrease in total infections and increase in the fraction of
nfections that were detected (ascertainment rate). However, a
ower proportion of detected cases are symptomatic under higher
esting, which highlights the significance of detecting more
symptomatic infections.
We further found that the positive impact of increased testing

ecomes more prominent at progressively higher values of
ransmission rate β (Figure 5C). As seen in Figure 5C, when
revailing levels of social distancing are very strong (low
ransmission rate β), increased testing and detection have very
ittle effect on reducing symptomatic case load. For an increase in
etection from 10% to 20%, the symptomatic cases after 15 days
ecreased by 2.9% at β, by 2.0% at 0�8β, and by 0.76% at 0�5β as
ompared to no increase in detection. For an increase in testing
rom 10% to 50%, the symptomatic cases decreased by 14.0% at β, by
.6% at 0�8β, and by 3.5% at 0�5β. Here β, 0.8β, and 0.5β imply no,
oderate, and strong social distancing levels that are residual after

ockdown relaxation.
After lockdown relaxation, lower levels of social restrictions

high β) when coupled with increased testing, can achieve similar
esults as a more restrictive social distancing regime where testing
as not increased (Figure 5D); increased testing allowed greater
esumption of normal social mixing after lockdown relaxation. An
xample of a feasible combination of testing and social restrictions
s indicated by the area between two watershed lines (grey) in
igure 5D. Due to uncertainty in the percent of infections that are
symptomatic, we evaluated the effect of testing across the range
f pa (Appendix p22–25).

iscussion

The trend of effective reproduction number (Rt) of COVID-19 in
ndia indicates that control measures have been effective in
lowing down the spread of COVID-19 across the country. To
chieve sustained suppression, monitoring of the time-varying Rt

t district, state, and national levels should be done to reach and
aintain an Rt close to the threshold value of 1. If lockdown is to be
xtended, additional benefits can be achieved if it is extended
arther after the peak of active cases has passed. As these
estrictions are relaxed, increased detection through testing will
e essential for limiting the resurgence of cases, and thus, testing
apacity should be ramped up preemptively before lifting
estrictions. Considering that asymptomatics play an undeniable
ole in transmission of COVID-19, dependence on presence of
ymptoms for control strategies, behavioral changes, and testing
hould be reduced.
The range of R0 of SARS-CoV-2 in India was found to be 2–2�5,

ith 2�083 being the best fit. Our results align with recent studies
hich estimate the R0 to be 2–2�7 (Li et al., 2020a; WHO, 2020; Wu
t al., 2020). In comparison, the R0 was 1�4–1�6 for the 2009
nfluenza (H1N1) pandemic, 2�0–3�3 for the 2003 SARS epidemic,
nd 2�0–3�0 for the 1918 Spanish flu pandemic, which reflects the
eriousness of the current pandemic (Coburn et al., 2009; Mills

In the early stages of the epidemic in India, we found that
restrictions on international travel were effective in limiting the
number of imported cases in India, although this is of limited
importance once local chains of transmission had been established
(Mandal et al., 2020). As testing of travelers was based on
appearance of symptoms, asymptomatic imported infections that
remained undetected may have played a role in the early spread of
COVID-19 (ICMR, 2020).

A ‘suppression’ strategy (e.g.: lockdown) aims to arrest
epidemic growth by reducing Rt below 1 (Ferguson et al.,
2020; Leung et al., 2020). After the nationwide lockdown was
imposed on March 25, 2020, the mobility levels quickly dropped
to low levels, but the Rt continued to increase till March 30 (Figure
2) probably due to inflation of estimated transmission by the
Nizammudin cluster (a super-spreading event originating in
Delhi) — which represented about 30% of total COVID-19 cases in
India in early April, with latest data linking the cluster to 4291
cases across more than 15 Indian states (Ministry of Health and
Family Welfare, Government of India, 2020). This event adds to
the list of multiple COVID-19 super-spreader events around the
world, which have caused unexpected spikes in cases (Liu et al.,
2020a). It should be noted that clusters may disproportionately
inflate transmission estimates because targeted testing of people
linked to the cluster leads to higher test positivity rates. The Rt

down-trended on 30 March onwards, with the most recent
estimated Rt of 1�159 (95% CI 1�128–1�189) on 22 April, which was
the lowest value of Rt yet. As there was no significant susceptible
depletion, this decrease in transmission can be attributed to the
intensive social restrictions in place. The trend of Rt from 23 April
onwards is of particular interest, and it remains to be seen
whether the Rt can reach sub-threshold levels (below 1) before
the lockdown is relaxed.

India was under one of the strictest lockdowns in the world
(OxCGRT: Oxford COVID-19 Government Response Tracker, 2020),
and a comprehensive lockdown exit strategy is required to
consolidate and build upon the gains of the lockdown. A sudden
and complete lifting of the nationwide lockdown is not a feasible
option as it will lead to a rapid exponential increase in cases due to
the absence of herd immunity. A lockdown of adequate length and
efficacy eventually causes the active cases to peak and then
gradually decrease. Once the peak of active cases is reached,
extending lockdown farther beyond the peak may have additional
benefits due to progressive exhaustion of the infectious pool in the
population, which is practically comparable to a lower pre-
relaxation prevalence of COVID-19. This has 2 effects. First, the
rebound epidemic growth is initially slower, which delays the
resurgent rise in cases after relaxation of lockdown. This seems to
imply that though extending a lockdown inherently buys time for
preparation, it also adds a progressively longer preparation time
after the lockdown is relaxed (Figure 4A, B). Second, we find that if
lockdown is to be reimposed after a fixed relaxation period, the
magnitude of the second peak can be reduced by relaxing the
lockdown farther from the first peak (Figure 4C, D). This is of
particular interest if an intermittent lockdown strategy is
implemented in the future, where measures need to be imposed
and relaxed repeatedly. The time gained should be used to
strengthen surveillance systems, ramp-up testing capacity, and
increase health-system preparedness. It is optimal to prevent a
second wave from occurring at all, by fine-tuning lockdown
relaxation based on serial monitoring of R to keep its value under 1
t al., 2004; WHO, 2003). The proportion of population that must
ecome immune in order to halt the epidemic is given by 1–1/R0—

he herd immunity threshold (Fine et al., 2011). For COVID-19, our
stimates imply that approximately 50–60% of the population
ust be infected or vaccinated in order to attain long-term
pidemic control.
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t

(Leung et al., 2020; Pan et al., 2020). In this scenario, a later
relaxation will allow the stabilization of disease prevalence at a
lower value, which can provide a buffer for response if and when a
resurgent rise in cases is seen (maintaining Rt = 1 implies that the
prevalence will remain constant at the pre-relaxation level). These
observations may increase the benefit of lockdowns above what is
6
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widely known and can better inform the delicate balance of cost
and benefits of such intensive policies.

Massive scaling up of testing has been proposed as a lockdown
exit strategy (Lavezzo et al., 2020; Peto et al., 2020). In this study,
we present quantitative evidence based on modeling for the same
(Figure 5). Extremely low transmission rates during intensive
restrictions are inherently enough to contain the epidemic.
However, as transmission rates increase with progressive restora-
tion of normal socio-economic activities post lockdown relaxation,
testing assumes an increasingly substantial role in containment.
The extent of relaxation that will be possible without causing an
untenable rebound in infections will highly depend on the amount
of testing that is done, especially after lockdown relaxation. While
having both intensive social distancing policies and very expansive
testing may be nonviable, combining the effects of both to a
feasible extent can effectively keep the epidemic under control
(Figure 5D). Our findings align with results seen in countries with
an aggressive testing approach, such as South Korea and Taiwan
where severe restrictions have been avoided (Pueyo, 2020). As of
May 2, 2020, 1 046 450 total COVID-19 tests were conducted in
India with about 70 000 tests administered daily and growing.
During the same time period, Russell et al. (2020) estimate that
cases in India were underreported by a factor of 5–25 based on
delay-adjusted case fatality rates; a finding that is consistent with
the usual under-ascertainment seen in early phases of an epidemic.
Even if the amount of testing being done during lockdown is
deemed to be sufficient, a rapid and massive scaling up of testing
capacity is needed preferably before relaxing restrictions. The
monetary cost of expanding testing even at a large scale, is
expected to be smaller than the cost of implementing intensive
social distancing for long periods (Lee et al., 2020). In addition to
supporting the economy, this approach can ameliorate the
substantial social and humanitarian implications of imposing
population-wide lockdowns, especially in a country such as India.

Blanket testing of health care workers (HCWs) can be a
judicious use of the expanded capacity, considering they are highly
exposed personnel and risk spreading the infection to patients, co-
workers, and family members if infected. This will limit depletion
of an already scarce workforce due to unnecessary quarantine,
while also reducing spread from unrecognized asymptomatic
infections in HCWs (Black et al., 2020). Other essential workforce
like law enforcement personnel, grocery vendors, sanitation
workers, and others with high contact rates should also be
considered.

SARS-CoV-1 did not reach the scale of SARS-CoV-2 despite a
comparable R0 due to low community transmissibility and onset of
infectivity well after symptom onset which allowed optimal efficacy
of traditional control measures such as symptom-triggered isolation
and contact tracing (Gandhi et al., 2020; WHO, 2003). Pre-
symptomatic transmission occurs before the onset of symptoms
in an eventually symptomatic patient, while asymptomatic
transmission occurs through patients who never become symp-
tomatic. The presence of both these features in COVID-19 is a
significant deterrent for control strategies (Gandhi et al., 2020; Hu
et al., 2020; Liu et al., 2020c; Tindale et al., 2020). In such a scenario
and R0�2.5, modeling studies indicate that controlling COVID-19
outbreaks through classical contact tracing and isolation alone is not
possible. However, contact tracing systems should be strengthened
as they are a prerequisite for expanded testing of contacts, and they
mayachievesignificantcontainment at lowereffective reproduction

Based on our findings, it is possible that detecting more
asymptomatics through testing impedes transmission to an extent
where the total number of infections, and thus the number of
symptomatic cases, decreases (Figure 5), relieving burden upon
the healthcare system and reducing mortality. This finding will
increasingly approximate reality if asymptomatics play a larger
role in transmission. A case in point is a blanket testing study done
in a small town in Italy which achieved almost complete outbreak
control (Lavezzo et al., 2020). Although blanket testing is not
practical for larger implementation, it further highlights the
importance of detecting and isolating asymptomatics in control-
ling COVID-19 outbreaks.

A symptom-based monitoring approach during quarantine will
miss asymptomatic infections that will escape the quarantine net
and go on to spread the disease. With emerging evidence of
infectious asymptomatics, it is prudent to modify the public health
response to address these concerns. Thus, all contacts should
ideally be tested at the end of quarantine irrespective of symptoms.
In settings where testing all contacts is not yet possible, close
contacts may be tested and extended quarantine periods up to 28
days may be considered, which have two-fold benefits. First,
almost all asymptomatics finish their infectious period before 28
days, and second, more symptomatics can be detected by day 28
(only 2 out of 10,000 symptomatic cases are missed by day 28,
compared to 101 cases by day 14) (Lauer et al., 2020). Such
extended quarantines are already in place in certain parts of India
(Kerala) and China (Harbin). Currently, a 14-day quarantine is
recommended based on studies of incubation period of COVID-19
(Lauer et al., 2020; Li et al., 2020a), but studying the incubation
period inherently assumes an onset of symptoms. It is encouraging
to note that the need for expanded testing can be supported by
high-throughput machines and by pooling of samples (ICMR,
2020). Pooling can also be used for community surveillance and
has the potential to drastically increase detection capabilities
while saving costs and resources. Pooling should be used wherever
possible, while also enhancing research to boost pool size and
accuracy (Yelin et al., 2020).

While contact tracing, isolation, and testing are important, the
role of behavior change in reducing transmission must not be
underestimated. Asymptomatic people are themselves less likely
to take appropriate precautions, and people use less caution
around other people who do not have symptoms. Universal mask
wearing in public spaces should be encouraged and, if required,
mandated by policy (Abaluck et al., 2020). Considering that
ensuring long-term compliance of citizens to health advisories and
public restrictions will be another challenge, transparent and
proactive communication by authorities along with continued
social support for vulnerable groups will be essential.

Blanket interventions have been effective in suppressing the
pandemic till now, but targeted interventions will be key as we
move forward. Various interventions need to be stratified based on
how effectively they suppress viral transmission and the amount of
disruption they cause. Cost effectiveness analysis must be done,
and bundles of interventions that together achieve high efficacy
with least accompanying disruption should be deployed. Highly
effective and disruptive interventions should be targeted at areas
with active hotspots and high community transmission. It will be
essential to build robust disease surveillance systems to assess the
relative impact of each intervention in real-time and reduce the
time delay to response. Expanded testing and strengthened
numbers (Hellewell et al., 2020). Contact definitions should include
contacts made 48–72 h before symptom onset of index case to
account for pre-symptomatic transmission. Technology-enabled
contact tracing can reduce delay to isolation of contacts and thus cut
off transmission when infectiousness is highest around the time of
symptom onset.
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contact tracing will enable this by reducing the reporting lag
and rapidly detecting any surge in cases. Instead of adopting an
intermittent lockdown policy, where lockdowns are treated as
either ‘on’ or ‘off’ (Ferguson et al., 2020), some countries have
adopted a staged alert system for responding to the COVID-19
pandemic (New Zealand Government, 2020), where a geographical
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rea may move up and down alert levels, to reflect the level of
uppression that the local outbreak situation demands. Similarly,
ndia has recently stratified its districts into red, orange, and green
ones, based on surveillance trends, in preparation for a staggered
elaxation of lockdown (Ministry of Home Affairs, Government of
ndia, 2020). Such social distancing policies which are dynamic
ith respect to geography and time are direly needed as we move

nto a time of relative uncertainty post lockdown relaxation.
As with all analyses, our study has a few limitations which must

e noted to better understand the findings. First, the estimation of
eproductive numbers is based on detected cases which are only a
raction of the actual infections, and we do not account for
ariation in detection, which, if significant, may confound the
hanges in estimated Rt over time. Second, we assumed the delay
rom symptom onset to confirmation to be similar to the delay
rom symptom onset to hospitalization due to lack of data, and that
his delay is uniform across India. Though the latter approximates
he former, further studies to ascertain the true reporting lag in
ndia are needed as it is critical for identifying Rt changes at correct
oints in time (Leung et al., 2020). Third, as our primary goal was to
valuate the effect of identifying asymptomatics, we assumed that
ncreased testing increases the detection of asymptomatics only,
hile in reality it would detect more cases across the clinical
pectrum. However, the interpretations regarding impact of
ncreased testing are not sensitive to this assumption, which has
een discussed through an alternate interpretation of the model
Appendix p4). Lastly, we assumed a constant death rate (k), in
ontrast to reality where the death rate gradually decreases during
n epidemic to ultimately converge at the near-actual death rate
Spychalski et al., 2020). Thus, we refrained from forecasting
eaths due to obvious bias in the prevailing death rate at the time
f the study.
Notwithstanding the limitations, we built a mathematical

odel which can account for the dynamics of lockdown imposition
nd relaxation, varying levels of case detection, and lag to
ymptom onset and case reporting, while simultaneously allowing
o test the range of asymptomatic burden and transmissibility. As
e have presented findings across the range of uncertainty
egarding asymptomatics (Appendix), our results are robust with
egard to emerging evidence. Though our model is fitted to data
rom India, we expect the insights into lockdown relaxation and
esting impact to be generalizable to similar scenarios elsewhere.

In conclusion, though disruptive, the world’s largest lockdown
n India has been effective in reducing the transmission levels of
OVID-19. To avoid a resurgence in cases, a dynamic relaxation
pproach guided by regional monitoring of effective reproduction
umbers is recommended, and this relaxation should be farther
rom the peak of active cases as feasible. Asymptomatics could be a
onsiderable challenge to long-term containment efforts, and
ncreased detection will play an increasingly pivotal role once
estrictions start to be lifted. The amount of testing will dictate the
xtent of resumption of socioeconomic activities, and authorities
hould scale-up testing capacity as a priority. Further, control
easures should be appropriate and acceptable in the social
ontext of a population, especially in low and middle-income
ountries across the world.
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