
Introduction

 Most bacteriophages are detrimental to their host 
metabolism. However, phages also participate in the 
horizontal transfer of genes among bacteria because 
their genome can harbour other genes than those 
strictly required for their life cycle. This can be highly 
beneficial to the bacterial host. Indeed, many bacterial 
virulence factors are associated with phage-like DNA 
sequences. More strikingly, the exotoxins produced by 
many pathogenic bacteria are encoded in the genome of 
lysogenic phages. This is notably the case in Bordetella 
avium1, Clostridium botulinum2, Corynebacterium 
diphtheriae3, Escherichia coli4, Pseudomonas 
aeruginosa5, Shigella dysenteriae6, Staphylococcus 
aureus7 and Streptococcus pyogenes8. The integrated 
prophages harboured by these bacteria profit from the 
multiplication of their host in the environment, which 
is in turn favoured by the virulence factors they bring 
to their host. 

 The study of Vibrio cholerae, the agent of the deadly 
diarrhoeal disease cholera, provides a fascinating case 
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One of the major pathogenic determinants of Vibrio cholerae, the cholera toxin, is encoded in the genome 
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of such a bacterium-phage co-evolution. V. cholerae 
is the host for a variety of phages, commonly known 
as vibriophages, which can be lytic, non-lytic, virulent 
or temperate9. On the one hand, phage predation of V. 
cholerae has been reported to be a factor that influences 
seasonal epidemics of cholera10. On the other hand, one 
of the major virulence factors of V. cholerae, cholera 
toxin, is encoded in the genome of an integrated 
prophage CTXΦ11,12. Furthermore, different variants of 
the phage CTXΦ exist, which participate in the genetic 
diversity of epidemic causing cholera strains13-15. Two 
different attachment sites were found for this family of 
phages on the V. cholerae genome. They correspond 
to the dimer resolution sites of the two V. cholerae 
chromosomes, dif1 and dif216. Indeed, in contrast to 
most other lysogenic phages, such as bacteriophage 
λ17, CTXΦ does not encode its integrase, but makes 
use of XerC and XerD, the two host-encoded tyrosine 
recombinases that normally function to resolve 
chromosome dimers18. This mode of integration is 
all the more intriguing since CTXΦ phages belong 
to the filamentous phage family, which are generally 
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not lysogenic and which harbour a single stranded 
circular genome. Nevertheless, CTXΦ-like prophages 
were found integrated in the genome of several 
bacterial species, notably in pathogenic E. coli strains19 
and in Yersinia pestis20. Finally, it is remarkable to 
observe that many filamentous phages and/or genetic 
elements other than CTXΦ seem to have hijacked the 
chromosome dimer resolution system of V. cholerae 
for integration. Thus, TLC21, VEJ22, VGJ23, VSK24, 
VSKK (AF452449), KSF-1Φ24, fs125, fs226, f23714, 
were all found to be integrated at dif1 and/or dif2. 
Such a diversity of elements has not been observed 
in any other genera than the vibrios. Together, these 
elements participate in the dissemination of virulence 
factors among V. cholerae strains11,28,29 and in the 
emergence of new genetic variants of epidemic strains 
of V. cholerae13. We review current knowledge on the 
integration mechanism of filamentous vibriophages 
that hijack the XerCD recombinases, with a special 
focus on CTXΦ. 

CTXΦ integration mechanism: exception or new 
paradigm? 

 CTXΦ has a ~7-kb ss(+)DNA genome arranged 
in two modular structures, the “RS” and “core”. The 
core region harbours seven genes, which are psh, cep, 
gIIICTX, ace, zot, ctxA and ctxB. While the psh, cep, 
gIIICTX, ace and zot encoded proteins are needed for 
phage morphogenesis, the products of the ctxAB genes 
are not strictly required for the life cycle of the phage 
but are responsible for the severe diarrhoea associated 
with cholera11. Three proteins, designated as RstR, 
RstA and RstB, are encoded in RS. Genetic analyses 
indicated that RstA is essential for phage replication 
and that RstB plays a crucial role in integration30. RstR 
acts as a transcriptional repressor by inhibiting the 
activity of PrstA, the only phage promoter required for 
CTXΦ replication and integration30. Several CTXΦ 
have been reported. These can be classified into four 
families based on the sequence of their rstR gene. 
These categories were designated as CTXΦET, CTXΦCl, 
CTXΦClc and CTXΦEnv according to the host cells in 
which they were originally isolated31-33.

 As mentioned earlier, the integration of CTXΦ into 
the V. cholerae genome depends on two host encoded 
tyrosine recombinases, XerC and XerD18. XerC and 
XerD normally serve to resolve circular bacterial 
chromosome dimers generated by RecA mediated 
homologous recombination by adding a crossover at a 
specific 28 bp site dif on the chromosome16. The dif sites 
consist of specific 11-bp binding sites for each of the two 

Xer recombinases, separated by a 6-bp central region34. 
These are generally located opposite to the origin of 
replication of bacterial chromosomes16. Two dif sites are 
present on the genome of V. cholerae, one for each of 
the two circular chromosomes of the bacterium35. Three 
different chromosome dimer resolution sites (dif1, dif2 
and difG) have been identified among the different V. 
cholerae strains characterized to date36 (Table I). 

 The ssDNA (+) genome of CTXΦ harbours two 
dif like sites (attP1 and attP2). These are arranged 
in opposite orientation and are separated by ~90-bp 
DNA segment in the phage genome37. Integration of 
CTXΦ at the dif loci of V. cholerae depends on the 
formation of a forked hairpin structure of 150 bp in 
the region encompassing attP1 and attP2 in the (+) 
ssDNA genome38 (Fig.1). The hybridization of attP1 
and attP2 at the stem of this hairpin unmasks the phage 
attachment site, attP(+). Integration occurs, XerC and 
XerD recombine this site with one of the two dimer 
resolution sites harboured by the host cell. This process 
only requires the catalytic activity of XerC: a single pair 
of strands is exchanged, which results in the formation 
of a pseudo-Holliday junction.

 A proof of principle for this mechanism of 
integration was originally obtained for the El Tor variant 
of CTXΦ and dif1 based on in vivo work performed 
in Escherichia coli and in vitro work performed with 
the E. coli Xer recombinases38. Later on, a sensitive 
and quantitative assay was developed to confirm the 
ssDNA(+) integration model of CTXΦET into the dif1 
site of a V. cholerae El Tor strain36. This system was 
also used to define rules of compatibilities between 
the phage attachment sites harboured by the different 
CTXΦ variants characterized to date and their host 
dimer resolution sites36: integration is solely determined 
by possibility to form Watson-Crick or Wobble base 
pair interactions to stabilize the exchange of strands 
promoted by XerC-catalysis between the phage 
attachment site and its target dimer resolution site (Table 
II and Fig. 1). These rules explain how integration of 
CTXΦET is restricted to dif1, how CTXΦCl can target 
both dif1 and dif2, and how a third CTXΦ variant 

Table I. Sequences of the chromosome dimer resolution sites found 
in V. cholerae strains

Site Sequence
dif1 AGTGCGTATTA TGTATG TTATGTTAAAT
dif2 AATGCGTATTA CGTGCG TTATGTTAAAT
difG AGTGCGTATTA GGTATA TTATGTTAAAT
Source: Ref. 36



targets difG (Table II). This single stranded integration 
model is not restricted to CTXΦ. Analysis of the attP 
sites of CUS-1Φ and Ypf-Φ phages revealed features 
for direct ssDNA integration into the chromosome 
dimer resolution site harboured by their respective host 
cells38. Another family of mobile genetic element, the 
integrons, also integrates in the bacterial chromosome 
via a single stranded intermediate39. 

Integration mechanism of CTXΦ-associated 
genetics elements 

 Several filamentous phages other than CTXΦ are 
found to be integrated at the dif loci of V. cholerae13,22,23. 
To date, there is no report about their particular 
integration mechanism. Like CTXΦ, they do not 
encode a dedicated recombinase. In addition, a 29-bp 
dif like sequence can be identified in many of them 

Fig. 1. Schematic representation of the XerCD mediated site-specific recombination reaction between the single stranded (+) DNA genome of 
CTXΦ and V. cholerae dif1. Blue and green bases indicate XerC and XerD binding sites. Bases of the central region of these sites are shown 
in red. The recombination reaction stops after the exchange of a single pair of strands, which is catalyzed by XerC. Integration is completed 
when the resulting pseudo-Holliday junction needs to be processed by the host DNA replication and/or DNA repair machineries. Integration 
of the phage generates one new functional dif site and two non-functional dif like sequences, attP2 and attP1, on the host chromosome38.

Table II. Sequences of the dif-like sites harboured by CTXΦ variant
CTXΦ variant attP sequence Integration site Accession number 

El Tor AGTGCGTATTA TGTGGCGCGGCA TTATGTTGAGG (attP1)
AATGCGTATTA TACGCCA TTATGTTACGG (attP2)

dif1 VCU83796

Classical AGTGCGTATTA TGTGGCGCGGCA TTATGTTGAGG (attP1)
AATGCGTATTA CTCGCCA TTATGTTACGG (attP2)

dif1
dif2

AY349175

Calcutta AGTGCGTATTA TGTGGCGCGGCA TTATGTTGAGG (attP1)
AATGCGTATTA TACGCCA TTATGTTACGG (attP2)

dif1 AF110029

G AGTGCGTATTA GGTGGTGCGGCA TTATGTTGAGG (attP1)
AATGCGTATTA GGGGCA TTATGTTACGG (attP2)

difG AF416590

Source: Ref. 40
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Table III. Sequences of the dif-like sites harboured by other vibriophages 
Phage Genome size 

(kb)
attP sequence Host Integration 

site
Accession 

number 
VEJ 6.8 ACTTCGCATTA TGTCGGC TTATGGTAAAA V. cholerae dif1 NC012757
VGJ 7.5 ACTTCGCATTA TGTCGGC TTATGGTAAAA V. cholerae dif1 AY242528.1 
VSK 6.9 ACTTCGCAGTA TGTCGGC TTATGGTAAAA V. cholerae dif1 NC003327
VSKK 6.8 ACTTCGCATTA TGTCGGC TTATGGTAAAA V. cholerae dif1 AF452449
KSF1 7.1 UK V. cholerae UK AY714348
fs1 6.3 UK V. cholerae UK NC004306.1
fs2 8.6 AGTGCGTATTA TGTCGGC TTATGGTAAAA V. cholerae dif1 AB002632
f237 8.7 AGTGCGCATTA TGGGCGC TTATGTTGAAT V. cholerae

V. parahemolyticus
dif1 NC002362

UK, unknow; Source: Ref. 40

Fig. 2. Putative mechanism of lysogenic conversion by the second 
type of filamentous phages that are found integrated into the 
chromosomal dimer resolution sites of V. cholerae40.

for integration. We rather favour a model in which the 
double stranded replicative form of these phages is used 
for integration (Fig. 2). We are currently investigating 
this model using the tools we have developed for the 
study of CTXΦ40. 

 Interestingly, the two TLC elements integrated 
in strain N16961 are flanked by the half of the dif 
sequence (TGTGCGCATTA TGTATG for one and 
AGTGCATATTA TGTATG for the other). It is, therefore, 
reasonable to argue that their integration might be 
linked to the activity of the Xer recombinases. 

Future prospects

 The particular mode of integration of CTXΦ raises 
several questions. First, the efficiency of integration of 
a circular single stranded DNA molecule harbouring the 
sole attachment site of CTXΦ is very low38. However, 
it becomes extremely efficient when the RS region of 
the phage is included36. One likely explanation is that 
constant production and/or stabilization of the phage 
single stranded circular genome compensate for the 
instability of single stranded DNA in bacterial cells. 
RstB, which has been shown to be a single stranded 
DNA binding protein41, could play a role in the 
stabilization of the integration substrate. Accordingly, 
its biochemical properties and sequence differ from 
those of the single stranded DNA binding protein 
encoded in the genome of VGJΦ, a phage that seems 
to rely on double stranded DNA integration40. Second, 
only one pair of strands is exchanged between the 
single stranded DNA genome of CTXΦ and the double 
stranded DNA genome of its host, which leaves open the 
question of how the resulting pseudo-Holliday junction 
intermediate is processed. Is it stably maintained 
until the next round of bacterial DNA replication or 
processed by some host DNA repair machinery? What 
occurs when the replication fork collides against this 

(Table III). It is, therefore, very likely that these phages 
take control of the host XerC and XerD recombinases 
to integrate into the genome of their host. However, 
the presence of a single putative XerCD binding site 
on their genome makes it unlikely that the ssDNA 
form of their genome is directly used as a substrate 
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unusual structure? Finally, it is intriguing that so many 
phages take advantage of the Xer recombination system 
of vibrios as compared to other bacterial species. We 
wonder if it could be related to the particular life style 
and environment of the vibrios and/or their particular 
genome structure and management. 
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